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Compact Stars & Dark Matter



The Missing Mass of the Universe	



A Mystery for 80 years! 

Zwicky 1933:	


 Coma cluster

Vera Rubin 70’s 	


Rotation curves of Andromeda are not 

falling according to Newton’s law!



Dark Matter	



Microwave Background Radiation Bullet cluster



Dark Matter is NOT

•Baryons!!!	


•MACHOs ruled out by microlensing observations 	



•Neutrinos
Light neutrinos: are problematic in small scale structure!
m>500 eV (Tremaine-Gunn) otherwise neutrinos violate Pauli 
blocking in dwarf galaxies. But for m>500 eV gives too much 
dark matter!
Heavy Neutrinos: m> 2 GeV (Lee-Weinberg)!
excluded by direct dark matter search experiments unless the 
mass is huge!

•ChaMPs (Charged Massive Particles)	


•SIMPs (Strongly Interacting Massive Particles) 
ruled out by anomalous hydrogen isotope searches in ocean water*	





Detection of Dark Matter

Direct detection

Indirect detection

Production

Inconclusive! 	


DAMA, CRESST, CDMS have	


signals compatible with dark matter.	


Xenon, Picasso, LUX null results.

Inconclusive! 	


PAMELA positron excess, FERMI 130 
GeV line? New keV line?

Inconclusive! 	


LHC monophoton, monojet 
production and missing energy 
signal... nothing yet



Astrophysical Observations

 WIMP annihilation and Cooling of Stars	


WIMP annihilation as a heating mechanism for	


•neutron stars (CK ’07, CK Tinyakov ’10, Lavallaz Fairbairn ’10)	


•white dwarfs (Bertone Fairbairn ’07, McCullough ’10)

 WIMP collapse to a Black Hole	


WIMPs can be trapped inside stars and later collapse forming a black hole that destroys the star	


(Goldman Nussinov ’89, CK Tinyakov ’10, ‘11,’13 McDermott Yu Zurek ’11, CK’11,’12	


Guver Erkoca Reno Sarcevic ’12, Fan Yang Chang ’12, Bell Melatos Petraki ’13, Bramante Fukushima Kumar 
Stopnitzky ’13)

New effects	


WIMPs can slow down the rotation of a pulsar (Perez-Garcia,CK ’14)



WIMP capture in Stars

Even if current 
limit of CDMS 

Only one out of a million WIMPs scatters! 

Condition: The energy loss in the collision should be larger 
than the asymptotic kinetic energy of the WIMP far out of the 
star.

!
!
For cross section larger than the critical one, every WIMP passing 
through the neutron star will be on average interact inside the star.

CK’07





























WIMP capture in Stars

For typical NS

Press Spergel ’85, Gould ’86, 
Nussinov Goldman ’89, 	


CK’07, CK Tinyakov ’10

higher local DM density 	


gives higher accretion smaller velocities enhance capture f=1 if σ>σcrit	



f=0.45σ/σcrit   if σ<σcrit	





Thermalization

Goldman 
Nussinov’89,	


CK Tinyakov ’10	


Bertoni Nelson 
Reddy ’13

Evaporation

for WIMPs with mass larger than ~2 keV evaporation can be ignored

Krauss Srednicki 
Wilczek ’86



WIMP Annihilation in Neutron Stars

Energy Release

we have to compare with other heating/cooling 
mechanisms 



Basics of Neutron Star Cooling

!
!

However for nuclear matter triangle 
inequalities are not satisfied 

Modified  Urca 
presence of 
bystander 

For quark matter it 
holds! 

Emissivity: 

Emissivity: 

Photon Emission Emissivity: 

Direct Urca 

Urca process



... more cooling mechanisms

!
!



Cooling of Neutron Stars

CK’07

neutrino 
emission

photon 
emission

dark matter 
heating



Cooling of Neutron Stars

Galactic Center                            Globular Cluster

Nearby old neutron stars	


J0437-4715   temperature ~10^5 K	


J2124-3358    temperature ~10^5 K	


130-140 pc away

CK, Tinyakov ’10	


Fairbairn Lavallaz’10



Cooling of Neutron Stars

direct
searches
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observation of NS in M4

with T=7x10   K4

Old neutron stars in Globular Clusters	


!
X7 in 47 Tuc!
1620-26 in M4 !
!
both have temperatures roughly 10^6 K!



Bosonic Asymmetric Dark Matter 
No Fermi pressure but Heisenberg uncertainty keeps bosons from collapse
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Excluding Light Asymmetric Bosonic Dark Matter
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We argue that current neutron star observations exclude asymmetric bosonic non-interacting
dark matter in the range from 2 keV to 16 GeV, including the 5-15 GeV range favored by DAMA
and CoGeNT. If bosonic WIMPs are composite of fermions, the same limits apply provided the
compositeness scale is higher than ∼ 1012 GeV (for WIMP mass ∼ 1 GeV). In case of repulsive
self-interactions, we exclude large range of WIMP masses and interaction cross sections which com-
plements the constraints imposed by observations of the Bullet Cluster.

PACS numbers: 04.50.+h 04.30-w 95.35+d 98.80.Cq

1. Introduction. An appealing solution to the dark
matter problem is offered by Weakly Interacting Massive
Particles (WIMPs) emerging in many theories beyond the
Standard Model (SM). However, WIMPs are very diffi-
cult to detect, and therefore little is known about their
properties. Experimentally, the situation is rather un-
clear (see e.g. limits from CDMS [1]), with DAMA [2] and
CoGeNT [3] suggesting the existence of a light WIMP
with a mass around ∼ 10 GeV.
Apart from direct searches, constraints on WIMPs can

be set by observations of compact objects such as white
dwarfs and neutron stars [4–12]. These constraints can
be grouped in two types. The first type targets WIMPs
that can annihilate inside the star producing heat that
can change the thermal evolution of the star [5]. WIMPs
of this type can arise in supersymmetric extensions of the
SM (see [13] and references therein), or in Technicolor
models [14, 15]. Constraints of the second type target
asymmetric dark matter models. In these models the an-
nihilation of dark matter in the present-day Universe is
impossible because only particles, and no anti-particles
(hence the term “asymmetric”) remain [16–31]. An ad-
ditional bonus in these models is that the asymmetry
of WIMPs might be linked through sphalerons with the
baryon asymmetry [24], which can explain the today’s ra-
tio ΩDM/ΩB ∼ 5 provided the WIMP has a mass around
5 GeV. Note that this value is not very far from the one
suggested by the DAMA and CoGeNT experiments. In
view of this coincidence, the models with WIMP masses
in the GeV range have become quite popular.
Since in the asymmetric dark matter models WIMPs

cannot annihilate, if a large number of them is accreted
during the lifetime of a neutron star, they may collapse
forming a small black hole inside the star that eventu-
ally destroy the latter. Therefore the existence of old
neutron stars can impose constraints on the properties
of asymmetric WIMPs. In fact, in the case of fermionic

∗Electronic address: kouvaris@cp3.sdu.dk
†Electronic address: Petr.Tiniakov@ulb.ac.be

asymmetric WIMPs with a spin-dependent cross section,
these constraints are competitive to direct dark matter
search experiments [11].
In this letter we focus on asymmetric bosonic dark

matter and derive constraints on the dark matter param-
eters from the formation of black holes inside neutron
stars. We show that for fundamental asymmetric non-
interacting bosonic WIMPs, current observational data
exclude all the masses from 2 keV to 16 GeV (includ-
ing the range of masses 5 − 15 GeV favored by DAMA
and CoGeNT). If WIMPs are composite particles made
of fundamental fermions, the above constraint does not
apply. However, if the compositeness scale is above
∼ 1012 GeV (like in Grand Unified Theories (GUT)),
candidates like that are again excluded in the same mass
range. In addition, we constrain the case of fundamental
self-interacting bosonic WIMPs. We show that if the in-
teraction is repulsive, a vast area of self-interaction cross
sections complementary to the one excluded by observa-
tions of the Bullet Cluster [32] is excluded.
2. Bosonic Dark Matter. Gravitational collapse of a

self-gravitating lump of particles happens differently in
case of bosons and fermions. In the case of fermions of
mass m, a large number of particles N ≃ (MPl/m)3 is re-
quired to overcome the Fermi pressure, where MPl is the
Planck mass. In the bosonic case this number is para-
metrically smaller, N ≃ (2/π)(MPl/m)2, because in the
absence of self-interactions, only the uncertainty princi-
ple opposes the collapse. If the bosons have a repulsive
interaction it provides an extra pressure, so the required
number of particles is larger in this case (obviously, an
attractive interaction leads to the opposite effect). Tak-
ing a λφ4 model as a generic example, the minimum mass
of a self-gravitating lump which can form a black hole is
[33]

Mcrit =
2M2

Pl

πm

√

1 +
M2

Pl

4
√
πm

σ1/2 (1)

where we have expressed the result in terms of the self-
interaction cross section σ = λ2/(64πm2). Here and be-
low we use the natural units ! = c = kB = 1.
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tio ΩDM/ΩB ∼ 5 provided the WIMP has a mass around
5 GeV. Note that this value is not very far from the one
suggested by the DAMA and CoGeNT experiments. In
view of this coincidence, the models with WIMP masses
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asymmetric WIMPs with a spin-dependent cross section,
these constraints are competitive to direct dark matter
search experiments [11].
In this letter we focus on asymmetric bosonic dark

matter and derive constraints on the dark matter param-
eters from the formation of black holes inside neutron
stars. We show that for fundamental asymmetric non-
interacting bosonic WIMPs, current observational data
exclude all the masses from 2 keV to 16 GeV (includ-
ing the range of masses 5 − 15 GeV favored by DAMA
and CoGeNT). If WIMPs are composite particles made
of fundamental fermions, the above constraint does not
apply. However, if the compositeness scale is above
∼ 1012 GeV (like in Grand Unified Theories (GUT)),
candidates like that are again excluded in the same mass
range. In addition, we constrain the case of fundamental
self-interacting bosonic WIMPs. We show that if the in-
teraction is repulsive, a vast area of self-interaction cross
sections complementary to the one excluded by observa-
tions of the Bullet Cluster [32] is excluded.
2. Bosonic Dark Matter. Gravitational collapse of a

self-gravitating lump of particles happens differently in
case of bosons and fermions. In the case of fermions of
mass m, a large number of particles N ≃ (MPl/m)3 is re-
quired to overcome the Fermi pressure, where MPl is the
Planck mass. In the bosonic case this number is para-
metrically smaller, N ≃ (2/π)(MPl/m)2, because in the
absence of self-interactions, only the uncertainty princi-
ple opposes the collapse. If the bosons have a repulsive
interaction it provides an extra pressure, so the required
number of particles is larger in this case (obviously, an
attractive interaction leads to the opposite effect). Tak-
ing a λφ4 model as a generic example, the minimum mass
of a self-gravitating lump which can form a black hole is
[33]

Mcrit =
2M2

Pl

πm

√

1 +
M2

Pl

4
√
πm

σ1/2 (1)

where we have expressed the result in terms of the self-
interaction cross section σ = λ2/(64πm2). Here and be-
low we use the natural units ! = c = kB = 1.

I. INTRODUCTION

nTB = nB (1)

MTB = 5GeV (2)

1� 5 = 5 (3)

e�4103 ⇤ 18 ⇥ 5 (4)

GNm2

r
⇤ ~

r
(5)

The accretion of WIMPs onto a typical 1.4MJ 10km neutron star in a globular cluster

taking into account relativistic e�ects has been calculated in... The total mass of WIMPs

accreted is

Macc = 4.3� 1046
�

⇥dm
103GeV/cm3

⇥�
t

109years

⇥
f GeV, (6)

We are interested in constraints coming from possible formation of a black hole that will

destroy the neutron star within its lifetime. Therefore one necessary condition for the

formation of the black hole isMacc > Mcrit. However, this constraint by itself is not su⇥cient

to guarantee the destruction of the star. Even if a black hole is formed, ti might evaporate

very fast due to Hawking radiation before it manages to destroy the star. A black hole loses

energy due to Hawking radiation as

dM

dt
=

c6~
15360�G2M2

. (7)

On the other hand a black hole accretes simultaneously mass from the star. If rotation is

insignificant (as we are going to argue later on), matter is accreted via Bondi accretion with

a rate
dM

dt
=

4�⇥G2M2

c3s
, (8)

where cs and ⇥ are the speed of sound and the mass density of the star at the core. Since

Bondi accretion scales proportional to the square of the black hole mass while Hawking

radiation scales inversely proportional, it is evident that the initial mass of the black hole

determines also its fate. If accretion wins at the formation of the black hole, more mass

is accreted and Hawking radiation gets smaller and smaller. Demanding this to be the

2

repulsive interactionsBEC accelerates collapse 

2

It is easy to see from eq. (1) that for cross sections
σ ≫ M4

Pl/m
2 ∼ 10−104 cm2(m/GeV)−2, the second term

dominates, and the minimum required mass scales (at
constant λ) in the same way as for the fermionic parti-
cles with a different (and potentially much smaller) co-
efficient. The best experimental constraints on the self-
interaction cross section come from the Bullet Cluster,
σ/m < 2× 10−24cm2/GeV [32].
Several conditions have to be satisfied for a gravita-

tional collapse of WIMPs inside a neutron star to occur.
Firstly, a sufficient number of dark matter particles must
be accumulated during the lifetime of the neutron star.
The accretion of WIMPs onto a typical 1.4M⊙ neutron
star in a globular cluster, taking into account relativis-
tic effects, has been calculated in [9]. The total mass of
accreted WIMPs is

Macc = 4.3× 1046
(

ρdm
103GeV/cm3

)(

t

109years

)

f GeV,

(2)
where the “efficiency” factor f = 1 if the WIMP-
nucleon cross section satisfies σn > 10−45cm2, and f =
σn/(10−45cm2) if σn < 10−45cm2. The condition

Macc > Mcrit (3)

guarantees that the accumulated dark matter mass is
above the critical value (1).
Secondly, the newly-formed black hole must accrete

matter faster than it evaporates due to Hawking radia-
tion. In the Bondi regime of accretion, the change of the
black hole mass M with time is given by the equation

dM

dt
=

4πρcG2M2

c3s
−

1

15360πG2M2
, (4)

where cs and ρc are the speed of sound and the mass
density of the neutron star core, respectively. The first
term corresponds to the Bondi accretion while the sec-
ond represents the energy loss due to Hawking radiation.
Since the accretion increases while the Hawking radiation
decreases as a function of M , it is the initial mass of the
black hole that determines its fate. Requiring that the
first term dominates when the black hole is formed gives
the condition

M > 5.7× 1036 GeV. (5)

Here we have used ρc = 5×1038 GeV/cm3 and cs = 0.17.
Any black hole with the initial mass satisfying eq. (5) will
eventually destroy the whole star, while the smaller black
holes will evaporate with no detectable effect.
The third condition necessary for the WIMP col-

lapse into a black hole is the onset of the WIMP
self-gravitation. WIMPs captured by the neutron star
quickly thermalize [9] and concentrate in the center
within the radius

rth ≃ 2 m

(

Tc

105K

)1/2
( m

GeV

)−1/2
, (6)

where Tc is the temperature of the star core. When their
total mass M increases beyond the mass of the ordinary
matter within the same radius,

M > Msg =
4

3
πρcr

3
th = 2.2× 1046 GeV

( m

GeV

)−3/2
,

(7)
their own gravitational field starts to dominate over that
of the star and the self-gravitation regime sets in, leading
to the gravitational collapse provided the condition (3) is
satisfied. It can be seen from eq. (2) that (7) is satisified
if the WIMP mass is larger than ∼1 GeV (∼143 GeV)
for ρdm = 103GeV/cm3 (ρdm = 0.3GeV/cm3), but not
for lighter WIMPs.
However, if WIMPs are bosons as we assume in this

letter, they can form a Bose-Einstein condensate (BEC).
Since this state is more compact, the self-gravitation in
this case starts for a smaller number of particles before
the condition (7) is satisfied. The particle density re-
quired to form BEC is

n ≃ 4.7× 1028cm−3
( m

GeV

)3/2
(

Tc

105K

)3/2

.

Assuming an old neutron star with a temperature Tc =
105 K, the number of WIMPs needed in order for BEC
to form is NBEC ≃ 2× 1036. All the WIMPs accreted in
excess of this value will go into the condensed state. For
most of the cases of our interest, the number of accreted
WIMPs will be larger than NBEC, so eq. (7) has to be
reconsidered.
The size of the condensed state is determined by the

radius of the wave function of the ground state in the
gravitational potential of the star,

rc =

(

8π

3
Gρcm

2

)−1/4

≃ 1.6×10−4

(

GeV

m

)1/2

cm. (8)

Substituting this size in place of rth in eq. (7) we get

M > 8× 1027 GeV
( m

GeV

)−3/2
. (9)

In view of eq. (2), the amount of dark matter sufficient for
WIMP self-gravitation in the condensed state can always
be accumulated provided that the WIMP is heavier than
∼ 0.1 eV, which covers all cases of interest. Thus, due to
the formation of BEC the requirement of self-gravitation
does not provide an extra condition.
Finally, the accumulation of WIMPs may become in-

efficient if they may escape from the neutron star once
captured, which is a danger at small WIMP masses. It
can be seen from eq. (6) that for WIMP masses in the
keV range the radius of the WIMP lump becomes com-
parable to the size of the star, so that WIMPs in the
tail of the Maxwell-Boltzmann distribution of velocities
may escape. The rate F of WIMP evaporation can be
estimated as follows [34],

F = ns

(

T

2πm

)1/2

(1 +GMm/RT ) exp(−GMm/RT ),

(10)

2

It is easy to see from eq. (1) that for cross sections
σ ≫ M4

Pl/m
2 ∼ 10−104 cm2(m/GeV)−2, the second term

dominates, and the minimum required mass scales (at
constant λ) in the same way as for the fermionic parti-
cles with a different (and potentially much smaller) co-
efficient. The best experimental constraints on the self-
interaction cross section come from the Bullet Cluster,
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, (4)
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ond represents the energy loss due to Hawking radiation.
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decreases as a function of M , it is the initial mass of the
black hole that determines its fate. Requiring that the
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the condition
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dM

dt
=

4πρcG2M2

c3s
−

1

15360πG2M2
, (4)

where cs and ρc are the speed of sound and the mass
density of the neutron star core, respectively. The first
term corresponds to the Bondi accretion while the sec-
ond represents the energy loss due to Hawking radiation.
Since the accretion increases while the Hawking radiation
decreases as a function of M , it is the initial mass of the
black hole that determines its fate. Requiring that the
first term dominates when the black hole is formed gives
the condition

M > 5.7× 1036 GeV. (5)

Here we have used ρc = 5×1038 GeV/cm3 and cs = 0.17.
Any black hole with the initial mass satisfying eq. (5) will
eventually destroy the whole star, while the smaller black
holes will evaporate with no detectable effect.
The third condition necessary for the WIMP col-

lapse into a black hole is the onset of the WIMP
self-gravitation. WIMPs captured by the neutron star
quickly thermalize [9] and concentrate in the center
within the radius

rth ≃ 2 m

(

Tc

105K

)1/2
( m

GeV

)−1/2
, (6)

where Tc is the temperature of the star core. When their
total mass M increases beyond the mass of the ordinary
matter within the same radius,

M > Msg =
4

3
πρcr

3
th = 2.2× 1046 GeV

( m

GeV

)−3/2
,

(7)
their own gravitational field starts to dominate over that
of the star and the self-gravitation regime sets in, leading
to the gravitational collapse provided the condition (3) is
satisfied. It can be seen from eq. (2) that (7) is satisified
if the WIMP mass is larger than ∼1 GeV (∼143 GeV)
for ρdm = 103GeV/cm3 (ρdm = 0.3GeV/cm3), but not
for lighter WIMPs.
However, if WIMPs are bosons as we assume in this

letter, they can form a Bose-Einstein condensate (BEC).
Since this state is more compact, the self-gravitation in
this case starts for a smaller number of particles before
the condition (7) is satisfied. The particle density re-
quired to form BEC is

n ≃ 4.7× 1028cm−3
( m

GeV

)3/2
(

Tc

105K

)3/2

.

Assuming an old neutron star with a temperature Tc =
105 K, the number of WIMPs needed in order for BEC
to form is NBEC ≃ 2× 1036. All the WIMPs accreted in
excess of this value will go into the condensed state. For
most of the cases of our interest, the number of accreted
WIMPs will be larger than NBEC, so eq. (7) has to be
reconsidered.
The size of the condensed state is determined by the

radius of the wave function of the ground state in the
gravitational potential of the star,

rc =

(

8π

3
Gρcm

2

)−1/4

≃ 1.6×10−4

(

GeV

m

)1/2

cm. (8)

Substituting this size in place of rth in eq. (7) we get

M > 8× 1027 GeV
( m

GeV

)−3/2
. (9)

In view of eq. (2), the amount of dark matter sufficient for
WIMP self-gravitation in the condensed state can always
be accumulated provided that the WIMP is heavier than
∼ 0.1 eV, which covers all cases of interest. Thus, due to
the formation of BEC the requirement of self-gravitation
does not provide an extra condition.
Finally, the accumulation of WIMPs may become in-

efficient if they may escape from the neutron star once
captured, which is a danger at small WIMP masses. It
can be seen from eq. (6) that for WIMP masses in the
keV range the radius of the WIMP lump becomes com-
parable to the size of the star, so that WIMPs in the
tail of the Maxwell-Boltzmann distribution of velocities
may escape. The rate F of WIMP evaporation can be
estimated as follows [34],

F = ns

(

T

2πm

)1/2

(1 +GMm/RT ) exp(−GMm/RT ),

(10)
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It is easy to see from eq. (1) that for cross sections
σ ≫ M4

Pl/m
2 ∼ 10−104 cm2(m/GeV)−2, the second term

dominates, and the minimum required mass scales (at
constant λ) in the same way as for the fermionic parti-
cles with a different (and potentially much smaller) co-
efficient. The best experimental constraints on the self-
interaction cross section come from the Bullet Cluster,
σ/m < 2× 10−24cm2/GeV [32].
Several conditions have to be satisfied for a gravita-

tional collapse of WIMPs inside a neutron star to occur.
Firstly, a sufficient number of dark matter particles must
be accumulated during the lifetime of the neutron star.
The accretion of WIMPs onto a typical 1.4M⊙ neutron
star in a globular cluster, taking into account relativis-
tic effects, has been calculated in [9]. The total mass of
accreted WIMPs is

Macc = 4.3× 1046
(

ρdm
103GeV/cm3

)(

t

109years

)

f GeV,

(2)
where the “efficiency” factor f = 1 if the WIMP-
nucleon cross section satisfies σn > 10−45cm2, and f =
σn/(10−45cm2) if σn < 10−45cm2. The condition

Macc > Mcrit (3)

guarantees that the accumulated dark matter mass is
above the critical value (1).
Secondly, the newly-formed black hole must accrete

matter faster than it evaporates due to Hawking radia-
tion. In the Bondi regime of accretion, the change of the
black hole mass M with time is given by the equation

dM

dt
=

4πρcG2M2

c3s
−

1

15360πG2M2
, (4)

where cs and ρc are the speed of sound and the mass
density of the neutron star core, respectively. The first
term corresponds to the Bondi accretion while the sec-
ond represents the energy loss due to Hawking radiation.
Since the accretion increases while the Hawking radiation
decreases as a function of M , it is the initial mass of the
black hole that determines its fate. Requiring that the
first term dominates when the black hole is formed gives
the condition

M > 5.7× 1036 GeV. (5)

Here we have used ρc = 5×1038 GeV/cm3 and cs = 0.17.
Any black hole with the initial mass satisfying eq. (5) will
eventually destroy the whole star, while the smaller black
holes will evaporate with no detectable effect.
The third condition necessary for the WIMP col-

lapse into a black hole is the onset of the WIMP
self-gravitation. WIMPs captured by the neutron star
quickly thermalize [9] and concentrate in the center
within the radius

rth ≃ 2 m

(

Tc

105K

)1/2
( m

GeV

)−1/2
, (6)

where Tc is the temperature of the star core. When their
total mass M increases beyond the mass of the ordinary
matter within the same radius,

M > Msg =
4

3
πρcr

3
th = 2.2× 1046 GeV

( m

GeV

)−3/2
,

(7)
their own gravitational field starts to dominate over that
of the star and the self-gravitation regime sets in, leading
to the gravitational collapse provided the condition (3) is
satisfied. It can be seen from eq. (2) that (7) is satisified
if the WIMP mass is larger than ∼1 GeV (∼143 GeV)
for ρdm = 103GeV/cm3 (ρdm = 0.3GeV/cm3), but not
for lighter WIMPs.
However, if WIMPs are bosons as we assume in this

letter, they can form a Bose-Einstein condensate (BEC).
Since this state is more compact, the self-gravitation in
this case starts for a smaller number of particles before
the condition (7) is satisfied. The particle density re-
quired to form BEC is

n ≃ 4.7× 1028cm−3
( m

GeV

)3/2
(

Tc

105K

)3/2

.

Assuming an old neutron star with a temperature Tc =
105 K, the number of WIMPs needed in order for BEC
to form is NBEC ≃ 2× 1036. All the WIMPs accreted in
excess of this value will go into the condensed state. For
most of the cases of our interest, the number of accreted
WIMPs will be larger than NBEC, so eq. (7) has to be
reconsidered.
The size of the condensed state is determined by the

radius of the wave function of the ground state in the
gravitational potential of the star,

rc =

(

8π

3
Gρcm

2

)−1/4

≃ 1.6×10−4

(

GeV

m

)1/2

cm. (8)

Substituting this size in place of rth in eq. (7) we get

M > 8× 1027 GeV
( m

GeV

)−3/2
. (9)

In view of eq. (2), the amount of dark matter sufficient for
WIMP self-gravitation in the condensed state can always
be accumulated provided that the WIMP is heavier than
∼ 0.1 eV, which covers all cases of interest. Thus, due to
the formation of BEC the requirement of self-gravitation
does not provide an extra condition.
Finally, the accumulation of WIMPs may become in-

efficient if they may escape from the neutron star once
captured, which is a danger at small WIMP masses. It
can be seen from eq. (6) that for WIMP masses in the
keV range the radius of the WIMP lump becomes com-
parable to the size of the star, so that WIMPs in the
tail of the Maxwell-Boltzmann distribution of velocities
may escape. The rate F of WIMP evaporation can be
estimated as follows [34],

F = ns

(

T

2πm

)1/2

(1 +GMm/RT ) exp(−GMm/RT ),

(10)
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FIG. 1: The range of excluded masses as a function of the
dark matter density at the location of the neutron star.

where T , M and R are respectively the temperature,
mass and radius of the star, and ns is the WIMP density
at the surface. Calculating ns from the Boltzmann distri-
bution and plugging the parameters for a typical neutron
star, we found that the evaporation can be safely ignored
for masses larger than ⇥ 2 keV.

In summary, accumulation and subsequent gravita-
tional collapse of WIMPs captured inside a neutron star
occurs for WIMPs heavier than ⇥ 2 keV and satisfying
conditions (3) and (5). In the case of no self-interaction
the collapse to a black hole inside the neutron star hap-
pens for WIMP masses 2 keV . m . 16 GeV.

Several old neutron stars in globular clusters have been
observed. A characteristic example is the pulsar B1620-
26 found in the outskirts of the core of M4. Another ex-
ample is X7 from 47 Tuc [35]. Both globular clusters are
older than several billion years. This excludes the non-
interacting bosonic dark matter candidates with masses
from ⇥ 2 keV to 16 GeV.

Almost the same range of WIMP masses is excluded
by the observations of neutron stars close to the Earth
where the age has been established (much more accu-
rately) to be again several billion years. Typical exam-
ples are the J0437-4715 [36], and J0108-1431 [37]. They
are at distances of 140 and 130 pc with an expected local
dark matter density similar to the one around the Earth.
The dependence of the excluded mass range on the dark
matter density at the star location is shown in Fig.1.

In the case of a repulsive interaction, the exclusion
region that follows from eqs. (3) and (5) is shown in
Fig. 2. Depending on the interaction cross section, the
constraints extend to much higher masses and are com-
plementary to those derived from the observation of the
Bullet Cluster.

3. Composite Dark Matter. The discussion above
refers specifically to fundamental bosonic dark matter. If
instead the latter is composite of fermions, the situation
might change. There are two possibilities. Let’s assume
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FIG. 2: Constraints on weakly interacting bosonic dark mat-
ter from observations of neutron stars in globular clusters.
Excluded region (pink) is shown for two background dark
matter densities as indicated on the plot. The cyan region
shows constraints from the observation of the Bullet Cluster.

that there are enough particles to collapse gravitation-
ally according to Eq. (1). As WIMPs start occupying
smaller and smaller volume towards the Schwarzschild
radius, they might reach the density at which the mean
distance between WIMPs is comparable to the scale of
compositeness. At this point the Fermi pressure comes
into play and might stop further collapse. If on the other
hand, the lump of WIMPs reaches its Schwarzschild ra-
dius before the distance between particles becomes com-
parable to the scale of compositeness, the black hole is
formed and compositeness plays no further role.
To estimate the minimum compositeness scale �crit,

we express the mean distance d between WIMPs in
the nearly-collapsing (i.e. having size comparable to its
Schwarzschild radius) lump of dark matter in terms of
its mass M . Ignoring the numerical coe⇤cients, we have
d = GM2/3m1/3. Taking the mass to be equal to the
critical one, eq. (1), we get

�crit = m1/3M2/3
Pl

�
1 +

�m2
pl

32⇥m2

⇥�1/3

, (11)

In the non-interacting case this gives �crit = 2 �
1012 GeV(m/GeV)1/3, which is well below the GUT mass
scale of order ⇥ 1016 GeV for all masses of interest (cf.
Fig. 1). Thus, our constraints are also valid for composite
WIMPs provided the compositeness scale is higher than
⇥ 1012 GeV.
4. Discussion and conclusions. Two remarks are in

order. In the above analysis we have assumed that the
black hole that is formed inside a neutron star and is
not destroyed by the Hawking radiation eventually con-
sumes the whole star. However plausible, this assump-
tion requires some justification. In eq. (4) we have taken

Self-Interacting DM
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where T , M and R are respectively the temperature,
mass and radius of the star, and ns is the WIMP density
at the surface. Calculating ns from the Boltzmann distri-
bution and plugging the parameters for a typical neutron
star, we found that the evaporation can be safely ignored
for masses larger than ∼ 2 keV.
In summary, accumulation and subsequent gravita-

tional collapse of WIMPs captured inside a neutron star
occurs for WIMPs heavier than ∼ 2 keV and satisfying
conditions (3) and (5). In the case of no self-interaction
the collapse to a black hole inside the neutron star hap-
pens for WIMP masses 2 keV ! m ! 16 GeV.
Several old neutron stars in globular clusters have been

observed. A characteristic example is the pulsar B1620-
26 found in the outskirts of the core of M4. Another ex-
ample is X7 from 47 Tuc [35]. Both globular clusters are
older than several billion years. This excludes the non-
interacting bosonic dark matter candidates with masses
from ∼ 2 keV to 16 GeV.
Almost the same range of WIMP masses is excluded

by the observations of neutron stars close to the Earth
where the age has been established (much more accu-
rately) to be again several billion years. Typical exam-
ples are the J0437-4715 [36], and J0108-1431 [37]. They
are at distances of 140 and 130 pc with an expected local
dark matter density similar to the one around the Earth.
The dependence of the excluded mass range on the dark
matter density at the star location is shown in Fig.1.
In the case of a repulsive interaction, the exclusion

region that follows from eqs. (3) and (5) is shown in
Fig. 2. Depending on the interaction cross section, the
constraints extend to much higher masses and are com-
plementary to those derived from the observation of the
Bullet Cluster.
3. Composite Dark Matter. The discussion above

refers specifically to fundamental bosonic dark matter. If
instead the latter is composite of fermions, the situation
might change. There are two possibilities. Let’s assume
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that there are enough particles to collapse gravitation-
ally according to Eq. (1). As WIMPs start occupying
smaller and smaller volume towards the Schwarzschild
radius, they might reach the density at which the mean
distance between WIMPs is comparable to the scale of
compositeness. At this point the Fermi pressure comes
into play and might stop further collapse. If on the other
hand, the lump of WIMPs reaches its Schwarzschild ra-
dius before the distance between particles becomes com-
parable to the scale of compositeness, the black hole is
formed and compositeness plays no further role.
To estimate the minimum compositeness scale Λcrit,

we express the mean distance d between WIMPs in
the nearly-collapsing (i.e. having size comparable to its
Schwarzschild radius) lump of dark matter in terms of
its mass M . Ignoring the numerical coefficients, we have
d = GM2/3m1/3. Taking the mass to be equal to the
critical one, eq. (1), we get

Λcrit = m1/3M2/3
Pl

(

1 +
λm2

pl

32πm2

)−1/3

, (11)

In the non-interacting case this gives Λcrit = 2 ×
1012 GeV(m/GeV)1/3, which is well below the GUT mass
scale of order ∼ 1016 GeV for all masses of interest (cf.
Fig. 1). Thus, our constraints are also valid for composite
WIMPs provided the compositeness scale is higher than
∼ 1012 GeV.
4. Discussion and conclusions. Two remarks are in

order. In the above analysis we have assumed that the
black hole that is formed inside a neutron star and is
not destroyed by the Hawking radiation eventually con-
sumes the whole star. However plausible, this assump-
tion requires some justification. In eq. (4) we have taken

If WIMP is a composite of fermions above that scale, the bosonic constraints still hold
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The effect of Rotation I

For the scenario to be realised one should make sure that all conditions are met!

The accretion is never perfectly spherical because the neutron star rotates 	


usually with high frequencies. 

Can rotation slow down the accretion to the point that invalidate the constraints? 

The conditions for Bondi accretion are valid as long as the angular momentum of an	


 infalling piece of matter is much smaller than the keplerian one in the last stable orbit

2

pothetical possibility of black hole formation in particle
collisions at the LHC.
There is a common element in all the constraints that

have been derived so far. It has been assumed that once
the black hole forms, the accretion of matter onto the
black hole proceeds via the so-called Bondi accretion
which gives a large accretion rate scaling as M2 with
the black hole mass. However, the Bondi solution is
based upon the assumption of spherical accretion. This
means that matter falls into the black hole isotropically.
If the falling matter carries angular momentum, it may
change the picture completely. It is a well known fact
in astrophysics that if the infalling matter possesses an-
gular momentum, it forms a disc around the black hole
rather than falling in isotropically. This can significantly
diminish the accretion rate and therefore could change
or even invalidate the derived constraints in two ways:
the Hawking radiation might dominate for heavier black
holes, and/or the accretion rate may be too slow to lead
to the star destruction in the star lifetime.
In reality, the ideal conditions for Bondi accretion are

never met since all compact stars, and in particular neu-
tron stars always rotate, sometimes with high angular
velocities. The rotating in-falling matter not only can
stall the accretion due to angular momentum, but it can
also spin up the black hole to maximum rotation rates,
thus changing the accretion rate as compared to the (non-
rotating) Bondi case. So, the effect of rotation requires
a detailed study, which is the purpose of this paper. In
fact, as we will show, in realistic cases rotation has an
important effect, and the conditions for the Bondi ac-
cretion are not met automatically. We will demonstrate
that only if one considers the effect of the viscosity of
nuclear matter in the core of the neutron star, one can
recover the conditions for Bondi accretion and thus save
the imposed constraints.

II. THE EFFECT OF ROTATION

Two main issues have to be addressed in order to make
sure that the neutron star rotation does not change sub-
stantially the estimates for the accretion rate. First, one
has to check whether the Bondi accretion regime is valid
through the entire star consumption process. Second, it
has to be checked that the black hole itself does not be-
come maximally rotating and the Schwarzschild solution
remains a good approximation.

A. Validity of the Bondi regime

In the Bondi regime, the accreted matter is charac-
terized by an r-dependent energy density, pressure and
velocity [30]. This description holds down to the Bondi
radius rs,

rs =
GM

4c2s
, (1)

where M is the black hole mass and cs = 0.17 is the
sound speed of matter in the core of a neutron star far
away from the black hole. At r < rs the flow becomes
supersonic. Note that in the case of a black hole inside
a neutron star the sound speed is a finite fraction of the
speed of light, and the Bondi radius is only a few times
larger than the black hole horizon size.
Ideally, the Bondi accretion is spherically symmetric

and assumes zero vorticity of matter collapsing into the
black hole. However, all stars rotate to some extend,
and in particular neutron stars may have rotation periods
as short as milliseconds. Rotation of matter falling into
the black hole can destroy the conditions for the Bondi
accretion. Due to conservation of angular momentum an
accretion disc can be formed reducing significantly the
accretion rate. This may invalidate the constraints that
are based on the star destruction as an observable effect,
because there may not be enough time for a black hole to
consume the whole star. We show below that, although
the rotation cannot be ignored, the conditions for the
Bondi accretion are still valid.
The rotation cannot break the Bondi accretion regime

if the accreted matter reaches the innermost stable orbit
with the angular momentum much smaller than the ke-
plerian angular momentum it would have at that orbit.
The keplerian specific angular momentum at the inner-
most stable orbit is

liso = 2
√
3ψGM, (2)

where ψ is 1 for a nonrotating Schwartzscild black hole,
and 1/3 for an extreme Kerr black hole. Considering
the worst case of matter near the equatorial plane, the
specific angular momentum of a piece of matter at a dis-
tance r0 from the center of the star rotating with an
angular velocity ω0 is l = ω0r20 . At the time this piece of
matter reaches the innermost stable orbit, all the matter
at smaller radii has been already accreted, so that the
mass of the black hole is M = 4/3πρcr30 , where we have
neglected the initial mass of the black hole (which was
simply the mass of the collapsed WIMP population that
triggered the formation of the black hole). The condition
l < liso translates into the condition M > Mcrit for the
mass M of the black hole. In other words, once the black
hole mass grows beyond the critical value

Mcrit =
1

123/2

(

3

4πρc

)2
(ω0

G

)3 1

ψ3
, (3)

the angular momentum of the accreting matter cannot
stall the accretion and can be safely ignored. Using a
typical value ρc = 5× 1038 GeV/cm3, we find

Mcrit = 2.2× 1046P−3

1 GeV, (4)

where P1 is the star rotation period P measured in sec-
onds. In practice, we are interested in constraints from
nearby old neutron stars (e.g. J0437-4715 and J2124-
3358) that have periods of P ∼ 5 ms. For such a period
one finds Mcrit = 1.7× 1053 GeV ∼ 10−4M⊙.

The mass of the black	


 hole must be larger than

viscosity of nuclear matter can help! 

It subtracts angular momentum at the initial stage where the black hole is still small

in the final stages Bondi accretion is not valid but the star is seconds away from destruction! 
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The effect of Rotation II

A maximally spinning black hole will stop the accretion

2

pothetical possibility of black hole formation in particle
collisions at the LHC.
There is a common element in all the constraints that

have been derived so far. It has been assumed that once
the black hole forms, the accretion of matter onto the
black hole proceeds via the so-called Bondi accretion
which gives a large accretion rate scaling as M2 with
the black hole mass. However, the Bondi solution is
based upon the assumption of spherical accretion. This
means that matter falls into the black hole isotropically.
If the falling matter carries angular momentum, it may
change the picture completely. It is a well known fact
in astrophysics that if the infalling matter possesses an-
gular momentum, it forms a disc around the black hole
rather than falling in isotropically. This can significantly
diminish the accretion rate and therefore could change
or even invalidate the derived constraints in two ways:
the Hawking radiation might dominate for heavier black
holes, and/or the accretion rate may be too slow to lead
to the star destruction in the star lifetime.
In reality, the ideal conditions for Bondi accretion are

never met since all compact stars, and in particular neu-
tron stars always rotate, sometimes with high angular
velocities. The rotating in-falling matter not only can
stall the accretion due to angular momentum, but it can
also spin up the black hole to maximum rotation rates,
thus changing the accretion rate as compared to the (non-
rotating) Bondi case. So, the effect of rotation requires
a detailed study, which is the purpose of this paper. In
fact, as we will show, in realistic cases rotation has an
important effect, and the conditions for the Bondi ac-
cretion are not met automatically. We will demonstrate
that only if one considers the effect of the viscosity of
nuclear matter in the core of the neutron star, one can
recover the conditions for Bondi accretion and thus save
the imposed constraints.

II. THE EFFECT OF ROTATION

Two main issues have to be addressed in order to make
sure that the neutron star rotation does not change sub-
stantially the estimates for the accretion rate. First, one
has to check whether the Bondi accretion regime is valid
through the entire star consumption process. Second, it
has to be checked that the black hole itself does not be-
come maximally rotating and the Schwarzschild solution
remains a good approximation.

A. Validity of the Bondi regime

In the Bondi regime, the accreted matter is charac-
terized by an r-dependent energy density, pressure and
velocity [30]. This description holds down to the Bondi
radius rs,

rs =
GM

4c2s
, (1)

where M is the black hole mass and cs = 0.17 is the
sound speed of matter in the core of a neutron star far
away from the black hole. At r < rs the flow becomes
supersonic. Note that in the case of a black hole inside
a neutron star the sound speed is a finite fraction of the
speed of light, and the Bondi radius is only a few times
larger than the black hole horizon size.
Ideally, the Bondi accretion is spherically symmetric

and assumes zero vorticity of matter collapsing into the
black hole. However, all stars rotate to some extend,
and in particular neutron stars may have rotation periods
as short as milliseconds. Rotation of matter falling into
the black hole can destroy the conditions for the Bondi
accretion. Due to conservation of angular momentum an
accretion disc can be formed reducing significantly the
accretion rate. This may invalidate the constraints that
are based on the star destruction as an observable effect,
because there may not be enough time for a black hole to
consume the whole star. We show below that, although
the rotation cannot be ignored, the conditions for the
Bondi accretion are still valid.
The rotation cannot break the Bondi accretion regime

if the accreted matter reaches the innermost stable orbit
with the angular momentum much smaller than the ke-
plerian angular momentum it would have at that orbit.
The keplerian specific angular momentum at the inner-
most stable orbit is

liso = 2
√
3ψGM, (2)

where ψ is 1 for a nonrotating Schwartzscild black hole,
and 1/3 for an extreme Kerr black hole. Considering
the worst case of matter near the equatorial plane, the
specific angular momentum of a piece of matter at a dis-
tance r0 from the center of the star rotating with an
angular velocity ω0 is l = ω0r20 . At the time this piece of
matter reaches the innermost stable orbit, all the matter
at smaller radii has been already accreted, so that the
mass of the black hole is M = 4/3πρcr30 , where we have
neglected the initial mass of the black hole (which was
simply the mass of the collapsed WIMP population that
triggered the formation of the black hole). The condition
l < liso translates into the condition M > Mcrit for the
mass M of the black hole. In other words, once the black
hole mass grows beyond the critical value

Mcrit =
1

123/2

(

3

4πρc

)2
(ω0

G

)3 1

ψ3
, (3)

the angular momentum of the accreting matter cannot
stall the accretion and can be safely ignored. Using a
typical value ρc = 5× 1038 GeV/cm3, we find

Mcrit = 2.2× 1046P−3

1 GeV, (4)

where P1 is the star rotation period P measured in sec-
onds. In practice, we are interested in constraints from
nearby old neutron stars (e.g. J0437-4715 and J2124-
3358) that have periods of P ∼ 5 ms. For such a period
one finds Mcrit = 1.7× 1053 GeV ∼ 10−4M⊙.

After formation the black hole spins down, then it spins up and at the last stages it spins down again

Temperature Considerations
Radiation from in falling matter can in principle impede further accretion in two ways:	



Reduce viscosity	


Increase radiation pressure

e-e Bremsstrahlung close to the horizon is the dominant radiation mechanism



Bosonic Asymmetric Dark Matter 

For m>10 TeV, self-gravitation takes place before BEC 
formation 

Could this lead to the collapse of the whole WIMP sphere into 
a single black hole?

The answer is no!
The WIMP sphere has to go through a BEC formation

Small black holes form one after the other

>



Self-Interacting Dark Matter

Yukawa-type WIMP self-interactions	


can explain the flatness of dwarf galaxies Spergel-

Steinhardt ’99, Loeb-Weiner ’11

Yukawa self-interactions can alleviate the effect of the Fermi 
pressure, leading to a gravitational collapse with dramatically 
lower amount of captured WIMPs

!

The self-gravitating WIMP sphere may collapse into a black hole if the Fermi pressure of

the WIMPs cannot counterbalance the gravitational attraction. The onset of the gravita-

tional collapse occurs when the potential energy of a WIMP exceeds the Fermi momentum,

and therefore Pauli blocking cannot prevent the collapse anymore. This happens when

GNm2

r
> kF =

⇤
3�2N

V

⌅
=

⇤
9�

4

⌅1/3 N1/3

r
. (11)

In the derivation of the above limit, we have considered that WIMPs are (semi)-relativistic,

which is justified since once WIMPs self-gravitate themselves, they get closer and closer,

building up a Fermi momentum that eventually corresponds to relativistic velocities. From

the above equation we can deduce the number of WIMPs needed for the collapse to take

place,

N =

⇤
9�

4

⌅1/2 �mPl

m

⇥3

⇥ 5� 1048
� m

TeV

⇥�3

, (12)

where m is the WIMP mass and mPl is the Planck mass.

IV. CONSTRAINTS ON DARK MATTER

Having derived the accretion rate formula for a generic star and the amount of dark matter

needed in order to form a mini-black hole, we can proceed to the constraints that arise from

the requirement that such mini-black holes are not created inside newly-formed white dwarfs

and neutron stars. We consider two di�erent cases, i.e. constraints on spin-dependent cross

sections from white dwarfs, and from neutron stars.

A. Constraints on Spin-Dependent cross section from White Dwarfs

Dark Matter WIMPs can have purely spin-independent, or spin-dependent interactions

with nuclei, or even both types at the same time. Due to the coherence e�ect, the spin-

independent interactions are usually stronger than the spin-dependent ones. However, there

are cases where the spin-independent cross section is either suppressed or absent. Such

cases arise naturally in models where dark matter candidates have an axial coupling to

gauge bosons. One characteristic example is Majorana particles. Majorana fermions scatter

o� nuclei without the N2 enhancement mentioned earlier because the amplitudes of scat-

tering on di�erent nucleons add up incoherently. Since most of the nucleons within the

9

“Chandrashekhar Limit for WIMPs”

N=10^57/m^3!!!



Self-Interacting Dark Matter

Exclusion	


regions

CK PRL’12

Loeb-Weiner



Spin-Dependent Asymmetric Dark Matter 

A regular star accumulates 
WIMPs with spin-dependent 
WIMP-nucleon interactions 
and collapses to a white 
dwarf after the hydrogen and 
helium burning stages

The WIMP population is 
inherited by the white dwarf 
and gets thermalized inside 
it due to the presence of 
C13-WIMP spin-dependent 
interactions 

!
!
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Formation of a Black Hole



Pulsar Spindown
Pulsars spin down according to 2 basic mechanisms 

๏ Magnetic Dipole Radiation 

๏ Aligned Rotator

Contopoulos, 	


Spitkovsky ‘06

Julian 
Goldreich ‘69



Pulsar Spindown
Can accretion of millicharged particles affect the spinning?

At steady state a NS should expel as much charge as it accumulates

Observable independent of the 
magnetic field braking index

If the DM current is similar to the GJ current, the braking index can significantly different than 3 	





Pulsar Spindown

Dark Matter accretion

Electromagnetic

Gravitational

Condition



Pulsar Spindown

Electromagnetic

Gravitational

CK, Perez-
Garcia ‘14

Davidson,Hannestad, Raffelt ‘00

Dolgov,Dubovsky,Rubtsov,Tkatchev ‘13

Can be satisfied for example for	


 MeV, ε~10^-6 and either higher DM density 	



or lower magnetic field



The Dark Side of the Stars

Compact stars can reveal a lot of information about the nature of DM 
putting constraints on its properties complementary to direct searches.  	


!
๏ Observation of cold neutron stars can exclude thermally produced 

dark matter.	


๏  Asymmetric dark matter:	



1.keV to few GeV non-interacting bosonic dark matter is excluded.	


2.Part of fermionic WIMP self-interactions excluded.	


3.Constraints on WIMP-nucleon spin-dependent interactions.	


๏ Millicharged dark matter could slow down pulsars faster than other 

mechanisms predict.


