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Fig. 1. Observed circular velocities representing the rotation curve of the Galaxy. Open triangles: HI tangent velocity method
(Burton and Gordon 1978); Rectangles: CO tangent (Clemens 1989); Reverse triangles: HI tangent (Fich et al. 1989); Diamonds:
CO and HII regions (Fich et al.1989, Blitz et al. 1982); filled triangles: Demers and Battinelli (2007); Circles: HI thickness (Honma
and Sofue 1997a,b); Big circle at 13.1 kpc: VERA-parallax, proper motion and velocity (Honma et al. 2007). All data have been
converted to (R0,V0) = (8.0, 200.0 km s−1). The plotted data are in table 1.

qualitatively reproduced, but we show that the amplitude
is not reproduced. This is because that the bar is a radial
perturbation of mode 2, whereas the ring is a local and
radial perturbation yielding a rapider change of density
and potential gradients.

4. Galactic Mass Components

For constructing the model rotation curves, we used
fundamental galactic mass components, which are the
bulge, disk, and halo. We also introduced some pertur-
bations representing the discrepancies between the obser-
vations and calculated fundamental curves. We describe
individual components below.

4.1. Bulge

The inner region of the galaxy is assumed to be com-
posed of two luminous components, which are a bulge
and disk (Wyse et al. 1997) . The mass-to-luminosity
ratio within each component is assumed to be constant,
so that the mass density distribution has the same pro-
file. The bulge is assumed to have a spherically symmetric
mass distribution, whose surface mass density obeys the
de Vaucouleurs law, as shown in figure 2.

The de Vaucouleurs (1958) law for the surface bright-
ness profile as a function of the projected radius r is ex-
pressed by

logβ = −γ(α1/4 − 1), (5)

with γ = 3.3308. Here, β = Bb(r)/Bbe, α = r/Rb, and

Bb(r) is the brightness distribution normalized by Bbe,
which is the brightness at radius Rb. We adopt the same
de Vaucouleurs profile for the surface mass density:

Σb(r) = λbBb(r) = Σbeexp

[

−κ

(

(

r

Rb

)1/4

− 1

)]

(6)

with Σbc = 2142.0Σbe for κ = γln10 = 7.6695. Here, λb

is the mass-to-luminosity ratio, which is assumed to be
constant within a bulge. The total mass is calculated by

Mbt = 2π

∫ ∞

0

rΣb(r)dr = ηR2
bΣbe, (7)

where η = 22.665 is a dimensionless constant. By defi-
nition a half of the total projected mass (luminosity) is
equal to that inside a cylinder of radius Rb.

We here adopt a spherical bulge. In fact the differences
among circular velocities are not so significant for minor-
to-major axis ratios greater than ∼ 0.5 (Noordermeer
2008). The volume mass density ρ(r) at radius r for a
spherical bulge is calculated by using the surface density
distribution as (Binney and Tremaine 1987; Noordermeer
2008),

ρ(r) =
1

π

∫ ∞

r

dΣb(x)

dx

1√
x2 − r2

dx. (8)

Since the mass distribution is assumed to be spherical,
the total mass enclosed within a sphere of radius R is
calculated by using rho(r) and the circular velocity as
Vb(R)=

√

GMb(R)/R. Obviously, the velocity approaches

Sofue et al. 2009 v2 ∼ GM(r)/r
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Background | Why measure the local dark matter density?

Prolate Oblate/dark disc

ρdm < ρdm,ext ρdm > ρdm,ext

1. Halo shape ... 
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:

dR

dE
=

ρσwn|F (E)|2

2mµ2

∫ vmax

v>
√

ME/2µ2

f(v, t)

v
d3v (1)

where ρ is the local dark matter density (ρh =
0.3GeV/cm3 in the SHM), σwn is the WIMP-nucleus
scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
the SHM with a simple 1D Maxwellian:

f(v, t) ∝ exp

(

−(v + v⊕(t))2

2σ2

)

(2)

where v is the laboratory velocity of the dark mat-
ter particle and the instantaneous streaming velocity
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
vorbR

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βR sin(λ(t) − λR)
vorbφ

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βφ sin(λ(t) − λφ)
vorbz

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βz sin(λ(t) − λz)

where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.

The motion of the Earth around the Sun gives rise to
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
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scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
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where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
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tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/
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2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:
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scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
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nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
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where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.
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Simulations | “DM-only” simulations

b) Local DM velocity PDF Vogelsberger et al. 2009

800 M. Vogelsberger et al.

the short dynamical time at the solar radius (about 1 per cent of
the Hubble time). This results in very efficient mixing of unbound
material and the stripping of all initially bound objects to a small
fraction of the maximum mass they may have had in the past (see
Vogelsberger et al. 2008, for a discussion of these processes). Note
that the actual density of DM in the solar neighbourhood and the
shape of the equidensity surfaces of the Milky Way’s DM distri-
bution will depend on how the gravitational effects of the baryonic
components have modified structure during the system’s formation.
Unfortunately, the shape of the inner DM halo of the Milky Way
is poorly constrained observationally (Helmi 2004; Law, Johnston
& Majewski 2005). The dissipative contraction of the visible com-
ponents probably increased the density of the DM component and
made it more axisymmetric (e.g. Gnedin et al. 2004; Kazantzidis
et al. 2004) but these processes are unlikely to affect the level of
small-scale structure. The very smooth behaviour we find in our
pure DM haloes should apply also to the more complex real Milky
Way.

4 V E L O C I T Y D I S T R I BU T I O N S

The velocity distribution of DM particles near the Sun is also an
important factor influencing the signal expected in direct detection
experiments. As mentioned in the Introduction, most previous work
has assumed this distribution to be smooth, and either Maxwellian
or multivariate Gaussian. Very different distributions are possible
in principle. For example, if the local density distribution is a su-
perposition of a relatively small number of DM streams, the local
velocity distribution would be effectively discrete with all particles
in a given stream sharing the same velocity (Sikivie, Tkachev &
Wang 1995; Stiff, Widrow & Frieman 2001; Stiff & Widrow 2003).
Clearly, it is important to understand whether such a distribution
is indeed expected, and whether a significant fraction of the local
mass density could be part of any individual stream.

We address this issue by dividing the inner regions of each of our
haloes into cubic boxes 2 kpc on a side, and focusing on those boxes
centred between 7 < r < 9 kpc from halo centre. In Aq-A-1, each
2 kpc box contains 104 to 105 particles, while in the level-2 haloes
they contain an order of magnitude fewer. For every box, we cal-
culate a velocity dispersion tensor and study the distribution of the
velocity components along its principal axes. In almost all boxes,
these axes are closely aligned with those the ellipsoidal equidensity
contours discussed in the last section. We also study the distribution
of the modulus of the velocity vector within each box. The upper
four panels of Fig. 2 show these distributions of a typical 2 kpc
box at the solar circle in Aq-A-1 (solid red lines). Here, and in the
following plots, we normalize distributions to have unit integral.
The black dashed lines in each panel show a multivariate Gaussian
distribution with the same mean and dispersion along each of the
principal axes. The difference between the two distributions in each
panel is plotted separately just above it. This particular box is quite
typical, in that we almost always find the velocity distribution to
be significantly anisotropic, with a major axis velocity distribution
which is platykurtic, and distributions of the other two components
which are leptokurtic. Thus, the velocity distribution differs signifi-
cantly from Maxwellian, or even from a multivariate Gaussian. The
individual velocity components have very smooth distributions with
no sign of spikes due to individual streams. This also is a feature
which is common to almost all our 2 kpc boxes. It is thus surprising
that the distribution of the velocity modulus shows clear features
in the form of bumps and dips with amplitudes of several tens of
per cent.
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Figure 2. Top four panels: velocity distributions in a 2 kpc box at the
solar circle for halo Aq-A-1. v1, v2 and v3 are the velocity components
parallel to the major, intermediate and minor axes of the velocity ellipsoid;
v is the modulus of the velocity vector. Red lines show the histograms
measured directly from the simulation, while black dashed lines show a
multivariate Gaussian model fit to the individual component distributions.
Residuals from this model are shown in the upper part of each panel. The
major axis velocity distribution is clearly platykurtic, whereas the other
two distributions are leptokurtic. All three are very smooth, showing no
evidence for spikes due to individual streams. In contrast, the distribution
of the velocity modulus, shown in the upper left-hand panel, shows broad
bumps and dips with amplitudes of up to 10 per cent of the distribution
maximum. Lower panel: velocity modulus distributions for all 2 kpc boxes
centred between 7 and 9 kpc from the centre of Aq-A-1. At each velocity,
a thick red line gives the median of all the measured distributions, while a
dashed black line gives the median of all the fitted multivariate Gaussians.
The dark and light blue contours enclose 68 and 95 per cent of all the
measured distributions at each velocity. The bumps seen in the distribution
for a single box are clearly present with similar amplitude in all boxes, and
so also in the median curve. The bin size is 5 km s−1 in all plots.
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Simulations | “DM-only” simulations | Fine structure

•Unresolved substructure | not likely important

•Unresolved streams | not likely important 

• Solar system | not likely important

[Vogelsberger et al. 2011; Fantin et al. 2011]

[Peter 2009]

[Vogelsberger et al. 2009; Zemp et al. 2009; Kamionkowski et al. 2008]
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Figure 4: Including baryons in the cosmological simulations alters the predictions
for ρdm. Left & Middle: Adding dissipative baryonic matter causes the dark
matter halo to contract and change shape, becoming oblate and aligned with the
disc at least out to ∼ 10 disc scale lengths. The left plot shows projected density
contours of a Milky Way-mass dark matter halo from a cosmological simulation
(Read et al., 2009) in the absence of baryons, which is triaxial (i.e. has no sym-
metry axis). The middle plot shows the same simulation run including baryonic
physics (the approximate size of the disc that is in the x − y plane is marked
by the red horizontal line). The dotted lines show density contours for the dark
matter accreted from the four most massive satellites. Right: The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal
debris – both stars and dark matter – to settle into a rotating disc. This plot
shows the ratio of the density of this ‘dark disc’ to the halo density at the solar
neighbourhood, for a series of controlled simulations where a satellite of the mass
of the Large Magellanic Cloud (LMC) or four times larger than this (LLMC) were
merged with the Milky Way with different inclination angles, as marked. Notice
that it is the low inclination mergers (LMC-10◦ and LLMC-10◦) that contribute
most to the ‘dark disc’, as expected. Plot adapted from data presented in Read
et al. (2008).

This above makes hunting for the gravitational effect of dark matter near
the Sun rather like looking for the proverbial needle in the haystack. This
is one motivation for using extrapolations from larger scales where the dark
matter dominates the potential. It leads to a trade-off between moving away
from the Solar neighbourhood to see more dark matter, and minimising the
number of assumptions that must go in to the method. I discuss this further
in §3.
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Figure 4: Including baryons in the cosmological simulations alters the predictions
for ρdm. Left & Middle: Adding dissipative baryonic matter causes the dark
matter halo to contract and change shape, becoming oblate and aligned with the
disc at least out to ∼ 10 disc scale lengths. The left plot shows projected density
contours of a Milky Way-mass dark matter halo from a cosmological simulation
(Read et al., 2009) in the absence of baryons, which is triaxial (i.e. has no sym-
metry axis). The middle plot shows the same simulation run including baryonic
physics (the approximate size of the disc that is in the x − y plane is marked
by the red horizontal line). The dotted lines show density contours for the dark
matter accreted from the four most massive satellites. Right: The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal
debris – both stars and dark matter – to settle into a rotating disc. This plot
shows the ratio of the density of this ‘dark disc’ to the halo density at the solar
neighbourhood, for a series of controlled simulations where a satellite of the mass
of the Large Magellanic Cloud (LMC) or four times larger than this (LLMC) were
merged with the Milky Way with different inclination angles, as marked. Notice
that it is the low inclination mergers (LMC-10◦ and LLMC-10◦) that contribute
most to the ‘dark disc’, as expected. Plot adapted from data presented in Read
et al. (2008).

This above makes hunting for the gravitational effect of dark matter near
the Sun rather like looking for the proverbial needle in the haystack. This
is one motivation for using extrapolations from larger scales where the dark
matter dominates the potential. It leads to a trade-off between moving away
from the Solar neighbourhood to see more dark matter, and minimising the
number of assumptions that must go in to the method. I discuss this further
in §3.

14

Shape change

A composite image of the dark matter disk (red contours) and the Atlas Image mosaic of the Milky Way obtained as part of the Two Micron All Sky Survey (2MASS), a joint project 
of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration 
and the National Science Foundation. Credit: J. Read & O. Agertz. 
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Lake 1989; Read et al. 2008/9
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(Read et al., 2009) in the absence of baryons, which is triaxial (i.e. has no sym-
metry axis). The middle plot shows the same simulation run including baryonic
physics (the approximate size of the disc that is in the x − y plane is marked
by the red horizontal line). The dotted lines show density contours for the dark
matter accreted from the four most massive satellites. Right: The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal
debris – both stars and dark matter – to settle into a rotating disc. This plot
shows the ratio of the density of this ‘dark disc’ to the halo density at the solar
neighbourhood, for a series of controlled simulations where a satellite of the mass
of the Large Magellanic Cloud (LMC) or four times larger than this (LLMC) were
merged with the Milky Way with different inclination angles, as marked. Notice
that it is the low inclination mergers (LMC-10◦ and LLMC-10◦) that contribute
most to the ‘dark disc’, as expected. Plot adapted from data presented in Read
et al. (2008).
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Figure 4: Including baryons in the cosmological simulations alters the predictions
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disc at least out to ∼ 10 disc scale lengths. The left plot shows projected density
contours of a Milky Way-mass dark matter halo from a cosmological simulation
(Read et al., 2009) in the absence of baryons, which is triaxial (i.e. has no sym-
metry axis). The middle plot shows the same simulation run including baryonic
physics (the approximate size of the disc that is in the x − y plane is marked
by the red horizontal line). The dotted lines show density contours for the dark
matter accreted from the four most massive satellites. Right: The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal
debris – both stars and dark matter – to settle into a rotating disc. This plot
shows the ratio of the density of this ‘dark disc’ to the halo density at the solar
neighbourhood, for a series of controlled simulations where a satellite of the mass
of the Large Magellanic Cloud (LMC) or four times larger than this (LLMC) were
merged with the Milky Way with different inclination angles, as marked. Notice
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disc at least out to ∼ 10 disc scale lengths. The left plot shows projected density
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physics (the approximate size of the disc that is in the x − y plane is marked
by the red horizontal line). The dotted lines show density contours for the dark
matter accreted from the four most massive satellites. Right: The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal
debris – both stars and dark matter – to settle into a rotating disc. This plot
shows the ratio of the density of this ‘dark disc’ to the halo density at the solar
neighbourhood, for a series of controlled simulations where a satellite of the mass
of the Large Magellanic Cloud (LMC) or four times larger than this (LLMC) were
merged with the Milky Way with different inclination angles, as marked. Notice
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Late Mergers [LM]

Read et al., 2008/9; Bruch et al. 2009a/b.
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Measurement
[ρdm; the local halo shape; and the MW’s dark disc]

Thursday, June 4, 2015



Measurement | Theory

Bahcall 1989; Garbari et al. 2011/12
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.
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Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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Component νi,0 Σi σz,i

[M⊙ pc
−3
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−2
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−1
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∗

0.016 4.1 7.0± 1.0
HI(2)

∗
0.012 4.1 9.0± 1.0
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∗
2

0.021 3.0 4.0± 1.0
Warm gas

∗
0.0009 2.0 40.0± 1.0

Giants 0.0006 0.4 20.0± 2.0
MV < 2.5 0.0031 0.9 7.5± 2.0

2.5 < MV < 3.0 0.0015 0.6 10.5± 2.0
3.0 < MV < 4.0 0.0020 1.1 14.0± 2.0
4.0 < MV < 5.0 0.0022 1.7 18.0± 2.0
5.0 < MV < 8.0 0.007 5.7 18.5± 2.0

MV > 8.0 0.0135 10.9 18.5± 2.0
Thick disc 0.0035 7.0 37.0± 5.0
Stellar halo 0.0001 0.6 100.0± 10.0
White dwarfs 0.006 5.4 20.0± 5.0
Brown dwarfs 0.002 1.8 20.0± 5.0

Table 1: The disc mass model from ?. The columns show: the mass compo-
nent (stars/gas/stellar remnant); the mass density in the midplane ρ(0); the total
column density Σ; and the vertical velocity dispersion σz. Uncertainties on the
densities are of order 50 per cent for all the gas components (indicated with ∗) and
10 per cent for all the stellar components.

Component Σi[M ⊙ pc
−2
] Reference

ΣHI 12.0± 4.0 Kalberla & Dedes (2008)

ΣH2 3.0± 1.5 Flynn et al. (2006)

ΣWarm gas 2.0± 1 Flynn et al. (2006)

Σ∗ 30± 1 Bovy et al. (2012)

Σ• 7.2± 0.7 Flynn et al. (2006)

Σb 54.2± 4.9 This compilation

Table 2: A new compilation of Σb.

1

a) Mass model from Flynn et al. 2006 b) A new compilation of !b 
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White dwarfs 0.006 5.4 20.0± 5.0
Brown dwarfs 0.002 1.8 20.0± 5.0

Table 2: The disc mass model from Flynn et al. (2006). The columns show: the
mass component (stars/gas/stellar remnant); the mass density in the midplane
ρ(0); the total column density Σ; and the vertical velocity dispersion σz. Un-
certainties on the densities are of order 50 per cent for all the gas components
(indicated with ∗) and 10 per cent for all the stellar components.

like Kuijken & Gilmore (1989c) have applied such priors, while others like
Bahcall (1984b) have not (see Figure 2). The precise form of any such prior
depends on the choice of mass model. Kuijken & Gilmore (1989c,b,a, 1991),
for example, use a series of spherical-halo Galactic mass models that are
consistent with the known rotation curve to inform their prior. I describe
this prior in more detail and explore its effect in §4.
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this prior in more detail and explore its effect in §4.

3.6 The choice of tracer

GOT TO HERE.
DISCUSS YOUNG/OLD STARS. GOOD STANDARD RODS. ETC.

PROBLEMS SLICING ANDDICING THE LATEST SURVEYDATA. MAPS.

3.7 Coping with model degeneracies

MCMC.
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Ruchti, Read et al. in prep. 2014/15

• Medium resolution (R~18,000) GIRAFFE data.

• S/N > 20.

• Only Milky Way field stars (e.g. no clusters etc.).

• 3015 stars with distances; proper motions + radial 
velocities.

• Calculate                        for each star assuming a 
simple Galactic model.

[Ez/Ec, Jz/Jc]

The accreted disc | The Gaia-ESO survey 
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Ruchti, Read et al. in prep. 2014/15
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The data used are the medium-resolution (R~18,000) GIRAFFE data from 
the Gaia-ESO Survey. We place a quality such that we only analyze stars 
only with Signal/Noise > 20.  Further, we have restricted our analysis to 
only stars in the Milky Way field, removing cluster data and other 
specialized fields.  All stellar parameters (Teff, log g, [Fe/H]) and 
abundances (in our case [Mg/Fe]) are taken from the Gaia-ESO Survey 
recommended parameters, which are a homogenized set from the 
analysis of several “abundance nodes” within the Survey.

In order to derive Jz/Jc, we need distances and 3-D space motions.  Both 
the absolute magnitude (and hence a distance) and ages of the stars were 
determined by fitting the stellar parameters (Teff, log g, [Fe/H]) to 
evolutionary tracks following the methodology described in Serenelli, 
Bergemann, Ruchti et al. (2013). From these fits, we obtain the full 
probability distribution functions (PDF) for the absolute magnitudes. Using 
these PDFs, as well as the error distributions for the proper motions (from 
UCAC4) and radial velocities (from Gaia-ESO), we perform a Monte Carlo 
computation to derive the full PDFs of the distance, 3-D space motions, 
and hence the orbital parameters (such as Jz/Jc).  The derivation of Jz/Jc 
for each Monte Carlo sample point can be found in Ruchti et al. (2014).

For the Jz/Jc and age plots, we first cut the data into different [Mg/Fe]-[Fe/
H] bins, then sum the Jz/Jc (or age) PDFs for all stars within a given bin. 
Finally, we normalize such that the total area over a given bin equals one.

Further information: 

The accreted disc | The Gaia-ESO survey 
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Figure 8. The sample plotted in the [Mg/Fe] − [Fe/H] plane,
but now sliced into larger bins, similar to that defined in R14.
Stars are separated into high- and low-α regimes, with a cut at
[Mg/Fe] = 0.3 for stars with [Fe/H] < −0.8. At larger metallic-
ities, the data were divided by a cut at [Mg/Fe] = 0.2, which
was determined using Figure 7. The vertical, dashed lines di-
vide our sample into three metallicity bins, shown as Bin A:
−0.8 � [Fe/H] < −0.2, Bin B: −1.3 � [Fe/H] < −0.8, and Bin C:
[Fe/H] < −1.3. These bins are also used in Figures 9−11. Stars
with [Fe/H] > −0.2 (grey) are excluded from further analysis.

ESO sample that extends to higher metallicity than

R14.

In Figure 8, we define three [Mg/Fe]− [Fe/H] bins:

Bin A (−0.8 � [Fe/H] < −0.2), Bin B (−1.3 � [Fe/H] <
−0.8), and Bin C ([Fe/H] < −1.3). The metallicity

range of Bins B and C is similar to that in R14. We

therefore applied the same cut at [Mg/Fe] = 0.3 used

in R14 for these bins. For Bin A, this cut is clearly

too high according to Figure 7 where a low-Jz/Jc

component is revealed for most bins with [Mg/Fe] <
0.2. We therefore adopted a cut at [Mg/Fe] = 0.2 for

this metallicity bin.

We next computed the distribution of Jz/Jc for

the high- and low-α stars (defined by the [Mg/Fe] cuts

in each bin) in each corresponding [Mg/Fe]−[Fe/H] bin

by summing the Jz/Jc PDFs of the stars within each

given bin. These are shown in Figure 9. Similarly

to Figure 7, in Figure 10 we explore the possibility

that an accreted component could be hidden by the

extended tail of the Galactic disc stars by plotting

the Jz/Jc distributions for only stars with P (Jz/Jc �
0.7) < 0.05. This is most useful for Bin A, the high

metallicity bin, which has the most substantial disc

component. In the following subsections, we explain

our findings.

5.3.1 Bin A: −0.8 � [Fe/H] < −0.2

In this bin, the high- and low-α distributions are

very similar (Figure 9a) with a peak at Jz/Jc ∼ 1

and a long tail extending down to Jz/Jc ∼ 0. If we cut

away the disc distribution as shown in Figure 10a,

we now see a peak around Jz/Jc ∼ 0.1 − 0.2, which

was hidden in Figure 9a. We also see a slight dif-
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Figure 9. Distributions of the vertical component of the specific
orbital angular momentum (Jz/Jc) for the three [Fe/H] bins de-
fined in Figure 8; (a) Bin A: −0.8 � [Fe/H] < −0.2, (b) Bin B:
−1.3 � [Fe/H] < −0.8, (c) Bin C: [Fe/H] < −1.3. The distribu-
tions are the sum of the PDF values within a given Jz/Jc bin,
and are normalised such that the total area equals unity. The
total number of stars whose PDF values were summed for each
distribution is given in the legend. The high- and low-α distribu-
tions, defined by the cut in [Mg/Fe] shown in Figure 8, are shown
as black and red distributions, respectively.

ference between the high-α and low-α components,

with the low-α peak slightly shifted to lower Jz/Jc. A

simple two-sample Kolmogorov-Smirnov test yields

a p-value< 2 × 10
−16

, implying that the difference

is statistically significant. This suggests that even if

the high-α component is just the tail of the disc pop-

ulation (spread to low Jz/Jc by uncertainties), the

low-α component contains something else - a real

low Jz/Jc component from an accreted satellite.

5.3.2 Bin B: −1.3 � [Fe/H] < −0.8

We find strong evidence for accreted stars in Bin

B. Figure 9b shows two distinct peaks in the low-α
distribution: one with Jz/Jc ∼ 0.8 and a low specific

angular momentum peak at Jz/Jc ∼ 0. This duality is

not seen in the high-α distribution. Figure 10b fur-

ther confirms what is seen in Figure 9b, that there

is a component in the low-α distribution, peaking at

Jz/Jc ∼ 0.

c� 0000 RAS, MNRAS 000, 000–000
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Ruchti, Read et al. in prep. 2014/15 M∗,LMC ∼ 108.9 M⊙

Mass–Metallicity Relation for Dwarf Galaxies 13

3 4 5 6 7 8
 

-2.5

-2.0

-1.5

-1.0

-0.5

![F
e/

H
]"

MW dSph
M31 dSph
LG dIrr

MW dSph
M31 dSph
MW dSph

DEIMOS spectroscopic
stellar metallicities

SDSS spectroscopic
stellar metallicities

(Gallazzi et al. 2005)

9 10 11 12

 

 

0.0

lo
g 

(Z
*/Z

O •
)

log (M*/MO •)
Figure 9. The stellar mass–stellar metallicity relation for Local Group dwarf galaxies (left) and more massive SDSS galaxies galaxies
(right, Gallazzi et al. 2005). The Local Group metallicities (〈[Fe/H]〉) were measured from iron lines, and the SDSS metallicities (logZ∗)
were measured from a combination of absorption lines, mostly Mg and Fe. The conversion between 〈[Fe/H]〉 and logZ∗ depends on [Mg/Fe].
The Local Group data is the same as in Figure 8, but it is plotted here versus stellar mass rather than luminosity. The dashed line is the
least-squares fit to the Local Group galaxies (Equation 4, where the intercept is calculated at 106 M"), and the dotted line in the right
panel is the moving median for the SDSS galaxies. Although the techniques at measuring both mass and metallicity differ between the two
studies, the mass–metallicity relation is roughly continuous over nine orders of magnitude in stellar mass.

different and because their error bars are larger. Includ-
ing them changes the slope and intercept by less than
the uncertainties quoted in Equation 1. The rms of the
MW dSphs about Equation 1 is 0.17.
The LZR for the dIrrs is

〈[Fe/H]〉dIrr = (−1.58± 0.04)+(0.21± 0.02) log

(

LV

106 L!

)

.

(2)
The rms of the dIrrs about Equation 2 is 0.09. The rms
of the dIrrs about Equation 1 is 0.12. The dIrrs have
a smaller scatter than dSphs about the best-fit line for
dSphs.
We conclude that dIrrs are not deviant from the LZR

defined by MW dSphs. Both types of galaxies obey the
same relation. The least-squares fit for the dIrrs and
MW dSphs, again excluding Segue 2, is

〈[Fe/H]〉 = (−1.68± 0.03)+(0.29± 0.02) log

(

LV

106 L!

)

.

(3)
The rms about the best-fit line is 0.16. Equation 3 is the
dashed line in Figure 8.
Luminosity is a direct observable, but stellar mass is

more closely related to chemical evolution. The mass-
to-light ratio depends on the SFH. Woo et al. (2008)
calculated M∗/LV for the brighter MW dSphs and the
LG dIrrs in two ways. They used modeled SFHs (Mateo
1998), or they converted integrated galaxy colors into
mass-to-light ratios based on stellar population models
(Bell & de Jong 2001; Bell et al. 2003). Generally, they
preferred the SFH-based masses, but sometimes only
integrated colors were available. For the fainter MW
dSphs, we adopted Martin et al.’s (2008) stellar masses,
which were based on modeling the distribution of stars
in the CMD for each galaxy. Table 4 includes the stel-

K
irby et al. 2013

�[Fe/H]� ∼ −1.0

⇒ M∗ ∼ 108.2 M⊙
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Conclusions

• Latest constraints on        [assuming                            ]:

• Comparing these with the rotation curve implies a near-spherical MW 
halo at ~8kpc, little dark disc, and a quiescent merger history. 

• We have searched for stars accreted along with the dark disc, finding 
none so far; this supports the “quiescent MW” scenario.

• Gaia will move us into the realm of truly precise measurements of the 
local dark matter [and baryonic] density.

ρdm = 0.33+0.26
−0.075 GeV cm−3 ρdm = 0.25± 0.09GeV cm−3

[volume complete; G12*; R14] [SDSS; Z13]

Σb = 55M⊙ pc−2ρdm
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