Signatures of Primordial Black Holes as Dark Matter

APC Paris, 6th December 2018 Juan García-Bellido IFT-UAM/CSIC

Outline

- PBH = multiepoch-multiscale-multiprobe
- Early universe formation scenarios
- Signatures of PBH as DM
- Gravitational waves (mergers & background)
- Small scale structure (e.g. dwarf spheroidals)
- Early Galaxy formation (origin SMBH)
- Gamma-ray + X-ray + CIR background
- Long duration microlensing events
- Summary

PBH

formation scenarios

PBH-genesis mechanisms

• Fluctuations in the Early Universe

Zeldovich-Novikov (1966), Carr-Hawking (1974), Chapline (1975)

• Phase transitions: e.g. Quark-Hadron 1 M_{\odot}

Khlopov et al. (1985), Dolgov-Silk (1993), Jedamzik (1997), Byrnes et al. (2018)

• Topological defects. $M_{PBH} \sim 10^{-10} M_{\odot}$

Deng-Garriga-Vilenkin (2017)

• BE Condensate fragmentation. $10^{-10} M_{\odot}$

Cotner-Kusenko (2017)

• Higgs vacuum instability. $10^{-10} M_{\odot}$

Espinosa-Racco-Riotto (2017)

PBH from inflation

- Large peaks in curvature power spectrum
 - Hybrid inflation. 1 M $_{\odot}$ + 10⁻² 10² M $_{\odot}$

JGB-Linde-Wands (1996), Dimopoulos (2005), JGB-Clesse (2015)

- Axion-gauge inflation. $10^{-10} M_{\odot}$ + $1 M_{\odot}$

Kawasaki-Kitajima (1996), Bugaev-Klimai (2014), JGB-Peloso-Unal (2016-17)

- Single field (Higgs) inflation. $10^{-2} - 10^2 M_{\odot}$

JGB-Ruiz Morales (2017), Ezquiaga et al. (2018)

- Axion-monodromy inflation. $10^{-10} M_{\odot}$

Cheng-Lee-Ng (2018)

- String-based Inflation. 10^{-14} - $10^{-10}~M_{\odot}$

Cicoli-Diaz-Pedro (2018), Dalianis-Kehagias-Tringas (2018)

Inflation

Clustering

PBH

Gravitational Collapse of PBH

Clustering properties of PBH

Inflationary predictions

- Lognormal wide-mass distribution JGB & Clesse (2017)
- Clusters of PBH: $N_{cl} \sim 100-1000$, comoving size ~ 1 mpc

uniform single-mass is already ruled out

clustered wide-mass is still viable

Future experimental tests of PBH

- Seeds of galaxies and QSO at high redshift
- Spectral distortions of the CMB
- Microlensing by uniform + clustered PBH populations
- Massive PBH slingshot stars out of Dwarf Spheroidals
- GAIA anomalies in tidal streams
- SN lensing magnification bias

- Spin distribution of PBH in clusters and in background
- Second-order source of GW at PBH formation → LISA
- Stochastic BGW from PBH mergers since recombination
- Individual mergers in compact PBH clusters → LIGO
- GW bursts from hyperbolic close encounters of PBH

Signatures PBH as

Signatures of PBH as DM

- GW emission by inspiralling BH in clusters
- Seeds for galaxy formation (SMBH in QSO)
- Origin of small scale structure (dwarf gals.)
- Chandra Deep Field (z ~ 10)
- Smooth reionization ($z \sim 6-15$).
- Correlations of X-ray and CIRB fluct.
- IMBH in dSph + Molecular clouds
- Long duration microlensing events

BBH mergers detected by LIGO

LIGO events

Given the present rate **R ~ 20-200 events/yr/Gpc³** soon will have MANY events.

Will test lognormal distribution. Observed rate of events is OK with clustered wide-mass distr.

If LIGO detects a single BH with M < 1Msun it will necessarily be of primordial origin, not stellar.

Chirp mass

$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Distribution of LIGO BHB

Distribution of LIGO BHB

Event	m_1/M_{\odot}	m_2/M_\odot	${\cal M}/{ m M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{\rm f}/{ m M}_{\odot}$	$a_{ m f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	179
GW151012	$23.3\substack{+14.0\\-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0\substack{+0.1 \\ -0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1_{-4.5}^{+4.9}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1_{-3.9}^{+5.2}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03\substack{+0.19 \\ -0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.0}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$	1033
GW170809	$35.2_{-6.0}^{+8.3}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5_{-4.7}^{+7.5}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

TABLE III. Selected source parameters of the eleven confident detections. We report median values with 90% credible intervals that include statistical errors, and systematic errors from averaging the results of two waveform models for BBHs. For GW170817 credible intervals and statistical errors are shown for IMRPhenomPv2NRT with low spin prior, while the sky area was computed from TaylorF2 samples. The redshift for NGC 4993 from [87] and its associated uncertainties were used to calculate source frame masses for GW170817. For BBH events the redshift was calculated from the luminosity distance and assumed cosmology as discussed in Appendix B. The columns show source frame component masses m_i and chirp mass \mathcal{M} , dimensionless effective aligned spin χ_{eff} , final source frame mass M_f , final spin a_f , radiated energy E_{rad} , peak luminosity l_{peak} , luminosity distance d_L , redshift z and sky localization $\Delta\Omega$. The sky localization is the area of the 90% credible region. For GW170817 we give conservative bounds on parameters of the final remnant discussed in Sec. V E.

Mass distribution of LIGO BHB

Black Holes and Neutron Stars

Spin distribution of LIGO BHB Abbott et al. (2017) $\vec{J} = \vec{L} + \vec{S}$

AdvLIGO BBH event rate

Merging Event Likelihood, μ = 2.5 $M_{\odot},\,\sigma$ = 0.5

Clesse & JGB (2017) 1.0 0.8 1.0 0.6 m_B/m_A 0.5 m_B/m_A 0.4 50 m_A 0.2 100 0.0 $\frac{\mathrm{d}\tau_{\mathrm{merg}}}{\mathrm{d}m_{\mathrm{A}}\mathrm{d}m_{\mathrm{B}}} \simeq 2.9 \times 10^{-9} \left\langle \delta_{\mathrm{PBH}}^2 \right\rangle^{1/2} \left\langle \left(\frac{v}{20 \text{ km/s}}\right)^{-11/7} \right\rangle_{0.0}$ 20 40 60 80 100 m_A $\times \frac{\psi(m_{\rm A})\psi(m_{\rm B})(m_{\rm A}+m_{\rm B})^{10/7}}{2^{10/7}\ln^2(10)\ \rho_{\rm DM}^2(m_{\rm A})^{12/7}(m_{\rm B})^{12/7}}\ {\rm yr}^{-1}{\rm Gpc}^{-3},\qquad \psi \equiv \frac{\mathrm{d}\rho(m_{\rm PBH})}{\mathrm{d}\log_{10}m_{\rm PBH}} = \frac{\rho_{\rm DM}}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{\log_{10}^2(m_{\rm PBH}/\mu)}{2\sigma^2}\right]$

Missing satellite

Too-big-to-fail Problems ACDM

Spatial distribution of DM

Spatial distribution of DM

Gravitational slingshot effect

Close encounters of a star with MPBH @ 100 km/s relative motion is enough to expel the star from the stellar cluster.

It may explain large M/L ratios of dSph by ejection of stars in the cluster, $v > v_{esc}$.

GAIA HyperVelocityStars in DR2

Missing Satellites

Missing Satellites

DES Dwarf Spheroidals

Missing Satellite problem is over

Eary Galaxy Formation

Massive PBH = seeds of structure

- Massive primordial black holes with $10^{-2} M_{\odot} < M_{PBH} < 10^{2} M_{\odot}$, which cluster and merge and could resolve some of the most acute problems of ΛCDM paradigm.
- ΛCDM N-body simulations never reach the $100 M_{\odot}$ particle resolution, so for them PBH is as good as PDM.
- PBH DM paradigm naturally incorporates all properties of collisionless CDM scenario on large scales but differs on small scales.

Understanding the MW satellites

Clesse & JGB (2017)

Long duration microlensing events EROS, MACHO, OGLE

Microlensing

symmetric

Signatures of clustering of PBH

PBH @ CERN 2018

OGLE3-UL-PAR-02 - candidate ~9MSun BH

 $M = 9-10 M_{\odot}$ 10.0lens mass $[M_{\odot}]$ به امع density 1.00.17 2 6 8 n lens distance [kpc]

Wyrzikowsky (2018)

OGLE photometry from 2001-2008 and microlensing model

Mass, Distance (degenerated estimate)

PBH @ CERN 2018

standard

OGLE3-UL-PAR-02 - candidate ~9MSun BH

Wyrzikowsky (2018)

predicted Gaia astrometry for similar event (real data in 2022)

OGLE photometry from 2001-2008 and microlensing model

Mass, Distance Rybicki, Wyrzykowski+ 2018

MASS FUNCTION

using Gaia DR2 distances and proper motions of SOURCE stars

only dark lenses selected

new examples of mass-gap dark objects!

single 10^{0} Probability density 10^{-} 10^{-1} 0.3N (Mass) 0.20.10.0 **•** 0.1 1.010.0Mass $[M_{\odot}]$

preliminary results!

Wyrzikowsky (2018)

Wyrzykowski+2016

Microlensing constraints

Microlensing constraints on clustered PBH with wide-mass distributions

Summary Constraints on PBH

PBH constraints

PBH constraints

Standing issues

- Evolution of clusters PBH with a wide-mass distribution
 - Why is $\Omega_{PBH} = \Omega_{DM} = 0.25$ today? Why is $\Omega_{PBH} = 5 \Omega_B$?
 - Growth of individual BH masses in radiation & matter eras
 - Slingshot effect on PBH → evaporation of clusters of PBH
 - Few captures and mergers in the age of the universe
 - Gas accretion in dense baryonic environments => SMBH
 - PBH clusters disappear to form early galaxies
- Evolution of spin of BH inside massive PBH clusters
 - Initially spin-less PBH from isotropic collapse
 - Mergers and gas accretion induce spin on evolved PBH

PBH

as

Dark Matter

Primordial Black Holes

Rethinking Dark Matter interactions:

Primordial Black Holes

Exciting times, very active, multi-disciplinary field, some clues in observations, upcoming experiments will challenge the scenario...

Conclusions

- Massive Primordial Black Holes are the perfect candidates for collisionless CDM, in excellent agreement with CMB and LSS observations.
- PBHs could also resolve some of the most acute problems of Λ CDM paradigm, like early structure formation and (small scale) substructure problems.
- PBHs could arise from quantum fluctuations of curvature during inflation that collapse in rad. era.
- There are many ways to test this idea in the near future from microlensing, CMB, LSS and GW.
- Need a multiepoch, multiscale and multiprobe approach to the scenario of PBH as DM.

Primordial Black Holes as Dark Matter

J. Calcino, JGB & T. Davis, MNRAS 479 (2018) 2889 S. Clesse & JGB, Phys. Dark Univ. 22 (2018) 137 JGB & S. Nesseris, Phys. Dark Univ. 21 (2018) 61 JGB, S. Clesse & P. Fleury, Phys. Dark Univ. 20 (2018) 95 JGB & S. Clesse, Phys. Dark Univ. 19 (2018) 144 Ezquiaga, JGB & Ruiz Morales, Phys. Lett. B776 (2018) 345 JGB & Ruiz Morales, Phys. Dark Univ. 18 (2017) 47 JGB & S. Clesse, Sci. Am. July (2017) 39 (review) JGB, J.Phys.Conf 840 (2017) 012032 (scenario) JGB & S. Nesseris, Phys Dark Univ. 18 (2017) 123 S. Clesse & JGB, Phys Dark Univ. 18 (2017) 105 JGB, M. Peloso & C. Unal, JCAP 1709 (2017) 013 JGB, M. Peloso & C. Unal, JCAP 1612 (2016) 031 S. Clesse & JGB, Phys Dark Univ. 10 (2016) 002 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

Summary

- 1. PBH can be all of the Dark Matter
 - Solves ACDM problems with small scale structures.
 - Clustered wide-mass PBH scenario not yet ruled out
- 2. Natural PBH formation mechanism during inflation
 - Broad peaks in the curvature power spectrum
- 3. Already exist observational hints of PBH as DM
 - Gravitational waves from LIGO
 - Microlensing OGLE + QSO
- 4. Can be tested with future experiments (PIXIE, GAIA)
- 5. Present constraints are weakened for spatially clustered wide-mass distributed PBH

Backup slides

Critca FIG0S Inflation

SM Higgs \rightarrow Inflaton

Primordial Spectrum PBH in SFI

Clustering of PBH at formation

Chisholm (2006)

Mass fraction Hubble domains / collapse to form PBH

$$\beta(\nu) = \operatorname{erfc}\left(\nu/\sqrt{2}\right) \simeq \sqrt{\frac{2}{\pi}} \frac{e^{-\nu^2/2}}{\nu}$$

$$\nu \equiv \delta_c / \sigma_H = \delta_c / \sqrt{P(k_H)} \gg 1$$

 $\nu \simeq 6$

The number of PBH in each cluster

$$N_{\rm cl} = \frac{10}{7} \,\beta(\nu) \, e^{3\nu^2/4} \sim 2000$$

A large fraction PBH will evaporate from the cluster via multiple 3-body interactions (Sigurdsson-Hernquist 1993)

Clustering of PBH at formation

The typical distance between PBH @formation

$$\lambda(z_f) = \frac{d_H(z_f)}{\beta(z_f)^{1/3}} \sim 1.2 \times 10^5 \text{ km} \left(\frac{6 \times 10^{11}}{1 + z_f}\right)^{5/3}$$

and the horizon distance at formation

$$d_H(z_f) = d_H(z_{eq}) \left(\frac{1+z_{eq}}{1+z_f}\right)^2 \sim 240 \,\mathrm{km} \,\left(\frac{6\times 10^{11}}{1+z_f}\right)^2$$
$$\beta(z_f) \sim 3 \times 10^{-9} \,\left(\frac{6\times 10^{11}}{1+z_f}\right)$$
$$M_{\rm PBH} \sim 20 \, M_{\odot} \,\left(\frac{6\times 10^{11}}{1+z_f}\right)^2$$
Clustering of PBH today

The typical distance between PBH clusters in the outer halos of galaxies

$$d_{\rm PBH} = 50 \,\mathrm{pc} \, \left(\frac{M_{\rm cl}}{100 \, M_{\odot}}\right)^{1/3}$$

The local density contrast @ formation

$$\delta \sim e^{\nu^2/2} \propto \beta(z_f)^{-1} \sim 6 \times 10^7$$

today $\delta_{loc} \sim 10^{11}$

The typical size of a cluster of PBH today is of the order of a miliparsec to a parsec.

Supernova ensing magnification

Supernovae lensing

Stochastic Background Grav. Waves

The Gravitational Wave Spectrum

Sensitivity of future GW antenas

Fuctuations CB8&X-ray Background

Kashlinsky (2016)

Kashlinsky (2016)

Gamma-ray Background

Fermi-LAT Point Sources = PBH ?

Wavelet transformation

Bartels et al. 2016

Non-Poissonian noise

Lee et al. 2016

Chandra: 10,000 BH at GC

GW DUrsts from c ose encounters

GW bursts

JGB & Nesseris (2017)

GW bursts

JGB, Nesseris (2017)

