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● Static wormholes

    spherically symmetric wormholes (Morris, Thorne 1988)

    polyhedral wormholes (Visser 1989)

    stargates (dyhedral wormholes, Visser 1996)
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● Wormholes supported by Quantum Gravity
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    GR: topological censorship theorems (Geroch 1967, Geroch, Horowitz 1979,
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    GR: working them around (Sorkin 1986, Louko, Sorkin 1997, Horowitz 1991,

            Ionicioiu 1997, McCabe 2005)

    Example 1: dynamical opening of the wormhole
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Static Wormoles: spherically symmetric case

● Morris-Thorne 1988 model
● no event horizon
● a tunnel connecting 2 universes or 2 sites 

of a single universe
● requires exotic matter (ρ+p<0)
● B→∞, A>0 is finite, L proper length integral 

is finite

M.Visser, Lorentzian Wormholes: from Einstein to Hawking, Springer 1996

(a specific example, r
0
,α >0, r→r

0
+0 is the wormhole throat)

● metric, the square of the distance 
between points in spacetime:



  

Static Wormoles: polyhedral case

● Visser 1989
● two copies of R3 space, two congruent polyhedra cut out
● faces identified (AA', BB', ...)
● the space is locally flat near the faces 

=> vacuum, no matter
● the space has a topological singularity near the edges, a 

conic type singularity with negative defect (positive 
excess) of angle

● angular arithmetics: 2π-α in one universe plus 2π-α in 
another universe, where α<π is the angle between the 
adjacent faces, result =4π-2α, instead of 2π for flat 
space => 2(π-α) excess, -2(π-α) defect



  

Static Wormoles: polyhedral case

● Nambu-Goto string with linear mass density μ and 
tension τ has μ=τ=defect/(8π) in geometric units 
(G=c=1)

● on the edges: the pieces of exotic string with 

μ=τ=-(π-α)/(4π) <0
● exotic matter nevertheless, but the wormhole is 

traversable, the observer going through the face can 
avoid the regions of high curvature and exotic matter 
on the way from one uni to the other

● Remark: it's better to identify the faces with P-
reflection to avoid P-reflection of the observer body 
(DNA composition etc) while going through the 
wormhole



  

Static Wormoles: Stargate (dihedral case)

A B A' B'

● Visser 1996, a particular case
● two-face degenerate polyhedron
● faces A,B with α=0
● any number of edges, N→∞ is a disk
● exotic string with μ=τ=-1/4 coiled in a ring
● in natural units approx -0.2 Jupiter mass 

per meter

● an embedding diagram in cylindric coords 
has a branching point

● (a) way not intersecting the face, remains 
in one uni

● (b) way intersects the face, goes to the 
another uni 

x
3

r
⊥

0

a

b

arXiv:1909.08984



  

Static Wormoles: Einstein Field Equations (EFE)

spherically symmetric case, Z=B-1

density

radial pressure

transversal pressure

A(r),Z(r) profiles are freely selected

the matter terms are finite, if r,A in denominator are separated from zero 
(>Const>0) and r,A,Z and derivatives in the numerator are finite 

arXiv:1909.08984



  

Static Wormoles: flare-out conditions

r

Z

r
0

throat condition 
(B1/2~(r-r

0
)-1/2→∞ in integrable way)

(A'
r
>0 as an additional condition imposed for the derivation)

necessary and sufficient conditions
on density and radial pressure

more necessary conditions on transversal pressure 

arXiv:1909.08984

exotic matter



  

Dynamic Wormoles

(paper in preparation)

g
tr
 ~ −r'

0
 /(4c(r−r

0
)) and g

tt
 ~ (r'

0
)2 /(4c(r−r

0
)), the terms that 

remain active in a small vicinity r ~ r
0
 , even if r'

0
 becomes 

arbitrarily small

L'
t
 and L'

r
 contain a singular multiplier |r−r

0
|−1/2 non-diagonal term

evolution of throat radius
shape function c>0  
(c<0 for inverse wormhole, a bubble)



  

Dynamic Wormoles

(paper in preparation)

The evaluation of Einstein tensor leads to a lengthy expression with the 
following properties: 
(i) denominators of components are monomials of (r,A,c); 
(ii) numerators are polynomials of (r,A,c,r

0
) and their derivatives up to the 

second order;
(iii) all components are finite, provided that the denominator values are 
separated from zero and numerator values and derivatives are finite; 
(iv) quasistatic property: when time derivatives vanish, the expressions 
coincide with those of static limit

in addition:

=> (−det g)1/2 ~ |r−r
0
|−1/2  , the densities Tμ

ν 
(−det g)1/2 are integrable



  

Wormoles supported by QG

Energy conditions (Einstein, Hawking): 

● there are no negative masses (weak energy condition)
● as well, there are no materials with ρ+p<0 (null energy 

condition)

Critics of energy conditions 

● Barceló, Visser, Twilight for the energy conditions?, 
2002

Models requiring exotic matter:

● wormholes (Morris-Thorne 1988)
● warp drives (Alcubierre 1994)
● Planck stars (Rovelli-Vidotto 2014, Barceló et al. 2015)
● RDM stars (arXiv:1701.01569)
● TOV stars with QG core  (arXiv:1811.03368)

QG bounce 
of Planck star:

collapse replaced 
by extension, 

black hole turns 
white



  

Wormoles supported by QG

QG able to generate effectively negative mass 
densities:

ρ
X
 = ρ (1-ρ/ρ

P
)   (Ashtekar et al. 2006)

● ρ=ρ
P
 => ρ

X
=0 at Planck density the gravity is switched off

● ρ>ρ
P
 => ρ

X
<0 in excess of Planck density the effective 

negative mass appears (exotic matter), gravitational 
repulsion (antigravity)

 QG bounce 
of Planck star:

collapse replaced 
by extension, 

black hole turns 
white



  

Wormoles supported by QG

arXiv:1909.08984

Q: what if the effectively exotic matter terms created by quantum gravity do 
not lead to a quantum bounce, but to the formation of a wormhole?

The program: 
● take the environment model, where Planck density is reachable
   E.g., equation of state (EOS) ρ = p

r
 , p

t
 = 0, null radial dark matter (NRDM) 

   solution: ρ
nom

= ε/(8πr2A(r)), A(r) rapidly falling with decreasing r 

   (mass inflation)
● in quantum region (ρ

nom
>ρ

P
) define a wormhole metric or a class of metrics, 

static or dynamic
● use EFE to convert it into QG modified EOS  
     ρ = ρ(ρ

nom
), p

r
 = p

r
 (ρ

nom
), p

t
 = p

t
(ρ

nom
)

● use flare-out conditions to make a qualitative prediction of what QG 
modified EOS should be to open the wormhole

(this program will be implemented below in frames of a more complex 
scenario, involving topology change)



  

Topology change: string theory

● Example: Nambu-Goto classical string 
theory 

● contains solutions of variable topology
● breaking and fusion of strings 
● Artru 1983
● Klimenko, Nikitin 2001 (arXiv:hep-

th/0110042)
● Solution 1: breaking in a regular point



  

Topology change: string theory

Details of construction (open string):

2P

P

worldsheet (WS): a set of middles

supporting curve  (1st edge of WS)

2nd edge is Q(σ)+P;   P is energy-momentum vector

Fourier expansion

Virasoro constraints

light-likeness periodicity

light-like parametrization of WS

Q(σ)



  

Topology change: string theory

Details of construction (break of open string):

2P

Q(σ)

P

X

P
1

P
2

1

1'

1''

2

2'

2''

1 1' 1''

2 2' 2''

...

...
X

σ
1

σ
2

2π

0

● for an arbitrarily selected point X, patches 1 
and 2 are selected on the original WS

● separated by the lines σ
1,2

=Const, 

characteristics, paths of light signal from X 
on WS

● continued periodically to the sequences 
{1',1'', ...} and {2',2'', ... }, the resulting 2WS 
after string break

● alt: periodic continuation of 1,2-segments of 
supporting curve and reconstruction by 
generic algorithm 



  

Topology change: string theory

Details of construction (break of open string):

2P

Q(σ)

P

X

P
1

P
2

1

1'

1''

2

2'

2''

1 1' 1''

2 2' 2''

...

...
X

σ
1

σ
2

2π

0

● the immediate consequence: P = P
1
 + P

2
, 

conservation of energy-momentum for string 
break

● C0-fractures of WS appear on outgoing 
characteristics

● equations defining the shape of WS are 
satisfied in generalized functions 

● (proof in arXiv:hep-th/0110042)



  

Topology change: string theory

Solution 2: break of open string in a singular point

● let q(σ) be a projection of Q(σ) orthogonal to P 
(CMF) => a closed curve in R3

● N(σ) = q'(σ)/|q'(σ)| - unit tangent on S2

● self-intersection point => lift to R3, parallel tangents q'
1
~q'

2

● light-likeness Q0'=|q'| => lift to R4, parallel tangents Q'
1
~Q'

2
 

● WS tangents ∂
1,2

x~Q'
1,2

 => collapse of tangent plane, 

singular point on WS
● stable to small variations of Q(σ), or q(σ), or N(σ)

S2

N(σ)



  

X
0

X
-1

X
-2

Topology change: string theory

Solution 2: break of open string in a singular point

when the break occurs 
at a singular point, the 
continuation through 
parallel tangents is 
C1-smooth



  

X
0

X
-1

X
-2

2P

Q(σ)

P

X

P
1

P
2

1

1'

1''

2

2'

2''

Topology change: string theory

Resume:

string breaking processes are 
closely linked to singular points 
that either exist on the original WS 
or arise as a result of breaking

Remark:
● string breaking processes are 

available only in Lagrangian 
theory

● absent in the Hamiltonian theory, 
which fixes the topology of WS:
the band IxR1 open strings, 
the cylinder S1xR1 closed 
strings...



  

Topology change in General Relativity

Definition: Lorentzian time-orientable chronological manifold
● equipped with everywhere Lorentzian metric (- +++)
● with everywhere nonzero continuous vector field defining time flow
● there are no closed timelike curves (no time machines)

Theorem (Geroch 1967): change of topology not possible on such manifolds 

Theorem (Sorkin 1986): change of topology possible on such manifolds

Definition: almost everywhere Lorentzian manifold
● Lorentzian metric is introduced everywhere, except for a thin 

set of singular points



  

Three methods for defining spacetime manifolds in GR

x

y
t
E

Method 1: Euclidean embedding diagrams
● define a surface in Euclidean space
● define a vector field V on it
● induce Euclidean metric on the surface
● redefine it to the Lorentzian metric

Properties:
● the metric is re-projected in the direction of V
● the components along V receive a Lorentzian signature
● with respect to the new metric, V is timelike 
● can be used to specify the direction of time on the manifold

vector field



  

Three methods for defining spacetime manifolds in GR

A particular case: V ~ grad f 

● For topology change M
0
→M

1
, an interpolating 

manifold, or a cobordism is a manifold M whose 
boundary is a disjoint union of M

0
 and M

1
, 

∂M = M
0 
∪M

1
.

● Morse function is any smooth function, taking 
values f (M

0
) = a, f (M

1
) = b on the boundaries 

and intermediate values in the interior M\∂M, 
whose critical points are non-degenerate and 
located in the interior M\∂M. 

● Morse function can be taken as a global time 
coordinate t=f, interpolating between the initial 
and final states in the topological transition.

x

y
t
E

Morse slices



  

Three methods for defining spacetime manifolds in GR

A particular case: V ~ grad f 

Equivalent to the previous definition with the 
replacement V→∂f, optionally:
● a trivial choice for the Euclidean metric g

E
→δ

● an overall factor λ≥0 
● an arbitrary reprojection factor ζ>1

x

y
t
E

λ

Morse slices



  

Three methods for defining spacetime manifolds in GR

x

y
t
E

Morse slices

x

y
t
E

vector field

Example: S1→2S1, closed uni splits to 2 closed unis. 
V necessarily has a singular point of saddle type. 

Proof: fixing the topology of transition and direction of V at the 
boundaries, deform the surface to a sphere. Count indices: 3 foci 
(+1), sum must be χ=2 (Poincaré-Hopf theorem) => should be at 
least one (-1) saddle.

Check of chronological structure
● general V-def: closed integral trajectories

of non-zero V possible => closed timelike paths
● Morse def: no closed timelike paths possible 

in general position

● Proof: consider closed timelike path not going through singular 
points; min f, max f reachable, where tangent to the path 
contained in f=Const section, which is spacelike (contradiction). 
If path comes through singular point, where metric is 
degenerate, difficulties arise. However, the path can be taken 
off singular points by a small variation (general position).



  

Three methods for defining spacetime manifolds in GR

Example: 2R3  → R×S2 + S3

● dynamical opening of the wormhole, with the 
separation of a bubble (baby uni)
(a) way from infinity to zero radius in one uni
(b) way from one uni through wormhole
throat (rmin) to another uni
(c) way through rmax of the bubble

● Euclidean embedding diagram for (r,t) 
coordinates

● angular coordinates defined in a standard way

t
E

r0

r0

t
E

a

bc

Morse slices

vector field



  

Three methods for defining spacetime manifolds in GR

Method 2: Lorentzian embedding diagrams

● Example: surface  t
E
 = x2 −y2

● induction of Minkowski metric 
ds2 = dt2 − dx2 − dy2 onto it does not 
lead to the Lorentzian metric 

● transformation t
L
 = t

E
1/3 leads to almost 

everywhere Lorentzian manifold

Proof: (x, y) = r(cos α, sin α), n
1
2 + n

2
2 − n

3
2 = −1 + 

(4/9) r −2/3 (cos 2α) −4/3 > 0,  0 < r < 8/27

Check of chronological structure:
● closed timelike paths not possible

Proof: otherwise they will be closed timelike in the 
ambient space, which is chronologically trivial 
(contradiction)

x

y

t
E

t
L
=t

E

1/3

x

y



  

Three methods for defining spacetime manifolds in GR

Method 3: direct definition of the metric components

generic spherically symmetric; static:  A(r)*, B(r), C=0, D=1; 
auxiliary: Z=B-1, W=±sqrt(Z)

r

Z

r

W

r
0

r
0
* r*

closed

openopen

closed

openopen

closed

principal quasistatic scheme for opening the wormhole with bubble separation:

wormholebubble* A>0, A
r
'>0 time-independent arbitrary



  

Generalized flare-out conditions

wormhole throat (as above)

bifurcation point:

bubble rmax:

If A-profile monotonicity condition is not strict, A'
r
 ≥ 0, the same conditions 

are met, except for ρ + p
r
 + 2 

t
 = 0 at the points where A'

r
 = 0

r

Z

r
0

r

Z

r*

r

Z

r*
0



  

Misner-Sharp mass (MSM)

in throat rmin, bifurcation r* and bubble rmax points 

equal to ∫dr 4πr2ρ for spherically symmetric 
problems (metric C=0, D=1)

Q: should MSM (and radius) of the bubble be conserved?

● generally not (see Blau, Lecture Notes on General Relativity, Uni Bern 2018)
● MSM conservation should follow from EFE
● MSM is conserved for a spherically symmetric system surrounded by 

vacuum, where EFE => MSM conservation (Birkhoff’s theorem)
● MSM is not conserved for FLRW with pressure, where MSM is changed

by the work of pressure forces
● FLRW also does not have C=0, D=1 metric and has a different 

MSM definition



  

Misner-Sharp mass (MSM)

● generally, an arbitrary evolution of Z(t,r) or r(t,L) profiles is allowed, for 
which EFE will produce the corresponding matter terms

● in particular, the bubble can evolve according to closed scenarios of 
FLRW model

● nevertheless, we will consider a special scenario, when after the 
formation, the bubble comes to an equilibrium and preserves its external 
radius and MSM

● the dynamics of wormhole is not influenced by the behavior of the bubble



  

Other works on wormhole opening

● our scheme: 2R3 → R × S2 + S3 
two copies of 3dim space converted to 
two copies of 3dim space connected by 
the wormhole plus the bubble

● Visser 1996, Waldrop 1987, Battarra et al. 
2014: R3 → R3 + S3, bubble inflated through 
the wormhole, wormhole is torn*, leaving 
3dim space and the bubble

● Hebecker et al. 2018: gravitational 
instantons, Euclidean metrics for quantum 
theory path integrals R3 → R3 + S3 → R3, 
a handle (also called a “wormhole”), the 
previous process combined with its inverse

time

space

* if r
0
→0 quasistatically, the radial pressure

will be infinite: p
r
 = −1/(8πr

0
2)



  

Wormhole opening: the details

NRDM model taken as an environment (arXiv:1701.01569)
equation of state (EOS) ρ = p

r
 , p

t
 = 0, 

solution: ρ
nom

= ε/(8πr2A(r)), A(r) rapidly falling with decreasing r 

(mass inflation)
QG cutoff: ρ

nom
=ρ

P
/N, N=1-10 attenuation factor

logarithmic coordinate transformations, to display a large range of 
values of the graphs

f(v) ~ log v,  
v→∞

to model the dependencies, Bézier curves of order 3 
are used with C1-stitching between the segments



  

Wormhole opening: the details

NRDM solution with QG 
cutoff (a model example)

a closeup, tangents
for C1-stitching

a(y)-profile, monotone 
in y, constant in time

● since p
t
 contains 2nd derivatives of A, C1-stitching produces a jump in p

t

● can be interpreted as sharp startup of the transverse interaction between 
radially converging flows of dark matter

● experiments with C2-stitching give continuous but rapid increase of p
t
, 

physically the same



  

Wormhole opening: the details

z(y)-profile, starting 
and ending positions

interpolation 
between them

the same for w(y)-profile

● regular core, finite density in the center:  Z ~ 1 − 8/3πρ(0) r2,  
z(0) = f (1/2) ≈ 0.481212

● stationary r
max

 scenario: the left root of z(y) has fixed position
● only the parts z≥0 should be used
● in w(y) coordinates: the bubble profile after formation inflates a bit,  then 

remains almost stationary



  

Wormhole opening: the details

y→ρ
nom

 recalibration EOS: ρ(ρ
nom

) EOS: p
r
(ρ

nom
)

● green circles – wormhole throat, red circle – buble r
max

, black star – bif.point
● at first, density becomes negative, then radial pressure
● a window of opportunities opens for fulfilling the flare-out conditions 

p
r
 < 0, ρ + p

r
 < 0, necessary and sufficient  to open the wormhole

● the wormhole is opened at the position r with p
r
 = −1/(8πr2)



  

Wormhole opening: the details

EOS: auxiliary components

● p
 t
 > 0, ρ + p 

r
 + 2p 

t
 > 0 and all other flare-out conditions are satisfied 

at the wormhole throat, bubble and bifurcation point

EOS: p
t
(ρ

nom
)



  

The same in physical dimensions

QG wormhole in the center of Milky Way galaxy
COSMOVIA 
05-Jul-2019 
18-Oct-2019

22km
14 ths.km

arXiv:1909.08984

r
s
-1 ths.km

similar 
model 
with static 
wormhole: 
Kardashev, 
Novikov, 
Shatskiy 
2007



  

The bifurcation point

(paper in preparation)

● Louko, Sorkin 1997
● the coordinates in the vicinity of Morse point of saddle type can be 

selected so that the Morse function will take a canonical form t = x 2 − y 2 
● the metric will be

● using the coordinate transformation, the metric can be 
further reduced to

● coincident with the flat Minkowski plane, covered twice by the 
transformation (x, y) → (u, v)

● This type of singularity will be considered in details below. The result is 
that the matter term vanishes everywhere, except of the origin, where a 
mild singularity is located, equivalent to zero in distributional sense.



  

Topological teleporter

A B A' B'

t<0

A B A' B'

t>0

arXiv:1909.08984

● two copies of R3 space
● two spheres S2 cut out
● connections:

t<0 AB, A'B' (trivial)
t>0 AB', A'B (crosslike)

● topologically dual to the 
opening wormhole, which is
t>0 BB' (wormhole), AA' (bubble)

● instant swapping of two spherical 
volumes in space

● an event of teleportation
● At t<0, the observer crosses the 

sphere in one universe via the BA 
connection, then, at t>0, crosses 
the sphere in the AB' connection, 
in another universe, or in a remote 
part of the same universe.



  

Topological teleporter

arXiv:1909.08984

● embedding diagram the same as for the 
stargate

● in different coordinate system: 
sph-time (r,t) instead of cyl (z,r

⊥
)

● these two cases are related by Wick 
rotation (will be shown below)

● (a) way corresponds to t < 0 and 
remains in one universe

● (b) way corresponds to t > 0 and
goes to another universe

● the third coord is only for visualization; 
the metric is everywhere flat, except of 
the origin t=0,r=a, where it is singular

● the matter is concentrated in 
(immediate vicinity of) the origin: 
on stargate perimeter, on teleportation 
sphere

0 r

t a

b



  

Evaluation of matter term: stargate

(paper in preparation)

4πξ

2πf(ξ)

2πξ

● The problem: standard algebraic evaluation gives 
matter term =0 where the metric is flat and fails in the 
origin

● The method of solution: physical-based 
regularization

● double cover polar coordinate system (ξ, α)
● difference from flat Euclidean: 

the doubled circumference =4πξ
● let's interpolate the circumference: 

2πf(ξ), f(ξ)~2ξ at ξ>ε, f(ξ)~ξ at ξ~0
=> Euclidean flat near and including the origin
=> no concentrated matter term in the origin

● regularization displaces the matter concentrated at the 
origin to the ε-neighborhood, where its distribution can 
be calculated by the standard algebraic method

● localization of matter is controlled by ε-parameter, 
which can go to zero at the end of the calculation



  

Evaluation of matter term: stargate

(paper in preparation)

a single non-zero component 
of Einstein tensor

(− det g)1/2 = f(ξ) f'(ε) = 2, f'(0) = 1

● f''/f plays the role of a regularized delta function (for the measure fdξ)
● the result does not depend on the particular choice of the regularization 

a straight string along z-axis, 
negative linear mass and tension μ = τ = −1/4



  

Evaluation of matter term: stargate

(paper in preparation)

a ring geometry

interpolation of radial 
coord, flat space 
at ξ≥ε and at ξ~0 

in addition, Gij in the 2x2 block (i, j) = (ξ, α) are nonzero.

Lemma 1: (i) all components of Gμν vanish at ξ≥ε and at ξ~0, where the 
metric is locally flat; (ii) the component δG after integration with the measure 
(− det g)1/2 dξ gives an expression tending to zero with ε→0; (iii) the 
aforementioned (i, j)-components after going to the tensor densities 
Gˆiˆj (− det g)1/2 in an orthonormal basis are finite both before and after 
removing ε-regularization, the integrals of them with respect to the 
coordinate volume tend to zero at ε→0.



  

Evaluation of matter term: stargate

(paper in preparation)

● Gij represent the internal stresses between the layers of the tube 
0 < ξ < ε, they depend on the chosen regularization

● physically important and independent of regularization are G
t
t and G

Φ
Φ  

density and tension components
● μ = τ = −1/4, as for the straight string; the same result obtained by other 

methods in Visser 1996, Louko, Sorkin 1997, Vickers, Wilson 1997, 
Balasin, Nachbagauer 1993



  

Evaluation of matter term: teleporter

(paper in preparation)

+

+

-

-

+ -

+

-

++

-

-

● double cover of flat Minkowski plane (r,t)
● eight hyperbolic maps
● rearrangement procedure: 

in standard calculation EFE are solved in inverse 
order: g→G; includes differentiations and 
algebraic operations 
=> is local (compare with direct solution of EFE: 
G→g, which is non-local) => spacetime manifold 
can be subdivided into many submaps, the 
problem is solved in each of them individually 
=> submaps can be rearranged in a different 
order to get a different problem, with an 
equivalent solution



  

Evaluation of matter term: teleporter

(paper in preparation)

+

+

-

-

+ -

+

-

++

-

-

● in our case, submaps are sectors with small dα
● at fixed η equivalent under Lorentz 

transformation
● submaps can be rearranged from eight to four 

hyperbolic maps
● the same as for flat Minkowski plane, with the 

defect for angular variable α



  

Evaluation of matter term: teleporter

(paper in preparation)

f(ξ)~2ξ at ξ>ε, f(ξ)~ξ at ξ~0 as earlier

Note: g and G related to stargate case 
by Wick rotations, t → iz, α → iα, 
for η = −1 also ξ → iξ

going to the next 
dimension



  

Evaluation of matter term: teleporter

(paper in preparation)

Lemma 2: (i)-(iii) as above are satisfied
=> only transverse pressure components are physically important

the last two 
dimensions 
rolled into 
the sphere



  

Evaluation of matter term: teleporter

(paper in preparation)

+p
t
(ξ)+p

t
(ξ)

-p
t
(ξ)

-p
t
(ξ)

ra

t f''

ξε

0

0

f

ξε0

ξ

2ξ
+

-

● only transverse pressure p
t
 is 

active
● concentrated in the vicinity of 

r=a t=0 sphere
● has alternating sign in 8 

sectors (4 in each universe)

● the regularization function and its 2nd deriv.
● p

t
 (− det g)1/2 ~ f''(ξ)

● the coefficient of proportionality: 1/(8π) in 
geometric units, 0.03 Jupiter’s mass per 
meter in natural units



  

Evaluation of matter term: teleporter

Proof: Consider a test function g(ξ) of C∞ class with finite support on R, write an estimation 
|g(ξ)−g(0)| ≤ C|ξ|.  Evaluate ∫

0
ε dξ f''(ξ)g(0)=g(0) and I =∫

0
ε dξ f''(ξ)(g(ξ)-g(0)), |I|≤C∫

0
ε dξ |f''(ξ)|ξ 

≤Cε∫
0
ε dξ |f''(ξ)|=Cε(2B

2
-3)→0 at ε→0.

Consider a test function g(x) of C∞ class with finite support on R2, write an estimation 
|g(x

1
)−g(x

2
)| ≤ C|x

1
−x

2
|. Evaluate I = ∫

0
ε dξ f''(ξ)/η ∫

0
+∞ dα g(x) over two adjacent maps. Using 

the symmetries, obtain I = ∫
0
ε dξ f''(ξ)  ∫

0
+∞ dα (g(x

1
)−g(x

2
)), where x

1
=(ξ cosh α, ξ sinh α), 

x
2
=(ξ sinh α, ξ cosh α), |x

1
−x

2
| = (√2)ξe−α. Evaluate |I|≤C ∫

0
ε dξ |f''(ξ)|  ∫

0
+∞ dα (√2)ξe−α 

≤ C(√2)ε ∫
0
ε dξ |f''(ξ)| = C(√2)ε (2B

2
-3)→0 at ε→0.

(paper in preparation)

Definition: 
(precise specification of regularization function)

let f(ξ) be C∞ smooth, equal to ξ at ξ≤b
1
, equal to 2ξ at ξ≥b

3
, 

with f'(ξ) monotonously increasing from 1 to B
2
 at b

1
≤ξ≤b

2
, f'(ξ) 

monotonously decreasing from B
2
 to 2 at b

2
≤ξ≤b

3
, with 

0<b
1
<b

2
<b

3
<ε and B

2
>2. Let f(ξ) be simply rescaled with ε, 

f(ξ)→εf(ξ/ε), not changing the derivative f'(ξ).

Lemma 3: f''(ξ)→δ(ξ) and f''(ξ)/η→0 at ε→0 
                 in the distributional sense

f

ξε0

ξ

2ξ

b
1   

b
2    

b
3



  

Matter term for teleporter, physical interpretation

(paper in preparation)

● the result is equivalent to zero as a generalized function
● not the same as the usual function tending to zero
● e.g., this function cannot be squared (infinite result at ε→0) 
● comparison with toroidal compactification Tn, a flat space in a box, 

whose opposite sides are identified: the matter term vanishes identically 
as a function

● better to describe the regularized solution, a physical approximation to an 
idealized result at ε→0

● comparison with other works on topology change and degenerate metrics 
● singularities of mild type obtained in Yodzis 1972, Horowitz 1991, Ellis et al. 

1992, Bengtsson 1993, Ionicioiu 1997
● special opinion Louko, Sorkin 1997: complex regularization, adding iγ to 

metric in Morse point, resulting to complex densitized scalar curvature 
4πiδ

2
(x,y) at γ→0, having a profound meaning in quantum theory, for 

evaluation of path integrals
● we consider the classical theory and prefer to stay with real-valued 

expressions for the metric and the curvature tensor



  

Matter term for teleporter, physical interpretation

(paper in preparation)

Q: What are the stargate perimeter and teleportation sphere made of?

● Stargate: exotic string of negative mass and tension
● Teleporter: the matter has only transverse pressure, no radial pressure and 

no mass

● (i) A gas consisting of two components: (ρ, p
r
, p

t
) and (-ρ, -p

r
, 0), summing 

up to (0,0, p
t
).

● (ii) Tachyons. Consider a sphere existing for one instant of time. On the 
sphere, draw a system of great circles, each is a closed geodesic worldline 
of the tachyon. Thus, a two-dimensional tachyon gas is placed on the 
sphere, creating the necessary transverse pressure. The sign of this 
pressure is regulated by a common mass factor for tachyons. 

● (iii) A string coiled into a ring and existing for one instant, having zero mass 
and non-zero (positive or negative) tension. A sphere with transverse 
pressure can be assembled from such strings, and from such spheres -- an 
alternating sign distribution necessary for the operation of teleporter.



  

Conclusion 1/3

● a comparison of solutions of variable topology in string theory and general 
relativity is performed
 

● in both theories a change of topology is possible in the presence of singular 
points, in the class of almost everywhere Lorentzian manifolds

● string break: either occurs at a singular point, or singular points arise after 
the break

● general relativity: two examples

(1) dynamic opening of a wormhole according to a scheme of new type
(2) an instant swapping of two spherical volumes in space, an event of 
teleportation

(1) and (2) are topologically dual, related by a reconnection of maps
(2)  is related to the stationary solution of stargate (dihedral wormhole) type 
by Wick rotation



  

Conclusion 2/3

● for both solutions, the corresponding matter distributions are calculated

(1) the matter terms are finite, except of the immediate vicinity of the 
bifurcation point, where a mild singularity of Morse saddle type is 
located
(2) the matter terms are concentrated near the teleportation sphere, 
similar to stargate, in which the matter terms are concentrated on the 
perimeter

● for both solutions, the bifurcation point of wormhole opening and the 
branching point of teleporter represent a sign alternating singularity, 
equivalent to zero in distributional sense

● the matter composition in all considered solutions is exotic, violating the 
energy conditions

● there is a principal possibility of creating such solutions via quantum 
effects 



  

Conclusion 3/3

● similarity to Planck stars model, in which quantum gravity corrections led to 
effectively negative mass density, repulsive force and quantum bounce 
phenomenon

● a scenario is computed in which similar repulsive terms do not lead to a 
quantum bounce, but to the dynamic opening of a wormhole 

● such scenario can be scaled to real astrophysical sizes corresponding to the 
central black hole in the Milky Way, describing the principal possibility of 
opening a wormhole as a result of natural astrophysical phenomena

● for solutions of stargate and teleporter types, several matter composition 
options were considered, in the form of an exotic string coiled into a ring, a 
string with zero-mass and non-zero tension, a two-dimensional tachyon gas, 
and a two-component gas of a normal and exotic type

● in particular, the combination of a normal matter with exotic matter from the 
core of Planck stars gives a principal possibility for engineering such 
solutions.



  

Thank you!
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