The Atacama Cosmology Telescope: results from the 2008 survey

Joanna Dunkley

Oxford Astrophysics

APC, Sep 21, 2010

The Cosmic Microwave Background

- Linear theory (at early times)
- Basic elements are well understood. Initial fluctuations evolve.
- Numerical codes predict power spectrum in a given universe.

$$T(\hat{n}) = \sum_{lm} a_{lm} Y_{lm}(\hat{n})$$
$$c_{l} = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$$

CMB fluctuations

WMAP7, Hinshaw et al 2008, Jarosik et al 2010

Constrained 6-parameter lcdm cosmological model

Atacama Cosmology Telescope

- Barcelona ICE
- Univ of British Columbia (Canada)
- Univ of Cape Town (S Africa)
- Cardiff University (UK)
- Columbia University (USA)
- Haverford College (USA)
- INAOE (Mexico)
- Univ of Kwa-Zulu Natal (S Africa)
- Univ of Massachusetts (USA)
- NASA/GSFC (USA)
- NIST (USA)

- Univ of Oxford (UK: Dunkley, Hlozek)
- Univ of Pennsylvania (USA)
- *Princeton University (USA) (PI L. Page)
- Univ of Pittsburgh (USA)
- Pontifica Universidad Catolica (Chile)
- Rutgers University (USA)
- Univ of Toronto (Canada)
- Collaborators at La Sapienza, MPI, Miami, Stanford, Berkeley, Chicago, CfA, LLNL, IPMU Tokyo

 \rightarrow ~ 90 collaborators

CMB lensing

Integrated mass fluctuations along the line of sight, from fixed CMB source. Kernel peaks at z=2-3.Ulimately use TT (and E/B) to reconstruct deflection power spectrum.

Sunyaev-Zeldovich from clusters

- Thermal Sunyaev-Zeldovich: inverse compton scattering from hot electrons
- Identify and measure clusters with multi-wavelength observations
- Derive science from N(mass,z)

ACT: the telescope

5200 meter elevation, one of driest places on planet
1° field of view, 6-meter primary, 2-meter secondary, 1.4' resol
3 frequencies: 148, 220, 270 GHz, 3000 TES detectors

ACT sky coverage

To date ACT has taken ~17 months of data in 3 frequency bands, over ~1300 deg²

Observe mainly at night: 20:30 – 09:30 local time Fixed elevation of 53° South. Rapid scanning: 6 degrees every 8 seconds Cross-linking: observe each patch twice per night Showing today: ~ 4 months in 2008, 2 frequencies, 300 deg²

ACT southern field at 148 GHz

Hajian et al (2010)

Radio galaxy detections at 148 GHz

Computing power spectrum

spectra

ACT 148-218 GHz power spectra

•WMAP extends to I=1000; ACT spans 500<I<10000 range for 148 GHz, 1500<I<10000 for 218 GHz

• Higher acoustic peaks and Silk damping tail probed

• CMB dominates out to I~3000 for 148 GHz, and I~2000 for 218 GHz

• CMB only about 15% by I=3000 at 218 GHz.

• Will use I=3000 as useful reference scale.

 $\mathcal{B}_{\ell} \equiv \ell(\ell+1)\bar{C_{\ell}}/2\pi.$

Simple model fits small scales

Dunkley, Hlozek, Sievers et al. 2010

Secondary parameters

• Simple model fits 3 spectra

• Clustered IR sources required at 5 sigma

• At 148 GHz we separate radio and IR with prior from detected radio sources.

• Index consistent with dusty galaxies z=2-4

TABLE 3 Derived constraints on unresolved IR source emission^a

		$148\mathrm{GHz}$	$218\mathrm{GHz}$
Poisson	$\mathcal{B}_{3000} \ (\mu K^2)^{b}$	$7.8\pm0.7\pm0.7$	$90 \pm 5 \pm 10$
	$C_{\ell}(\mathrm{nK}^2)$	$5.5 \pm 0.5 \pm 0.6$	$63 \pm 3 \pm 6$
	$C_\ell ~(\mathrm{Jy^2sr^{-1}})$	$0.85 \pm 0.08 \pm 0.09$	$14.7 \pm 0.7 \pm 1.8$
Clustered	$\mathcal{B}_{3000}~(\mu\mathrm{K}^2)^{\mathrm{c}}$	$4.6\pm0.9\pm0.6$	$54 \pm 12 \pm 5$
Total IR	$\mathcal{B}_{3000}~(\mu\mathrm{K}^2)$	12.5 ± 1.2	144 ± 13

Sunyaev-Zeldovich power

TABLE 2							
CONSTRAINTS ON SZ EMISSION							
$Template^{a}$	$A_{\rm tSZ}{}^{\rm b}$	$\mathcal{B}^{\mathrm{SZ}\ \mathrm{c}}_{3000}$	$\sigma_8^{{ m SZ},7}$	$\sigma_8^{{ m SZ},9}$			
		(μK^2)	$0.8 \times (A_{\rm tSZ}^{1/7})$	$0.8 \times (A_{\rm tSZ}^{1/9})$			
TBO-1	0.62 ± 0.26	6.8 ± 2.9	0.74 ± 0.05	0.75 ± 0.04			
TBO-2	0.96 ± 0.43	6.7 ± 3.0	0.78 ± 0.05	0.79 ± 0.04			
TBO-2 Battaglia	$0.96 \pm 0.43 \\ 0.85 \pm 0.36$	$6.7 \pm 3.0 \\ 6.8 \pm 2.9$	$0.78 \pm 0.05 \\ 0.77 \pm 0.05$	$0.79 \pm 0.04 \\ 0.78 \pm 0.04$			
TBO-2 Battaglia Shaw	0.96 ± 0.43 0.85 ± 0.36 0.87 ± 0.39	6.7 ± 3.0 6.8 ± 2.9 6.8 ± 3.0	0.78 ± 0.05 0.77 ± 0.05 0.77 ± 0.05	$\begin{array}{c} 0.79 \pm 0.04 \\ 0.78 \pm 0.04 \\ 0.78 \pm 0.04 \end{array}$			
TBO-2 Battaglia Shaw	0.96 ± 0.43 0.85 ± 0.36 0.87 ± 0.39	6.7 ± 3.0 6.8 ± 2.9 6.8 ± 3.0	$\begin{array}{c} 0.78 \pm 0.05 \\ 0.77 \pm 0.05 \\ 0.77 \pm 0.05 \end{array}$	0.79 ± 0.04 0.78 ± 0.04 0.78 ± 0.04			

Dunkley et al. 2010

12

14 14 148+218 ACT 148 12 12 B^{SZ}3000 (μK²) B^{SZ}₃₀₀₀ (μK²) 10 10 8 8 6 4 | 2 2 4 18 0 $^{2}_{\text{B}_{3000}}$ $^{4}_{\text{IR, Clustered}}$ $^{6}_{(\mu\text{K}^{2})}$ $^{10}_{(\mu\text{K}^{2})}$ 6

- SZ required at 95% level. Atsz=1 is prediction for $\sigma 8=1$.
- ACT sees consistent power with SPT (0.4+-0.2) but also with simple gas model templates.
- Power at I=3000 is independent of template
- kSZ upper limit: <8 μ K² at I=3000.
- With 218 GHz the SZ power is not strongly correlated with IR source power

ACT 'low-ell' power spectrum

ACDM Parameters

6-parameter LCDM continues to fit the data well
Scale invariant ns=1 now disfavored at 3σ from CMB data alone, in support of inflation.

• Simple secondary parameter model captures high ell behavior.

Dunkley et al. 2010

Gravitational lensing

0.4

0.2

0.0

0.5

1.0

1.5

2.0

 A_L

3.0

Das et al. 2010

3.5

4.0

2.5

• Expect $A_1 = I$, and unlensed has $A_1 = 0$. See lensing at almost 3σ level.

$$A_L \ = \ 1.3^{+0.5(+1.2)}_{-0.5(-1.0)}$$

Beyond the standard model

Inflation

- Effective field theory, period of exponential expansion for > 60 e-folds
- Provides mechanism for seeding cosmic structure
- Look for
 - Index deviating from 1
 - Running index
 - Gravitational waves
 - Isocurvature fluctuations
 - Non-Gaussian signatures

$$\Delta_{\mathcal{R}}^2(k) = \Delta_{\mathcal{R}}^2(k_0) \left(\frac{k}{k_0}\right)^{n_s(k_0) - 1 + \frac{1}{2}\ln(k/k_0)dn_s/d\ln k}$$

$$dn_s/d\ln k = -0.024 \pm 0.015$$

(r < 0.19 ACT+all

Relativistic species

'Assume' N=3 neutrino species.

$$\rho_{rel} = \left[\frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right] \rho_{\gamma}$$

- More species, longer radiation domination. Changing Neff changes equality redshift.
- Also species suppress early acoustic oscillations in primary CMB, and phase shift in primary CMB. Distinct to zeq.

For ACT+WMAP we find:

$$N_{\rm eff} = 5.3 \pm 1.3 \ (68\% \ {\rm CL})$$

Errors reduced to 0.75 with BAO and H0 measures. Mean value higher than 3.04 but N=3 still fits data well!

Primordial Helium

Assume Yp=0.24, predicted by BBN.

 $Y_P = 0.2485 + 0.0016[(273.9\Omega_b h^2 - 6) + 100(S - 1)], (27)$ where $S^2 = 1 + (7/43)(N_{\text{eff}} - 3)$ (see e.g., Kneller & Steigman 2004; Steigman 2007; Simha & Steigman 2008).

- More helium decreases electron density, increasing damping.
- A universe with no Helium is now ruled out at 6 sigma from ACT+WMAP – it would produce too much small scale power.

/

$$Y_P = 0.313 \pm 0.044 \ (68\% \text{ CL})$$

Cosmic strings? – tighter bounds

SZ cluster detections

Optical follow-up with NTT

Menanteau et al. 2010

Cluster number counts

Summary

• There are multiple physical components in small-scale microwave sky. A simple model fits the ACT 148 and 218 GHz data.

• Clustering of unresolved IR sources is needed; and a preference for non-zero SZ power from galaxy clusters, consistent with expectations.

• The Λ CDM model continues to fit the data, and lensing of the CMB is preferred at almost 3 σ ; ACT's longer level arm gives stronger new constraints on inflationary parameters, and probes non-standard physics through testing relativistic species, detecting primordial helium at 6 σ , and constraining cosmic string contributions.

• ACT continues to work with 1000s detectors on the sky. Taken ~18 months of data over ~1300 sq deg, and will stop end of 2010 to make way for the funded ACTPol.