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Father of the God Particle

Photograph: Murdo McLeod, source: Guardian, Monday, June 30,
2008

Particle physicist Peter Higgs, who in 1964 proposed ...
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... proposed the existence of a
fundamental particle now known
as the Higgs boson that gives all
matter its mass.
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But: who gives mass to the Higgs itself?
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But: who gives mass to the Higgs itself?

But: who gives mass to the proton?
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But: who gives mass to the Higgs itself?
But: who gives mass to the proton?

But: who determines the Newton gravity
constant?
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But: who gives mass to the Higgs itself?
But: who gives mass to the proton?

But: who determines the Newton gravity
constant?

The Higgs boson is at most the deputy
God particle...
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Scale invariance

Multiply all mass parameters in the theory
Mw, Agcp, My, Mpy, ...

by one and the same number : M — oM. Physics is not changed!

Indeed, this change, supplemented by a dilatation of space-time
coordinates =* — oax# and an appropriate redefinition of the fields

does not change the complete quantum effective action of the theory.

First step: consider classical physics only (no parameters like Agep),
just tree explicit mass parameters such as Mg, My, Mp;.
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Classical scale invariant theory

Unigque scale-invariant Lagrangian
1
Lsm = Lsmm—o) + L + 2(8:1)()2 — Ve, x)

Potential ( x - dilaton, ¢ - Higgs, ¢ = 2h?):

2
X
Vie,x) = A (w*w - ﬁxz) + Bx?,

Gravity part
R
La = — (&xx% + 2¢ne' o) 5’
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Spontaneous breaking of scale invariance

Consider scalar potential

2
oy
V(ie,x) = A (tp*w - ﬁxz) + Bx*,

Requirements: vacuum state existsif A > 0, >0

For A > 0, 3 > 0 the vacuum state is unique: x = 0, ¢ = 0 and
scale invariance is exact.

Field propagators: scalar 1/p?, fermion $/p?. Greenberg, 1961:

free quantum field theory!!

If not - theory does not describe particles !l.
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In the presence of gravity the argument is weakened:

3 > 0: there are time-dependent classical solutions with
x = const # 0, h = const # 0 and De-Sitter space (positive
cosmological constant & 3)

[3 < 0: there are time-dependent classical solutions with
x = const # 0, h = const # 0 and anti-De-Sitter space (negative
cosmological constant o 3)

Quantum sense of these
solutions?
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For A > 0, 3 = 0 the scale invariance can be spontaneously broken.

The vacuum manifold:

x
2 2
ho = —Xxo

A

Particles are massive, Planck constant is non-zero:

M7, ~ Mw ~ My ~ My  x0, Mpr ~ xo0

Phenomenological requirement:

.UZ
a~—~1078 x 1
‘Pl
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Good news: cosmological constant is
zero due to scale invariance
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Good news: cosmological constant is
zero due to scale invariance

Bad news: cosmological constant is
zero due to scale invariance
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Good news: cosmological constant is
zero due to scale invariance

Bad news: cosmological constant is
zero due to scale invariance

Universe is In the state of accelerated
expansion, Q2pgp ~ 0.7!
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Unimodular gravity

Ordinary gravity:
the metric g,,,, is an arbitrary function of space-time coordinates.
Invariant under general coordinate transformations

Unimodular gravity:

the metric g,,,, is an arbitrary function of space-time coordinates with
det[g] = —1. Invariant under general coordinate transformations
which conserve the 4-volume.

van der Bij, van Dam, Ng
Origin of UG: Field theory describing spin 2 massless particles is

either GR or UG
Number of physical degrees of freedom is the same.
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Unimodular gravity and cosmological constant

Theories are equivalent everywhere except the way the cosmological
constant appears

GR. A is the fundamental constant:
§= —ﬁffﬁ./d“:m/—g (R + A]
UG. A does not appear in the action:

S = —Mﬁ/d“mR
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Unimodular gravity and cosmological constant

Theories are equivalent everywhere except the way the cosmological
constant appears

GR. A is the fundamental constant:
§= -Mg./dm/—g (R + A]
UG. A does not appear in the action:

S = —Mgfd*lmﬂ

Cosmological constant problem is solved in UG?7?!!
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Unimodular gravity and cosmological constant

Theories are equivalent everywhere except the way the cosmological
constant appears

GR. A is the fundamental constant:
§= —ﬁffﬁ./d“:m/—g (R + A]
UG. A does not appear in the action:

S = —Mﬁ/d“mR

Cosmological constant problem is solved in UG?7!!

Wilczek, Zee: NOI
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UG is equivalent to

§= —M;/d“m\/—_g [R+ A=) (1 B \/%g)]

Equations of motion (G, - Einstein tensor):

Gp.u — —ﬂ,(:]‘:) uv sV —9 = 1

Bianchi identity: A(z), = 0 — A(x) = const.

Solutions of UG are the same as solutions of GR with an arbitrary
cosmological constant.

Conclusion: in UG cosmological constant reappears, but as an integral

of motion, related to initial conditions
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Scale invariance + unimodular gravity

Solutions of scale-invariant UG are the same as the solutions of
scale-invariant GR with the action

R
S = - [dtoy=g| (6o + 2ne'e) 3 + A+
Physical interpretation: Einstein frame

guw = () Gy » (Exx® + &R = M3

A 1s not a cosmological constant, it is the
strength of a peculiar potential!
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Relevant part of the Lagrangian (scalars + gravity) in Einstein frame:

. R
Lg = \/—_g (—ﬂff‘g? + K — Ug(h, X)) s

K - complicated non-linear kinetic term for the scalar fields,
2 1 2 1 2 2 2
K=29 2(8@:) + 2(8,_._h) ) | — 3M2(8,9)%.

The Einstein-frame potential Ug(h, x):

e | B2 = %12)2 A
UE(h, X) B MP [4(£XX2 i Ehhz)i + (Exl’g + Eth)'} ’
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Dilaton 7 Dilaton

Higgs Higgs

Potential for the Higgs field and dilaton in the Einstein frame.
Left: A > 0, right A < 0.

50% chance (A < 0): inflation + late collapse

50% chance (A > 0): inflation + late acceleration

VA, 20 February 2009 - p. 18



Inflation

Chaotic initial condition: fields y and h are away from their equilibrium
values.

Choice of parameters: £, > 1, £, < 1 (will be justified later)

Then - dynamics of the Higgs field is more essential, ¥ ~ const and is
frozen. Denote £, x? = M2.
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Redefinition of the Higgs field to make canonical kinetic term

dh ‘/nz +6¢2h2/M2 | h~h forh < Mp/§
dh — Q4 B - M 3
b= M2 oxp («EMF) for h > Mp /€

Resulting action (Einstein frame action)

- 8, ho*h A -
SE_/dm\/ { st SOt YO —h.{h.)“}

2 Q(h)4 4

Potential:

) A4 forh < Mp/¢
U(h)

2
J::TE—IE (1 = E'Vﬁ‘ﬁ) forh > Mp/&
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Potential in Einstein frame

Standard Mode

XCOBE X
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Slow roll stage

2 2
E=MP (dU/dx) Efexp(— x )

2 U 3 V6Mp
d*U /dx? 4 2
e RAB 0 SN i —
N="rT 3 ex"( \/EMP)

Slow roll ends at xyena =~ Mp

= 2 i 6 h2%, —h?
Number of e-folds of inflation at the moment h is NV ~ E_Nﬁﬁ‘g“

x60 =~ 5Mp

COBE normalization U/e = (0.027Mp)* gives

N, -
e | 2 2TO0BE . L0000V = 40000 8
3 0.0272 Vv 2v

Connection of £ and the Higgs mass! VIA, 20 February 2009 - p, 22




CMB parameters—spectrum and

tensor modes

0.4 . —— T
WMAPS N= 50

At @

0.3 m2¢y? o
N-flation m2¢? e

+ERR

HZ

0.2

0.1

0.0E

EEeOe|3]
| Ll

0.94 0.96 0.98 1.00 1.02
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Dark energy

Late time evolution of dilaton p along the valley, related to x as

x=f’lffpexp( L ) = :

===y A,
4ﬂfp .|'6+£:;

Potential: Wetterich: Ratra, Peebles

A 804 )

U, = exp [ — :
R ( Mp

From observed equation of state: 0 < £, < 0.09

Result: equation of state parameter w = P/FE for dark energy must be

different from that of the cosmological constant, but w < —1 is not
allowed.
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Dilaton 7 Dilaton

Higgs Higgs

Potential for the Higgs field and dilaton in the Einstein frame.
Left: A > 0, right A < 0.

50% chance (A < 0): inflation + late collapse

50% chance (A > 0): inflation + late acceleration
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Quantum scale invariance
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Quantum scale invariance

Common lore: quantum scale invariance does not exist, divergence of
dilatation current is not-zero due to quantum corrections:

BuJ* x B(g) GG,

e
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Quantum scale invariance

Common lore: quantum scale invariance does not exist, divergence of
dilatation current is not-zero due to quantum corrections:

8uT* o Blg) eGP ",

Everything above does not make any
sense??7?1l
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Standard reasoning

Dimensional regularisation d = 4 — 2¢, M S subtraction scheme:
mass dimension of the scalar fields: 1 — ¢,

mass dimension of the coupling constant: 2¢

Counter-terms:

o0
'n.
p¢ is a dimensionfull parameter!!
One-loop effective potential along the flat direction:

Vi(x) = mis () [log ™ (X) 3] ’

64?2 2 - E
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Result: explicit breaking of the dilatational symmetry. Dilaton acquires
a nonzero mass due to radiative corrections.
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Result: explicit breaking of the dilatational symmetry. Dilaton acquires
a nonzero mass due to radiative corrections.
Reason: mismatch in mass dimensions of bare (A) and renormalized

couplings (Ar)
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Result: explicit breaking of the dilatational symmetry. Dilaton acquires
a nonzero mass due to radiative corrections.
Reason: mismatch in mass dimensions of bare (A) and renormalized

couplings (Ar)

Idea: Replace %€ by combinations of fields x and h,
which have the correct mass dimension:

2¢
P'JH — X1 F¢(z) ,

where x = h/x. F.(x) is a function depending on the
parameter e with the property Fo(x) = 1.

Zenhausern, M.S

Englert, Truffin, Gastmans, 19/6
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Example of computation

Natural choice:
p2€ — [T | (Exx® + €nh?) = W

Potential:

5
Il
|>-'
&
€
i
Tl
-
ba
I
Ty
e
pe)
il
b

Counter-terms
21 1= 2 2 (1 iifd afl
Uee = [w°]*=* |AR®X* | - +a)+Bx" (- +b|+Ch* -+ <] |,

To be fixed from conditions of absence of divergences and presence
of spontaneous breaking of scale-invariance
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mA(h) m?2(h) A
= 23 [mg +0 (cR)]
AR [Cout + Cpo?h? + Caht] + 0 (2
+ g3 [Cov® + Cav’h® + Cuh] + )
where m?(h) = Agr(3h® — v?) and
- 2 4
Co = g 2a — 1+ 2log (C—R) “ —lng2-\R+O(C§)l i
2| 3% 3
' (R 2
Ca = —3|2a -3+ 2log f;‘_ + O(CR)| »
L X
3[ {2 2
3 X
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Origin of Agcp

Consider the high energy (v/s > v but /s < ) behaviour of
scattering amplitudes on the example of Higgs-Higgs scattering
(assuming, that (p < 1). In one-loop approximation

9/\211 s .
Ty =An+ s log o + const| + O (Cg) -

This implies that at v < /s < x¢ the effective Higgs self-coupling
runs in a way prescribed by the ordinary renormalization group!
For QCD:

1
— 35 2
ﬁQCD = Xoe 0%, r{j(”s) o bﬂﬂs
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Quantum effective action is scale invariant in all orders of
perturbation theory!!!
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Quantum effective action is scale invariant in all orders of
perturbation theory!l!

Potential problems
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Quantum effective action is scale invariant in all orders of
perturbation theory!!!

Potential problems

# Renormalizability: Can we remove all divergences with the similar
structure counter-terms? The answer is not essential for the issue
of scale invariance. In worst case we get scale-invariant effective
theory
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Quantum effective action is scale invariant in all orders of
perturbation theory!!!

Potential problems

#® Renormalizability: Can we remove all divergences with the similar
structure counter-terms? The answer is not essential for the issue
of scale invariance. In worst case we get scale-invariant effective
theory

#® Unitarity: Do we need infinite counter-terms to remove
divergences from higher-derivative operators? If no, then theory is
unitary, if yes, this remains to be seen.
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Consequences

#® The dilaton is massless in all orders of perturbation theory
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Consequences

#® The dilaton is massless in all orders of perturbation theory

#® Since it is a Goldstone boson of spontaneously broken symmetry

it has only derivative couplings to matter (inclusion of gravity is
essentiall)
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Fifth force or Brans-Dicke constraints are not applicable to it
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Consequences

The dilaton is massless in all orders of perturbation theory

Since it is a Goldstone boson of spontaneously broken symmetry

it has only derivative couplings to matter (inclusion of gravity is
essentiall)

Fifth force or Brans-Dicke constraints are not applicable to it

Higgs mass is stable against radiative corrections
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®

Consequences

The dilaton is massless in all orders of perturbation theory

Since it is a Goldstone boson of spontaneously broken symmetry

it has only derivative couplings to matter (inclusion of gravity is
essentiall)

Fifth force or Brans-Dicke constraints are not applicable to it
Higgs mass is stable against radiative corrections

Cosmological constant is zero in all orders of perturbation theory
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What to expect at LHC?
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What to expect at LHC?

The scalar self-coupling A g must be positive. Therefore, coupling at
small energies must be within some interval.
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The scalar self-coupling A g must be positive. Therefore, coupling at
small energies must be within some interval. In other words, the SM
must be valid up to the Planck scale.
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What to expect at LHC?

The scalar self-coupling A g must be positive. Therefore, coupling at
small energies must be within some interval. In other words, the SM
must be valid up to the Planck scale.

Prediction for LHC: nothing but the Higgs in the mass interval

Mmin < MAE < Mmax

where
—171.2 — 0.118
s = 1388 = T x 1.5] GeV
2.1 0.002
me — 171.2 as — 0.118
a — 173-6 }( 1.1" E— x 013 G V
Mmax = | T a1 . 0.002 |

my is the mass of the top quark.
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Behaviour of the scalar self-coupling

174 GeV

two—loop

Strong coupling E
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Cosmological constraint on the Higgs mass

The Standard Model Higgs boson can play the role of the inflaton
(Bezrukov, M.S.)

if the Higgs mass is between Bezrukov, Magnin, M.S._,
Dec 31, 2008 1 loop

Mmin — 136-7 GEV

Mmax — 184-5 G‘EV

Another computation, 2 loop De Simone, Hertzberg, Wilczek,
Dec 31, 2008: mmin = 126 GeV

Yet another computation, 2 loop Bezrukov, M.S_

January 2009; mmin = 128 GeV, mmax = 181 GeV
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Behaviour of the spectral index 7

0.968;

0.966]

0.964;

140 145 150 155 160 165 170
My
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Physicists’ Nightmare Scenario:
The Higgs and Nothing Else

23 MARCH 2007 VOL 315 SCIENCE www.sciencemag.org
Publlshed by AAAS
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Physicists’ Nightmare Scenario:
The Higgs and Nothing Else

23 MARCH 2007 VOL 315 SCIENCE www.sciencemag.org
Publlshed by AAAS

L ]

If it has the right mass, the
Higgs and nothing else
“would be the real five-
star disaster, because
that would mean there
wouldn't need to be any
new physics."”
Jonathan Ellis, CERN VIA, 20 February 2009 - p. 39



Not true: new physics is needed for

#® Neutrino masses and oscillations
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Not true: new physics is needed for

#® Neutrino masses and oscillations

® Dark matter
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Not true: new physics is needed for

#® Neutrino masses and oscillations
® Dark matter

® Baryon asymmetry of the universe
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Not true: new physics is needed for

#® Neutrino masses and oscillations
® Dark matter

® Baryon asymmetry of the universe

All can be solved by adding three relatively light singlet leptons to the
SM Lagrangian (zMSM).
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Conclusions

# Quantum scale-invariance and unimodular gravity lead to:
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Conclusions

# Quantum scale-invariance and unimodular gravity lead to:
# Unique source for all mass scales

» Higgs mass is stable against radiative corrections - no SUSY,
or technicolor, or little Higgs, or large extra dimensions are
needed
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Conclusions

#® Quantum scale-invariance and unimodular gravity lead to:
# Unique source for all mass scales
» Higgs mass is stable against radiative corrections - no SUSY,
or technicolor, or little Higgs, or large extra dimensions are
needed
» Cosmological constant is zero due to quantum
scale-invariance
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Conclusions

#® Quantum scale-invariance and unimodular gravity lead to:
# Unique source for all mass scales

» Higgs mass is stable against radiative corrections - no SUSY,
or technicolor, or little Higgs, or large extra dimensions are
needed

» Cosmological constant is zero due to quantum
scale-invariance

» Dark energy is not a cosmological constant, w > —1
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Problems to solve

#® Non-perturbative regularisation? Lattice proposal: Tkachev, M. 5.
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Problems to solve

#® Non-perturbative regularisation? Lattice proposal: Tkachev, M. 5.

® Though the stability of the electroweak scale against quantum
corrections is achieved, it is unclear why the electroweak scale is
so much smaller than the Planck scale (or why ¢ << 1).
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Though the stability of the electroweak scale against quantum
corrections is achieved, it is unclear why the electroweak scale is
so much smaller than the Planck scale (or why ¢ << 1).

Renormalizability
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Problems to solve

Non-perturbative regularisation? Lattice proposal: Tkachey, M.S

Though the stability of the electroweak scale against quantum
corrections is achieved, it is unclear why the electroweak scale is
so much smaller than the Planck scale (or why ¢ << 1).

Renormalizability

Unitarity
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®

Problems to solve

Non-perturbative regularisation? Lattice proposal: Tkachey, M.S

Though the stability of the electroweak scale against quantum
corrections is achieved, it is unclear why the electroweak scale is
so much smaller than the Planck scale (or why ¢ << 1).

Renormalizability
Unitarity
High energy limit
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