## AN ALTERNATIVE TO THE ACDM MODEL: THE CASE OF SCALE INVARIANCE

André Maeder Geneva Observatory <u>The laws of Physics are generally not unchanged under a</u> <u>change of scale (Feynman, 1963). Material content.</u>

Even the vacuum at quantum level has some units  $\ell, t$ 

# But, the empty space at large scales has no preferred <u>scales</u>

#### **HYPOTHESIS: EMPTY SPACE IS SCALE INVARIANT AT LARGE**

In the same way as we may use Eisntein's theory at large scales, even if we do not have a quantum theory of gravitation, we may consider that the large scale empty space is scale invariant even if this is not true at the quantum level.

### <u>This hypothesis implies some properties for $\Lambda$ </u>

Scale invariance has attracted great attention: Weyl, 1923; Eddington, 1923; Dirac, 1973; Canuto et al. 1977.

Maxwell equations of electrodynamics are scale invariant.

<u>New interest</u>: it generates an acceleration of the expansion consistent with observations.

## <u>A scale transformation</u> GR $ds' = \lambda(x^{\mu}) ds$ Sc. inv. $g'_{\mu\nu} = \lambda^2 g_{\mu\nu}$

## Scale invariance enlarges the group of invariances of GR Maxwell equation are scale invariant.

<u>COTENSOR ANALYSIS</u> (Weyl 1923, Eddington 1923, Dirac 1973, Canuto et al. 1977). Covariant derivatives, modified Christoffel symbols, Riemann-Christoffel tensor, Ricci tensor, ... A theory of insuperable beauty (Dirac 1973)

#### **Scale invariant field equation**

$$R'_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R' - \kappa_{\mu;\nu} - \kappa_{\nu;\mu} - 2\kappa_{\mu}\kappa_{\nu} + 2g_{\mu\nu}\kappa^{\alpha}_{;\alpha} - g_{\mu\nu}\kappa^{\alpha}\kappa_{\alpha} = -8\pi G T_{\mu\nu} - \lambda^{2}\Lambda_{\rm E} g_{\mu\nu}$$
  
GR Additional terms  $\kappa_{\nu} = -\frac{\partial}{\partial x^{\nu}}\ln\lambda$ 

## PROPERTIES OF THE EMPTY SPACE



## **HYPOTHESIS:**

## **EMPTY SPACE IS SCALE INVARIANT AT LARGE**

$$\begin{aligned} R'_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R' - \kappa_{\mu;\nu} - \kappa_{\nu;\mu} - 2\kappa_{\mu}\kappa_{\nu} + 2g_{\mu\nu}\kappa^{\alpha}_{;\alpha} - g_{\mu\nu}\kappa^{\alpha}\kappa_{\alpha} &= -8\pi G T_{\mu\nu} - \lambda^{2}\Lambda_{\rm E} g_{\mu\nu} \\ \\ \mathbf{GR} \qquad \mathbf{Additional \ terms} \qquad \kappa_{\nu} &= -\frac{\partial}{\partial x^{\nu}} \ln \lambda \\ \\ \mathbf{This \ is \ what \ remains \ in \ empty \ space} \\ \\ \mathbf{\kappa}_{0} &= -\dot{\lambda}/\lambda \\ \\ \kappa_{\mu;\nu} &= \kappa_{0;0} = \partial_{0}\kappa_{0} = \frac{d\kappa_{0}}{dt} \equiv \dot{\kappa}_{0} \end{aligned}$$

$$3\frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$$
 and  $2\frac{\ddot{\lambda}}{\lambda} - \frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$   
 $\rightarrow$  Scale factor  $\lambda \sim 1/t$   $\dot{\lambda}/\lambda = -\frac{1}{t}$ 

- Bondi remark (Bertotti et al. 1990): *«Einstein's disenchantment with the cosmological constant was partially motivated by a desire to preserve scale invariance of the empty space.»* 

In General Relativity, empty space with  $\Lambda_{\rm E}$  is not scale invariant. <u>The scale invariant framework conciliates</u>  $\Lambda_{\rm E}$  and the scale <u>invariance of the empty space</u>.

## SCALE INVARIANT COSMOLOGICAL MODELS

## The scale invariant field equation with the R-W metric $\rightarrow$ cosmological equations (Canuto et al. 1977)

$$\frac{8\pi G\varrho}{3} = \frac{k}{R^2} + \frac{\dot{R}^2}{R^2} + 2\frac{\dot{\lambda}\dot{R}}{\lambda R} + \frac{\dot{\lambda}^2}{\lambda^2} - \frac{\Lambda_{\rm E}\lambda^2}{3}$$
$$-8\pi Gp = \frac{k}{R^2} + 2\frac{\ddot{R}}{R} + 2\frac{\ddot{\lambda}}{\lambda} + \frac{\dot{R}^2}{R} + 4\frac{\dot{R}\dot{\lambda}}{R\lambda} - \frac{\dot{\lambda}^2}{\lambda^2} - \Lambda_{\rm E}\lambda^2$$

In General Relativity: gravitation couples universally to all energy and momentum, thus we apply

$$3\frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$$

$$2\frac{\ddot{\lambda}}{\lambda} - \frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$$

$$\stackrel{8\pi G\varrho}{3} = \frac{k}{R^2} + \frac{\dot{R}^2}{R^2} + 2\frac{\dot{R}\dot{\lambda}}{R\lambda},$$

$$-8\pi Gp = \frac{k}{R^2} + 2\frac{\ddot{R}}{R} + \frac{\dot{R}^2}{R^2} + 4\frac{\dot{R}\dot{\lambda}}{R\lambda}$$

If  $\lambda = \text{const.} \rightarrow \text{usual equations.}$  The effects that do not depend on time evolution are the same as in G R.

The two equations 
$$\rightarrow$$
  
III  $-\frac{4\pi G}{3}(3p+\varrho) = \frac{\ddot{R}}{R} + \frac{\dot{R}\dot{\lambda}}{R\lambda}$   $-\frac{H}{t}$ 

- The additional term is an acceleration that opposes to gravity.
- Acceleration variable in time. No need of unknown particles.

DENSITIES:  

$$\Omega_{\rm m} + \Omega_{\rm k} + \Omega_{\lambda} = 1$$
 $\Omega_{\lambda} \equiv \frac{2}{Ht}$ 

<u>Major physical difference with  $\Lambda CDM$ </u>:  $\Omega_{\lambda}$  expresses the energydensity from the variations of the scale factor (<u>acceleration</u>)





#### **Geometry:**

$$q_0 = rac{\Omega_{
m m}}{2} - rac{\Omega_{\lambda}}{2}$$
 q = 0 for  $\Omega_{
m m} = \Omega_{\lambda}$   
 $q_0 = rac{1}{2}\Omega_{
m m} - \Omega_{\Lambda}$  For  $\Lambda$ CDM

## <u>NEW INVARIANCE → conservation laws</u>

$$\frac{d(\varrho R^3)}{dR} + 3\,pR^2 + (\varrho + 3\,p)\frac{R^3}{\lambda}\frac{d\lambda}{dR} = 0$$

Integral

$$\varrho \, R^{3(w+1)} \, \lambda^{(3w+1)} = const$$

The curvature of space-time is slightly changing with time. For  $\Omega_m = 0.3$ , the variations of  $\lambda$  are very small. For  $\Omega_m > 1$ ,  $\lambda = \text{const.}$ 

#### <u>Amplitude of the variations of $\lambda$ </u>



A non-zero matter density tends to kills scale invariance.

At  $\Omega_{\rm m}$  = 0.3, the effect is not yet completely killed.





## **OBSERVATIONAL PROPERTIES**

<u>Distances</u> <u>m – z diagram</u>









#### **Consistency of the age of the Universe and H**<sub>0</sub>





## Dynamical tests at past epochs

The expansion rates H(z) are a direct test on R(t). Goes to much higher redshifts z than other tests.

Method of cosmic chronometer (Jimenez & Loeb 2002; Simon et al. 2005; Stern et al. 2010; Melia & Clintock 2015; Moresco et al 2016). modelindependent

$$H(z) = -\frac{1}{1+z} \frac{dz}{dt}$$

From  $R_0/R = 1+z$  and H = dR/(dt R)

dz/dt estimated from a sample of passive galaxies of different z and age estimates.



Observations show some tension with  $\Lambda$ CDM models - Delubac et al. (2015) point a 2.5 sigma difference at z= 2.34

- Sahni et al. (2015); Ding et al. (2015): *«allowing dark energy to evolve seems to be the most plausible approach to this problem»*
- Sola et al. (2015, 2016) find a better agreement with a timeevolving  $\Lambda$  Depending on H<sup>2</sup> and dH/dt. Constancy of  $\Lambda$  ?

**<u>Comparisons</u>** are better performed with H(z)/(z+1)

$$q = -\frac{\ddot{R}R}{\dot{R}^2} = -\frac{dH}{dz}\frac{dz}{dt}\frac{1}{H^2} - 1 = \frac{dH}{dz}\frac{1+z}{H} - 1$$

$$\frac{d}{dz}\left(\frac{H(z)}{1+z}\right) = \frac{1}{1+z}\left(\frac{dH}{dz} - \frac{H(z)}{1+z}\right)$$



Data from Farooq & Ratra (2013)





$$\frac{8\pi G\varrho}{3} = \frac{k}{R^2} + \frac{\dot{R}^2}{R^2} + 2\frac{\dot{R}\dot{\lambda}}{R\lambda},$$
$$-8\pi Gp = \frac{k}{R^2} + 2\frac{\ddot{R}}{R} + \frac{\dot{R}^2}{R^2} + 4\frac{\dot{R}\dot{\lambda}}{R\lambda}$$

$$-\frac{4\pi G}{3}\left(3p+\varrho\right) = \frac{\ddot{R}}{R} + \frac{\dot{R}\dot{\lambda}}{R\lambda}$$

## **SCALE INVARIANCE ACCOUNTS FOR:**

ACCELERATION OF COSMIC EXPANSION Distances m - z diagram  $H_0$  vs. age and  $\Omega_m$ History of expansion H(z)/(z+1)Transition from braking to acceleration, etc...

The tests on scale invariant cosmology are positive Further tests need to be explored

A. Maeder, 2017, ApJ 834, 194

#### **APPLICATION TO EMPTY SPACE**

In GR, the  $g'_{\mu\nu}$  represent de Sitter metric. A particular form is

$$ds'^2 = dt^2 - e^{2kt} [dx^2 + dy^2 + dz^2]$$
  $k^2 = \Lambda_{\rm E}/3$  and  $c = 1$ 

A transformation of coordinates:

 $\tau$  is a new time coordinate

$$\tau = \int e^{\left(-\sqrt{\frac{\Lambda_{\rm E}}{3}}t\right)} dt$$

1

d(-)

De Sitter metric is conformal to Minkowski metric. With above transformations, one has

$$ds'^{2} = e^{\psi(\tau)} [d\tau^{2} - (dx^{2} + dy^{2} + dz^{2})], \quad \text{with} \quad e^{\psi(\tau)} = e^{\left(2\sqrt{\frac{\Lambda_{\rm E}}{3}}t\right)}$$

$$ds^{2} = \lambda^{-2} ds'^{2} = \frac{3\lambda^{-2}}{\Lambda_{\rm E}\tau^{2}} c^{2} d\tau^{2} - (dx^{2} + dy^{2} + dz^{2})]^{e^{\psi(\tau)}} = \frac{1}{\Lambda_{\rm E}\tau^{2}} d\tau^{2} d\tau^{2} + dz^{2} + dz^{2} + dz^{2} d\tau^{2} + dz^{2} + dz^{2}$$

Minkowsik metric is compatible with scale inv. framework

$$3\frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$$
 and  $2\frac{\ddot{\lambda}}{\lambda} - \frac{\dot{\lambda}^2}{\lambda^2} = \lambda^2 \Lambda_{\rm E}$