The Radial Acceleration Relation: Linking baryons and DM in Galaxies

Federico Lelli

Main Collaborators: Stacy McGaugh (Case Western Reserve) James Schombert (U of Oregon) Marcel Pawlowski (U of California - Irvine)

© Robert Gendler

Outline:

I. Introduction: Dynamics of Galaxies

Rotation curves, mass models, scaling relations.

II. The SPARC Galaxy Database

Largest compilation of galaxy mass models to date.

III. The Radial Acceleration Relation

Local link between baryons and dark matter in galaxies.

I. Introduction: Dynamics of Galaxies

Federico Lelli (Case Western <u>Reserve)</u>

Federico Lelli (Case Western Reserve)

Galaxy Rotation Curves are Flat at Large Radii

Historical Evidence for Mass Discrepancies V = const $M_{tot} \propto r$ $\rho_{tot} \propto r^{-2}$

Optical Observations of Ionized Gas V. Rubin et al. (1978, 1982)

Federico Lelli (Case Western Reserve)

Galaxy Rotation Curves are Flat at Large Radii

Historical Evidence for Mass Discrepancies V = const $M_{tot} \propto r$ $\rho_{tot} \propto r^{-2}$

Radio Observations of Neutral Gas A. Bosma (1978, 1981)

Federico Lelli (Case Western Reserve)

Atomic Hydrogen (HI): Radio Data at 21 cm

Good tracer of the total gravitational potential:

Federico Lelli (Case Western Reserve)

Atomic Hydrogen (HI): Radio Data at 21 cm

Good tracer of the total gravitational potential: $\frac{r_{rot}}{R} = -\frac{\sigma r_{tot}}{\partial R}$ (1) HI is more extended than the stars \rightarrow trace the kinematics out to large R (2) HI is in a rotating disk \rightarrow deviations from circular orbits are small (~10 km/s) (3) HI velocity dispersion is small (~10 km/s) \rightarrow pressure support is negligible

Atomic Hydrogen (HI): Radio Data at 21 cm

Deprojection from sky plane to galaxy plane:

 $V_{l.o.s.} = V_{sys} + V_{rot} \sin(i) \cos(\theta)$ $\cos(\theta) = \text{fnc(center, position angle)}$
$$\label{eq:theta} \begin{split} i &= disk \text{ inclination angle} \\ \theta &= azimuthal angle \\ V_{sys} &= recession \text{ velocity} \end{split}$$

Mass Models for Late-Type Galaxies

Solve Poisson's Equation for each baryonic component (i = stars, gas) $\nabla^2 \Phi_i(R,z) = 4 \pi G \rho_i(R,z)$ Assume nominal disk thickness $\rho_i(\mathbf{R}, \mathbf{z}) = \mu_i(\mathbf{R}) \mathbf{v}_i(\mathbf{z})$ Find expected circular velocity $V_i^2(R, z=0)$ $\partial \Phi_i(R, z=0)$ ∂R R Sum over all baryonic contributions $V_b^2(R) = \sum V_i^2(R)$

Casertano 1983; van Albada+1985; Begeman 1987

Federico Lelli (Case Western Reserve)

Mass Models with a Dark Matter Halo

Federico Lelli (Case Western Reserve)

Mass Models with a Dark Matter Halo

Federico Lelli (Case Western Reserve)

 $M_* + M_{gas} \propto D^2$

As the data quality increases, the scatter decreases!

Some BTFR studies: Freeman 1999; Walker 1999; McGaugh+2000, 2005, 2012; Verhejen 2001; Bell & de Jong 2001; Geha+2006; Noordermeer & Verheihen+2007; Begum+2008; Avila-Reese+2008; Stark+2009; Trachternach+2010; Gurovich+2010; Catinella+2012; Zaritsky+2014; Papastergis+2016

Federico Lelli (Case Western Reserve)

In ΛCDM : $M_{200} = (10GH_0)^{-1} V_{200}^{-3}$

Federico Lelli (Case Western Reserve)

In ACDM: $M_{200} = (10GH_0)^{-1} V_{200}^{-3}$ $f_b = M_b/M_{200}$ $f_V = V_f/V_{200} \rightarrow M_b = (10GH_0)^{-1} (f_b/f_V^{-3}) V_f^{-3}$

Federico Lelli (Case Western Reserve)

In ACDM: $M_{200} = (10GH_0)^{-1} V_{200}^{-3}$ $f_b = M_b/M_{200}$ $f_V = V_f/V_{200} \rightarrow M_b = (10GH_0)^{-1} (f_b/f_V^{-3}) V_f^{-3}$ Assuming $f_V = 1$ and $f_b = f_{CMB} \rightarrow$ normalization and slope wrong!

Federico Lelli (Case Western Reserve)

BTFR is only the tip of the Iceberg!

Local link between baryons & DM

There is much more information in the shape of the rotation curve!

Federico Lelli (Case Western Reserve)

Renzo's Rule

Confirmed over the years: Kent 1987; Corradi & Capaccioli 1991; Casertano & van Gorkom 1991; Broeils 1992; McGaugh & de Blok 1998; McGaugh 2004, 2005; Noordermeer+2007; Swaters+2009, 2012; Lelli+2010, 2012a,b

Federico Lelli (Case Western Reserve)

Can we quantify this Baryon-Dark Matter coupling with some empirical scaling law?

Federico Lelli (Case Western Reserve)

Database for 175 LTGs (spirals and irregulars): www.astroweb.cwru.edu/SPARC Lelli, McGaugh, Schombert 2016b, AJ, 152, 157

Federico Lelli (Case Western Reserve)

II. The SPARC Galaxy Database

- HI Rotation Curves for 175 galaxies
 - 30 years of interferometric HI observations
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies
 - Hybrid H α /HI rotation curves for ~30% sample

- HI Rotation Curves for 175 galaxies
 - 30 years of interferometric HI observations
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies
 - Hybrid H α /HI rotation curves for ~30% sample

- Homogeneous Photometry at 3.6 µm
 - Optimal tracer of the stellar mass: $M_* = \Upsilon_* L$
 - Υ_{*} is roughly constant in the NIR (~0.1 dex)
 Bell & de Jong 2001; Bell+2003; Portinari+2004; Meidt+2014;
 Schombert & McGaugh 2014; McGaugh & Schombert 2014

Widest possible range of disk properties

II. The SPARC Galaxy Database

Example: High-Mass HSB Spiral

 $\nabla^2 \Phi_{\rm bar}({\rm R,z}) = 4\pi G \rho_{\rm bar}({\rm R,z})$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio: $\Upsilon_* = 0.5 \ M_{\odot}/L_{\odot} \text{ for disks}$ $\Upsilon_* = 0.7 \ M_{\odot}/L_{\odot} \text{ for bulges}$

Federico Lelli (Case Western Reserve)

II. The SPARC Galaxy Database

Example: Low-Mass LSB Dwarf

 $\nabla^2 \Phi_{\rm bar}({\rm R,z}) = 4\pi G \rho_{\rm bar}({\rm R,z})$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio:
 $$\begin{split} & \Upsilon_* = 0.5 \ M_\odot/L_\odot \ for \ disks \\ & \Upsilon_* = 0.7 \ M_\odot/L_\odot \ for \ bulges \end{split}$$

Federico Lelli (Case Western Reserve)

II. The SPARC Galaxy Database

III. Radial Acceleration Relation

McGaugh, Lelli, Schombert 2016, PRL, 117, 201101 Lelli, McGaugh, Schombert, Pawlowski 2016d, submitted to ApJ

Local link between baryons and DM

III. Radial Acceleration Relation

Local link between baryons and DM

III. Radial Acceleration Relation

Local link between baryons and DM

III. Radial Acceleration Relation

Very different galaxies but ONE relation

Federico Lelli (Case Western Reserve)

Building up the Radial Acceleration Relation

Large Diversity in Rotation Curves

Regularity in Acceleration Plane

Lelli et al. 2016d, submitted to AJ

Video available at astroweb.cwru.edu/SPARC/

Scatter and Residuals around the RAR

Federico Lelli (Case Western Reserve)

We can infer the DM distribution from g_{bar}!

From the observations: $g_{DM} = g_{tot} - g_{bar} = F(g_{bar}) - g_{bar}$

For a spherical DM halo:
$$M_{DM}(R) = \frac{R^2}{G} [F(g_{bar}) - g_{bar}]$$

For our fiducial fitting F: $M_{DM}(R) = \frac{R^2}{G} \frac{g_{bar}}{\exp(\sqrt{g_{bar}/g_0}) - 1}$

Federico Lelli (Case Western Reserve)

OK. This works for LTGs, but... what about ETGs?

Federico Lelli (Case Western Reserve)

Early-Type Galaxies with outer HI rings/disks

Key results from Atlas^{3D} Survey (Cappellari+2010; Serra+2011)

- 85% of ETGs have rotating stellar components (but $V_*/\sigma_* < 1$)

- 20% of ETGs have rotating, low-density HI disks or rings

Our Sample: 16 ETGs with <u>both</u> stellar rotation and outer HI disks

Jeans Axisymmetric Models (JAM)

Assumptions:

- Axial Symmetry
- $-\sigma_{\theta} = \sigma_{R} > \sigma_{z}$
- Mass follows light
- M/L constant with R

 $V_{max} = max circular V$ $g_{obs} = V_{max}^2/R_{max}$

Cappellari+(2013, 2016)

Federico Lelli (Case Western Reserve)

Rotating ETGs follow the same RAR as LTGs

III. Radial Acceleration Relation

Non-rotating Massive Ellipticals: X-ray haloes

Our sample: 9 X-ray ETGs from Humphrey+(2006, 2009, 2011, 2012)

Federico Lelli (Case Western Reserve)

X-ray ETGs follow the same RAR as LTGs

III. Radial Acceleration Relation

A "Kepler" Law for Galaxies?

3rd Law of Kepler: a ↔ P

RAR: g_{bar} ↔ g_{obs}

The RAR follows with a minimum set of assumptions: Poisson's Equation + stellar mass-to-light ratio

Federico Lelli (Case Western Reserve)

1. End product of galaxy formation in ACDM

2. New Dynamical Laws instead of DM

3. New Physics in the Dark Sector / Dark Forces

Federico Lelli (Case Western Reserve)

RAR from Cosmological Simulations?

Federico Lelli (Case Western Reserve)

RAR from Cosmological Simulations?

Actual Comparison with the data

Persistent issue for sims: Too much DM in galaxies! e.g. Cusp-Core Problem, Too-Big-Too-Fail Problem

Other conceptual issues: Why an acceleration scale? Why the outer slope is 0.5? Correlations with residuals?

III. Radial Acceleration Relation

End product of galaxy formation in ΛCDM
 NB: "cusp-core", "too-big-to-fail" are symptoms of a more serious illness.
 Issues: Stochastic and complex process. Why is scatter so small (if any)?

2. New Dynamical Laws instead of DM

3. New Physics in the Dark Sector / Dark Forces

Federico Lelli (Case Western Reserve)

End product of galaxy formation in ΛCDM
 NB: "cusp-core", "too-big-to-fail" are symptoms of a more serious illness.
 Issues: Stochastic and complex process. Why is scatter so small (if any)?

2. New Dynamical Laws instead of DM
NB: MOND <u>predicted</u> the RAR before the data existed (Milgrom 1983)
Issues: CMB? Large-scale structure of the Universe? Galaxy clusters?

3. New Physics in the Dark Sector / Dark Forces

Federico Lelli (Case Western Reserve)

End product of galaxy formation in ΛCDM
 NB: "cusp-core", "too-big-to-fail" are symptoms of a more serious illness.
 Issues: Stochastic and complex process. Why is scatter so small (if any)?

2. New Dynamical Laws instead of DM
NB: MOND <u>predicted</u> the RAR before the data existed (Milgrom 1983)
Issues: CMB? Large-scale structure of the Universe? Galaxy clusters?

3. New Physics in the Dark Sector / Dark Forces
Dipolar DM (Blanchet & Le Tiec 2008, 2009)
Dark Superfluid (Khoury 2015)
Hybrids (∧CDM + MOND)
Issues: Adding new free parameters to ∧CDM is somewhat uncomfortable.

Federico Lelli (Case Western Reserve)

1. Baryons and DM are tightly coupled both on a global level (BTFR) and a local one (RAR).

1. Baryons and DM are tightly coupled both on a global level (BTFR) and a local one (RAR).

2. The intrinsic scatter around these scaling relations is extremely small (if any).

1. Baryons and DM are tightly coupled both on a global level (BTFR) and a local one (RAR).

2. The intrinsic scatter around these scaling relations is extremely small (if any).

3. There is an acceleration scale of $\sim 10^{-10}$ m s⁻².

Additional Slides

Federico Lelli (Case Western Reserve)

Dwarf Spheroidals (dSphs) in the Local Group

Satellites of MW and M31: extremely low masses, sizes, densities, and accelerations!

"Classical" dSphs discovered between the '40 and the '80. → well-studied properties

"Ultrafaint" dSphs discovered during the past ~10 years with SDSS, DES and other surveys → properties remain uncertain

Federico Lelli (Case Western Reserve)

Stellar kinematics in "classical" dSphs

Federico Lelli (Case Western Reserve)

Radial Acceleration Relation for dSphs

Federico Lelli (Case Western Reserve)

III. Radial Acceleration Relation

Radial Acceleration Relation for dSphs

Federico Lelli (Case Western Reserve)

III. Radial Acceleration Relation

A "Kepler" Law for Galaxies?

Radial Acceleration Relation

Mass-Discrepancy Acceleration Relation

Federico Lelli (Case Western Reserve)

1. Baryons and DM are tightly coupled both on a global level (BTFR) and a local one (RAR).

2. The intrinsic scatter around these scaling relations is extremely small (if any).

3. There is an acceleration scale of $\sim 10^{-10}$ m s⁻².

4. dSphs may indicate a flattening at $\sim 10^{-12}$ m s⁻².

Federico Lelli (Case Western Reserve)