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Overview

Aim
The lecture is aimed to acquaint the audience with one of the model of the
cold dark matter stemming from the quantum gravitational anomaly of
quantum gravity.

The main problems we are going to address and solve in some way
1 Problem of time in canonical quantum gravity (QG). Unitary inequivalence of

QFTs corresponding to different choices of the time variable.
2 Problem of the explicit dependence of QFT observables on the choice of

vacuum state for quantum fields (it is related to the first problem).
3 Dark matter (DM) phenomenon: at large scales (& 20 kpc), there are

deviations from the GR predictions assuming the known at the present day
set of particles.
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Overview

Outcomes
1 A dynamical solution to the problem of time in QG (and QFT) is proposed.
2 General covariance (the background independence) of QG is restored at the

cost of 4 additional degrees of freedom (the timelike vector field).
3 The dynamics of this field are described by the Euler equations for relativistic

perfect isentropic fluid (the “flow of time”).
4 In the limit of a weak gravitational field, the state of this fluid is described by

a polytropic equation with two universal constants: the polytropic constant
and the natural polytropic index. Therefore, this fluid behaves as a cold DM
in this regime.

5 If one identifies that fluid with a considerable part of the DM, the value of the
polytropic constant can be estimated using the astrophysical data for a local
DM distribution. This value agrees with the CDM interpretation of this fluid.

6 The quantum theory of this fluid is constructed using the background field
method. So, the complete quantization of gravity and matter fields is
achieved, though it results in the non-renormalizable model.
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Overview

Remark
The relativistic fluid referred above arises with necessity in QFT with gravity
provided the basic principles of QFT (the locality and unitarity) and GR hold
and the general covariance (the background independence) remains intact on
the quantum level, i.e., the general covariance is a fundamental symmetry of
Nature.
This fluid not only gives a (probable) solution to the DM problem, but also
provides a natural solution to the problem of time in QG. Anyway, the latter
problem has to be solved, whether unknown dark matter particles exist or not.
Such a solution to the problem of time was expected long ago (under the
name of reference fluid), but only recently was it realized that this solution
follows with necessity from the basic principles of QFT. In this way, the
equation of state of this “reference” fluid was found.
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Problem of time in canonical quantum gravity

There is a huge literature devoted to this problem. I recommend

References:
1 C.J. Isham, Canonical quantum gravity and the problem of time, arXiv:gr-qc/9210011.
2 B.S. DeWitt, The quantization of geometry, in L. Witten, ed., Gravitation: An Introduction to

Current Research, Wiley, New York (1962).
3 J.D. Brown and K.V. Kuchař, Dust as a standard of space and time in canonical quantum gravity,

Phys. Rev. D 51, 5600 (1995).
4 A. Connes and C. Rovelli, Von Neumann algebra automorphisms and time-thermodynamics relation

in general covariant quantum theories, Class. Quantum Grav. 11, 2899 (1994).

The essence of the problem:
The unitary evolution of any QFT is governed by the Schrödinger type equation

i~∂tΨ = ĤQFTΨ, (1)

but, in the formally quantized GR, we have the Wheeler-DeWitt (WD) equation

− ~2κ2Gabcd(x)
δ2Ψ

δgab(x)gcd(x)
− κ−2|g|1/2(x)R(x)Ψ = 0, (2)

Gabcd := 1
2
|g|−1/2(x)(gac(x)gbd(x) + gbc(x)gad(x)− gab(x)gcd(x)) is the DeWitt metric.

gab is the spatial part of the spacetime metric gµν , |g| := det gab.
R is the scalar curvature corresponding to gab.
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Problem of time in canonical quantum gravity

Issues
1 It is not clear how to transform uniquely the WD equation to the form (1).

Different time choices leads to different (unitary inequivalent) equations (1).
Classically, such a transform is a canonical one, but in QFT it can be (and, in fact,
is) a non-unitary transform.

2 If one represents the QG evolution in the form (1), then it is not clear whether this
evolution respect the general covariance symmetry. Eq. (1) is in a (3 + 1) form.

3 The (generalized) algebra of gauge constraints may possess anomalies due to the
ordering problems.

On the classical side (one forgets about the ordering issues)
1 One can convert the Hamiltonian constraint (the classical analog of (2)) to the

form of standard Hamilton equations with respect to some (arbitrary) time variable
by a canonical transform. The classical evolutions corresponding to different time
choices are related by the canonical transformations.

2 The general covariance is preserved by the Hamiltonian mechanics since it is just
another representation of the classical Lagrangian equations of motion that are
explicitly generally covariant.
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Problem of time in canonical quantum gravity

Possible solutions
1 Introduce time before quantization. The classical constraints are solved introducing

a certain time variable and then quantized:
a Internal time. The time is a functional of canonical variables of the theory, e.g., the

mean extrinsic curvature time.
b Reference fluids. The time is identified with a parameter on the integral curves of the

4-velocity of a relativistic fluid. The nature and properties of this fluid are obscure.
Several proposals were given: the Gaussian fluid (the fluid providing the Gauss gauge
condition on the metric g00 = 1, g0a = 0), the parameterized forms of the harmonic
and unimodular gauges (det gab = −1), the elastic medium, the dust.

2 Introduce time after quantization. The time variable is somehow defined using the
solution Ψ[g] of the WD equation so that to provide the positive definiteness of
probability:

a Klein-Gordon interpretation of the WD equation.
b Third quantization.
c Semiclassical approximation based on the Hamilton-Jacobi equation for the WD

equation.

3 There is no distinguished time variable at all:
a Conditional probability approach.
b Consistent histories approach.
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Problem of time in canonical quantum gravity

Shortcomings of all the solutions proposed
All the schemes referred above does not take seriously into account the non-commutativity
of operators in QFT. At best, some of these schemes are realized in a minisuperspace. The
representation of the field operators in a certain Fock space is entirely disregarded.

Eventually, it is not clear how to implement these schemes to calculate any observable (the
averages or amplitudes) in QFT.

Additional shortcomings
1 Approach 1a). It is hard to find such an intrinsic variable that provides a timelike direction of time

for the metric of a general form. It is not clear whether the general covariance holds in this case or
not, and certain plausible arguments can be adduced that it does not.

2 Approach 1b). It is not clear what the “equation of state” should be used for this fluid. Besides, the
general covariance is lost in terms of the initial set of fields.

Note
Approach 1b) is the closest one to that we evolve. The difference consists in that we prove that this
fluid not only can be introduced, but must be introduced. Furthermore, we obtain a certain class
equations of state for this fluid and give a concrete scheme how to calculated the observables. The
general covariance is restored by quantizing the reference fluid and including it into the set of
dynamical fields of the theory.
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Problem of time in canonical quantum gravity

Additional shortcomings (continuation)
3 Approach 2a). It encounters all the problems with probability interpretation of the

usual Klein-Gordon equation on a non-stationary background.
4 Approach 2b). The physical interpretation and a rigorous mathematical formulation

are unclear.
5 Approach 2c). It is not clear how to work with the solutions to the WD equation

that are not quasiclassical Ψ 6= AeiS , or given by a superposition of the
quasiclassical solutions.

6 Approach 3a). It represents a significant departure from the conventional quantum
theory. The rigorous mathematical apparatus for applications in QG is not
developed and apparently cannot be developed. Besides, it needs an internal time
(see point 1a)).

7 Approach 3b). It also represents a modification of the rules of conventional
quantum theory. The rigorous mathematical formalism is not developed and, at the
present moment, the approach is nothing but a good intention.
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Effective action (EA)

Recommended literature on the EA and background field method
1 B.S. DeWitt, The Global Approach to Quantum Field Theory Vol. 1,2 (Clarendon, Oxford, 2003).
2 I.L. Buchbinder, S.D. Odintsov, and I.L. Shapiro, Effective Action in Quantum Gravity (IOP,

Bristol, 1992).
3 S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (CUP, Cambridge,

1996).

Generating functional of n-point Green functions

Z(K) = eiW (K) = 〈out|Texp
{
i

∫ tout

tin

dτK(τ)φ(τ)
}
|in〉 =

= 〈out, tout|Texp
{
− i
∫ tout

tin

dτ [H(τ, φ)−K(τ)φ]
}
|in, tin〉 =

=

∞∑
n=0

∫
dτ1 . . . dτn

δnZ

δK(τ1) · · · δK(τn)

∣∣∣
K=0

K(τ1) · · ·K(τn)

n!
≡
∞∑
n=0

Zn
Kn

n!
,

(3)

φ is the set of fields, K are the sources, Zn are the n-point Green functions, Wn are the connected ones,
H is the Hamiltonian of the theory,
|in〉 and |out〉 are the in- and out-vacua in the Heisenberg representation,
|in, tin〉 and |out, tout〉 are the same vacua in the Schrödinger representation.
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Effective action (EA)

Generating functional of the one-particle irreducible (1PI) n-point Green functions

Γ(φ̄) :=
(
W (K)−Kφ̄

)
K=−Γ1(φ̄)

, K = −Γ1(φ̄), Γ2 = −W−1
2 . (4)

Γ(φ̄) is the Legendre transform of the generating functional of the connected n-point Green functions.

Some 1PI and non 1PI contributions to Γ2 in φ3 theory

1PI: , , non 1PI: , . (5)

Remark
If one knows the EA functional, one knows all the Green functions and,
consequently, the whole QFT.

Wn is a tree consisting of W2 = −Γ−1
2 and Γk≤n. Hence, the divergencies do not

appear at the stage of reconstruction of Wn from Γk≤n.

All the divergencies and the counterterms to them can be analyzed on the level of
the EA.
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Background field method

Background field method

eiΓ(φ̄) = 〈out|Texp
[
− i(φ̂− φ̄)Γ1|in〉 = 〈õut|Texp(−iφ̂Γ1)|ĩn〉 = eiΓφ̄[0]. (6)

Γ1 ≡ δΓ[φ̄]/δφ̄ = Γφ̄[φ̃]/δφ̃|φ̃=0, Γφ̄[0] is the vacuum effective action on the background φ̄.

In the second equality the unitary transform φ̂→ φ̂+ φ̄ has been performed.

Note
In order to find the EA, it is sufficient to calculate the vacuum EA on an arbitrary
fixed background φ̄.

Some vacuum 1PI in φ3 theory

, , . (7)

Here the bold lines and vertices are the propagators and vertices on the background φ̄.

If one expands the propagators and vertices in (7) in a functional Taylor series in φ̄, one
obtains, in particular, the 1PI diagrams (5).
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Background field method

Gauge transformations

δεφ
µ = εαRµα(φ), δεS(φ) = εαRµα

δS

δφµ
≡ 0,

YM: δεAaµ = ∂µε
a + igfabcε

bAcµ, GR: δεgµ = Lεgµν = ∇(µεν).

(8)

S(φ) is the classical action, Rµα(φ) are the generators of gauge transformations.
fabc are the structure constants of the Lie algebra.

Background field gauge: φµ =: φ̄µ + φ̃µ, φ̄µ is the background field.

δε(φ̄
µ + φ̃µ) = δεφ̃

µ = εαRµα[φ̄+ φ̃], linear gauge:χα = Pαµ (φ̄)φ̃µ. (9)

If Rµα[φ] = tµα + rµανφ
ν and Rµα are the generators of the Lie algebra (this holds for YM

and GR, but not for SUGRA) then one may also realize (9) as
δεφ̄

µ = εαRµα(φ̄), δεφ̃
µ = εαφ̃ν∂νR

µ
α, i.e., LεαRα(φ̄)φ̃

µ = 0. (10)

The field φ̃µ is covariantly transformed under the background gauge transformations.
If also the gauge fixing operator Pαµ (φ̄) is chosen to transform covariantly under (10), e.g.,

YM: χα = ∇̄µÃaµ = ∂µÃaµ + igfabcĀ
bµÃcµ, GR: χα = ∇̄σ g̃µσ − 1

2
ḡλσ∇̄µg̃λσ , (11)

then the construction (6) for the EA with the Faddeev-Popov recipe for the gauge fixing is
explicitly invariant under the background gauge transformations

δεΓ(φ̄) = εαRµα(φ̄)
δΓ(φ̄)

δφ̄µ
≡ 0 (an infinite set of the Ward identities). (12)
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Symmetries of the EA and anomalies

Recommended literature on the quantum anomalies
1 S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (CUP, Cambridge,

1996).
2 M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, New

York, 1995).

Any symmetry transform

δεΓ(φ̄) = εαRµα(φ̄)
δΓ(φ̄)

δφ̄µ
≡ 0. (13)

Rµα(φ) are the (global or local) symmetry generators.
Quantum anomaly

δεS(φ) ≡ 0, but δεΓ(φ̄) 6≡ 0. (14)

Remark
The root of the anomalies is the non-commutativity of QFT operators which is also
accompanied by the divergencies.

The quantum anomalies of the global symmetries are admissible, i.e., QFT is consistent
even when these anomalies take place.

The quantum anomalies of the local symmetries are inadmissible and should be avoided in
some way. Otherwise, QFT is inconsistent.
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Symmetries of the EA and anomalies

Perturbative chiral anomalies: classically, ∂µj5µ = 0, but

∂µ〈j5µ(x1)jν(x2)jρ(x3)〉 ∼ ∂µ
( μ

+

μ )
6= 0. (15)

Chiral anomalies
1 In QFTs with chiral fermions, the conservation of one of the currents entering the triangle diagram

is violated by the quantum corrections provided the Lorentz invariance holds (S. Adler, 1969; J.S.
Bell, R. Jackiw, 1969).

2 This statement is also valid when one of the currents (apart from the chiral one) is replaced by the
energy-momentum tensor (R. Delbourgo, A. Salam, 1972).

3 In QFTs with chiral fermions in the spacetime dimension d = 4k + 2, k = 0, 1, . . ., there is a purely
gravitational anomaly when all the currents in the one-loop diagram are the energy-momentum
tensors (L. Alvarez-Gaumé, E. Witten, 1984). So, the general covariance is violated in these theories
whenever the numerical coefficient at this anomaly is not zero. The cancelation may happen due to
the contributions to this anomaly made by the fields with different spins.

4 In the standard model (SM), the chiral symmetry is the gauge one and so the consistency requires
that all the chiral anomalies should be canceled. This occurs when

tr(γ
5
λ
a{λb, λc}) = 0 (chiral currents), tr(γ

5
λ
a
) = 0 (ch. curr. + the e.-m. tens.). (16)

γ5 = +1 is for the right fermions and γ5 = −1 is for the left fermions.
λa are the generators of the gauge symmetry group in the corresponding representation.

5 The spectrum of particles in the SM is such that all the chiral gauge anomalies cancel.
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QFT on a curved background

Recommended literature on QFT on a curved background
1 A.A. Grib, S.G. Mamaev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields

(Friedmann Lab. Publ., St. Petersburg, 1994) [Russian eds. 1980, 1988].
2 B.S. DeWitt, The Global Approach to Quantum Field Theory Vol. 1,2 (Clarendon, Oxford, 2003).
3 B.S. DeWitt, Quantum field theory in curved spacetime, Phys. Rep. 19, 295 (1975).
4 V.P. Frolov and I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments

(Springer, New York, 1998).
5 N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space (CUP, Cambridge, 1982).

Covariant formulation of QG
QFT on a curved background is constructed using the standard background field
method that we have already considered. Therefore, it allows one to find the EA by
the explicit calculations not only for the matter fields but also for the gravitons. In
fact, this is QG in the so-called covariant formulation.

This approach, when properly applied, tacitly implies all the basic principles of QFT
and GR and, in that sense, is canonical.
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QFT on a curved background

Problems of the covariant approach
1 QG is non-renormalizable and so possesses a less predictive power than, say, the SM.
2 The EA (and observables) depends on the choice of the Hamiltonian of quantum fields, the

corresponding vacuum state, and the creation-annihilation operators for particles. This is
the reincarnation of the problem of time in canonical QG. Contrary to the Minkowski
spacetime, there is no privileged vacuum state for a general background metric that does
not have the Killing vectors.

S[φ] =

∫
d

4
x
√
|g|L ⇒ π :=

√
|g|
∂L
∂φ̇

, φ̇ := ξ
µ
∂µφ ⇒ H[ξ] =

∫
dx(πφ̇−

√
|g|L). (17)

The classical evolutions generated by the different Hamiltonians H[ξ] are related by the
canonical transformations, but QFTs corresponding to the different Hamiltonians H[ξ] can
be unitary inequivalent.

Problems of the covariant approach (continuation)
3 For a non-stationary background metric, the notion of a particle is ambiguous. The

definitions of particles in the reference frames related by a nonlinear transform affecting the
time variable differ and, in many cases, are not related by a unitary transform (S.A. Fulling,
1973; W.G. Unruh, 1976). This problem is related to the previous one.
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QFT on a curved background

Problems of the covariant approach (continuation)
4 As we saw, formally, the background field method gives√

|g|Tµν := −2δΓ/δgµν , ∇µTµν ≡ 0 (the Ward identities), (18)

but since the EA depends on the external structure (the time-like vector field ξµ) defining
the Hamiltonian and the vacuum state, the general covariance (the background
independence) and, hence, the Ward identities are violated by quantum corrections (S.
Hawking, 1970; A.A. Grib, B.A. Levitskii, V.M. Mostepanenko, 1974). That is, the
quantum gravitational anomaly arises. For special background metrics (stationary metrics,
FLRW, (A)dS), there is a distinguished “time direction” that allows one to define the
natural Hamiltonian, the vacuum state, etc. In that case, the first Ward identity,

∇µTµν = 0 (on the solutions to the equations of motion), (19)

is preserved (V.P. Frolov, A.I. Zel’nikov, 1987), but the higher Ward identities, which are
obtained by variation of (18) with respect to the metric, are still broken. The prove of the
fact that the anomaly of this type does exist and cannot be canceled by the counterterms
to the EA encounters severe technical issues that were solved only recently (I.S.
Kalinichenko, P.O. Kazinski, 2014).

5 The explicit calculations of the vacuum energy-momentum tensor on stationary metric
backgrounds show that it contains not only the covariant combinations of the metric and
its derivatives (the curvatures), but also the structures involving the Killing vector defining
the Hamiltonian (D.N. Page, 1982; K.W. Howard, 1984; M.R. Brown, A.C. Ottewill, D.N.
Page, 1986; in the explicit form it was pointed out in V.P. Frolov, A.I. Zel’nikov, 1987).
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QFT on a curved background

Résumé
Virtually, the covariant approach to QG possesses two main problems 1 and 2.
Issues 3,4, and 5 are the consequences of problem 2.

Possible solutions to problem 2
1 The dependence on the choice of vacuum state is essentially non-perturbative (keep in mind

the example of a perturbation theory for a quantum particle near the false vacuum) and, at
any finite order of the perturbation theory, the dependence of EA on the vector field ξµ can
be eliminated by the counterterms. So, one may try to solve the problem just by defining
QG as a perturbative series over the Minkowski metric (the standard derivative expansion in
the Riemann normal coordinates is of that type solution). However, the perturbative series
is asymptotic and the neglect of the non-perturbative terms leads eventually to non-unitary
dynamics. Moreover, in that case, the gravitational field entering the one-particle quantum
equations (Klein-Gordon, Dirac, Maxwell) must be treated only perturbatively, too. This
approach represents a significant departure from the conventional quantum theory.

2 Continue analytically the theory to the Riemann spacetime (with the positive definite
metric). Then, imposing zero boundary conditions at spacetime infinity, one obtains a
unique propagator and Euclidean QFT. However, the result of this analytical continuation
depends on a choice of the time variable which becomes complex. For non-static
spacetimes, the relation between the initial QFT and the Euclidean QFT so constructed is
unclear.
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Quantum gravitational anomaly

Possible solutions to problem 2 (continuation)
3 Introduce the preferred vector field ξµ by hand from some physical (symmetrical)

reasonings. This is the standard solution used in the literature for the special background
metrics (Schwarzschild, Kerr, FLRW...). For a general metric, such an approach was
proposed and developed in (A.A. Grib, S.G. Mamaev, 1969). However, as we have
discussed, this approach violates the general covariance Ward identities, and the resulting
QFT is inconsistent. The quantum gravitational anomaly arises.

Quantum gravitational anomaly
The EA contains the finite terms of the form (I.S. Kalinichenko, P.O. Kazinski, 2014)

Γ ∼ Re e−am/mg . (20)

m is the mass of a particle, say, the electron mass. a is a certain complex constant.
mg is a scalar combination of the vector field ξµ, the metric, and their derivatives.
mg cannot be expressed in terms of the metric alone.

For the usual gravitational fields, these terms are very tiny ∼ 10−20Λc, Λc is the
cosmological constant, but the fact of their existence is of paramount importance.

These contributions cannot be canceled by the counterterms (e.g., N.N. Bogolyubov, D.V.
Shirkov, 1980; J.C. Collins, 1984) as long as they are non-polynomial in momenta.

The existence of such terms was expected long ago (e.g., A.I. Zel’nikov, 1984; S.P.
Gavrilov, D.M. Gitman, 1996), but was not proved until recently.

P.O. Kazinski (TSU) Quantum gravitational anomaly as a dark... VIA, 06 March, 2015 21 / 33



Quantum gravitational anomaly

Possible solution to the gravitational anomaly problem
1 The quantum gravitational anomaly cannot be canceled by the contributions of different

types of particles in the SM due to its non-trivial dependence on the mass of a particle.
However, if we make the vector field dynamical, include it into the set of fields of the
theory, and quantize, then the gravitational anomaly is canceled out and the general
covariance is restored. As a result, the additional degrees of freedom – the quantum vector
field ξµ – appear in the model.

2 Note that this vector field is not simply another one quantum field of the model, but its
average must by used to define the Hamiltonian according to the approach 3 above.

Dynamics of the vector field ξµ

1 The quantum dynamics of the vector field ξµ is dictated by the Ward identities fulfillment
(P.O. Kazinski, 2011)

∇νTµν = LξΓµ +∇νξνΓµ = 0,
√
|g|Tµν := −2δΓ/δgµν ,

√
|g|Γµ := −δΓ/δξµ.

2 The evolution of ξµ obeys the Euler equations for a relativistic perfect isentropic fluid

LξΓµ +∇νξνΓµ = 0 ⇔ ∇µ(ξµw) = 0, ξµ∇[µ(Γν]/w) = Lξ(Γν/w) = 0. (21)

w := ξµΓµ is the enthalpy density. β :=
√
ξ2 is the reciprocal temperature.

σ := βw is the entropy density. The total entropy is conserved.
The equation of state of the fluid is determined by the EA.
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Fock-Taub formalism for relativistic hydrodynamics

The Fock-Taub action for a perfect isentropic fluid

S[x(κ)] =

∫
N

dκ
√
|h|p[ρa, hab]. (22)

κ = {τ, σi}, i = 1, 3.
xµ(κ), µ = 0, 3, is a map of the 4-dimensional manifold N to a 4-dimensional spacetime M .
ρa(κ), a = 0, 3, is a vector field on N such that ρahabρb > 0. ρa is not a dynamical field.
hab := ∂ax

µ∂bx
νgµν is the induced metric on N .

gµν is the spacetime metric.
p is some scalar constructed in terms of ρa, hab, and their derivatives. It is the fluid pressure.

Equations of motion

δS

δxµ(κ)
=
√
|h|∇λTλµ = 0,

√
|g|Tµν = −2

δS

δgµν
. (23)

General features
The Fock-Taub formalism is based on the so-called relativistic Lagrangian
representation of a fluid.

In our case, ξµ = ρa∂ax
µ, and the pressure p is the classical part of the EA

involving the vector field ξµ.

Equations of motion (23) reproduces the ones (21) following from the Ward identity.
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Normalization conditions on the EA

Since the diagrams defining the EA contain divergencies, some natural normalization
conditions should be imposed on it to fix the renormalization ambiguity.

The normalization conditions are dictated by the symmetry requirements and the
experimental data. The typical examples of the normalization conditions are the
physical mass and charge normalizations in QED.

It is important at this stage that the general covariance holds only if the vector field
ξµ is included into the EA.

Natural normalization conditions
1 The Lorentz-invariance. For the flat spacetime, where gµν = ηµν , the dependence

of the EA on the field ξµ should disappear;
2 The compliance with the Einstein equations. In the flat spacetime limit, the

vacuum expectation value of the energy-momentum tensor operator of the matter
fields and the field ξµ must be zero;

3 Minimality. The initial classical action of the field ξµ contains only those structures
that arise as divergencies in calculating the quantum corrections using the physical
regularization (e.g., J. Collins, A. Perez, D. Sudarsky, L. Urrutia, H. Vucetich,
2004) by the energy cutoff.
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Fluid pressure

General form of the pressure without higher derivatives as follows from condition 3

p(ρ2) =
2∑
k=0

∞∑
l=0

aklt
2k lnl t2. (24)

akl are the curvature independent gauge invariant scalars of mass dimension 4.
ta := ρa/ρ

2.

The vector field ρa is normalized in such a way that ρ2 = 1 in the flat spacetime.
The logarithmic corrections describe the so-called anomalous scaling and are assumed to be
small. In the weak field limit, ρ2 ≈ 1 that additionally diminishes these corrections.
akl depend on the Higgs field, but this will not be relevant for our discussion.

Energy-momentum tensor

T ab = −2p′ρaρb − phab = wuaub − phab. (25)

The prime denotes the derivative with respect to ρ2.
ua := ρa/

√
ρ2.

Normalization conditions as follows from conditions 1 and 2

p(ρ2)
∣∣
ρ2=1

= 0, p′(ρ2)
∣∣
ρ2=1

= 0. (26)

The simplest model

p = − b
2

(t2 − 1)2. (27)

b is a negative constant of mass dimension 4.
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Quantization of relativistic hydrodynamics

General features
The simplest mean to quantize relativistic hydrodynamics is to use the background
field method which states that the knowledge of quantum evolution of small
fluctuations over an arbitrary background is sufficient to reconstruct the whole
quantum dynamics.

The Fock-Taub action is highly nonlinear and so the corresponding QFT is
perturbatively non-renormalizable. It should be treated in the effective field theories
framework (S. Endlich, A. Nicolis, R. Rattazzi, J. Wang, 2011).

The perturbative non-renormalizability of quantum relativistic hydrodynamics
reduces its predictive power. Nevertheless, it can be used to derive certain
predictions in QG.

In this way, the self-consistent model of QG is constructed though it is
non-renormalizable.

One of the predictions of this model is the existence of a relativistic fluid with the
properties resembling the properties of DM.
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Dark matter (briefly)

General references on the DM and its explanation
1 P. Schneider, Extragalactic Astronomy and Cosmology (Springer, Heidelberg, 2015).
2 D.S. Gorbunov and V.A. Rubakov, Introduction to the Theory of the Early Universe Vol. 1,2 (World

Scientific, London, 2011).
3 S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F (R) theory to

Lorentz non-invariant models, Phys. Rep. 505, 59 (2011).
4 B. Famaey and S.S. McGaugh, Modified Newtonian dynamics (MOND): Observational

phenomenology and relativistic extensions, Living Rev. Relativity 15, 10 (2012).

Evidences for the DM
1 CMB anisotropy spectrum. To reproduce correctly the CMB anisotropy

spectrum, one needs the CDM consisting of the unknown particles.
2 Structure formation of the Universe. The density fluctuations grow too slowly

without the DM and so we would not have the observed large scale structure
at the present moment.
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Dark matter (briefly)

Evidences for the DM (continuation)
3 Gravitational lensing. According to GR, the light rays are bent by a massive object

at the angles depending on the mass of the object. The mass of galaxy clusters
measured by means of this effect is much larger than the mass of the luminous
matter in these clusters.

4 X-ray observations of a hot gas in clusters. X-ray observations of a hot gas in
clusters provide an alternative way to estimate the mass of a cluster. The mass of
clusters estimated by this means is larger than that of the ordinary barionic matter
by a factor of 5.

5 Virial theorem. The virial theorem applied to the galaxy clusters implies that their
mass is mainly due to the DM. The values of masses of galaxy clusters obtained by
methods 3, 4, 5 agree by the order of magnitude.

6 Observations of the colliding clusters. The observations of the colliding galaxy
clusters using the gravitational lensing technique clearly show that the DM
distribution does not always follow the luminous matter distribution and behaves as
(almost) collisionless gas of particles. This, in particular, implies that the DM
possesses its own degrees of freedom.

7 Star dynamics in galaxies. The galaxy rotation curves and the star dynamics in
galaxies evidence for the existence of the DM.
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Dark matter (briefly)

Some possible explanation of the DM phenomenon
1 The common point of view is that the DM is a pressureless gas of weakly interacting

massive particles (WIMPs).
2 The DM is a manifestation of deviations of the gravitational laws from that dictated by

General Relativity (f(R) models and the theories with higher derivatives).
3 Modified Newton dynamics (MOND). This approach postulates a modification of dynamics

at small accelerations or introduces the additional tensor fields into the model.

Shortcomings
1 Approach 1. Due to the pressureless property of the CDM, the DM density profile in galaxies

possesses a cusp at the galaxy center which is not observed in the astrophysical data. WIMPs are
not detected yet and the natural candidates for them are absent at the present moment. The
predictions of the (natural) MSSM providing several candidates for WIMPs were not confirmed at
LHC. Besides, SUSY introduces many other particles and, in that sense, this solution to the DM
problem is not minimal.

2 Approach 2. The viable variants of these theories are equivalent to the scalar-tensor theories of
gravity. They can reproduce the correct cosmological evolution, but cannot be responsible for the
DM on the scales of galaxy clusters.

3 Approach 3. In its orthodox form, MOND forbids the DM to have its own dynamics. Besides, this
model violates the Lorentz-invariance and the general covariance, or involves a huge number of
additional degrees of freedom (TeVeS). Even TeVeS cannot explain the dynamics of DM in the
colliding clusters. The consistency of its quantum version is unclear.
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CDM from the quantum gravitational anomaly

Normalization conditions 1, 2 (26) imply in the limit of weak slowly varying gravitational
fields

w ≈ ε ≈ σ ∼ x, p ∼ x2, x := 1− ρ2 = 1− ξ2 � 1. (28)
ε = w − p is the energy density of a fluid.

One can adjust the constants in p in such a way that the first n derivatives of p with
respect to ρ2 at ρ2 = 1 vanish

ε ≈ w = −2β2p′ ≈ 2Axn, p ≈ A xn+1

n+ 1
, n ∈ N,

p =
ε1+1/n

2(n+ 1)(2A)1/n
=: Kε1+1/n =

εx

2(n+ 1)
.

(29)

A is a positive constant with the mass dimension 4.

Polytrope
(29) is the equation of a polytrope with the index n and the polytropic constant K.
The constants n and K are universal.

If one identifies Λdmx/[2(n+ 1)] with kT , the equation of state (29) coincides with
the equation of state for a perfect gas.

The limit n→∞ corresponds to the isothermal polytropic process.
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Parameters of the polytropic equation of state

The constant A can be estimated from the local DM observations (J.I. Read, 2014). In
this case, one sets x ≈ −2ϕ� and takes

|ϕ�| ∼ 10−6, ε� ∼ 0.5GeV/cm3,

A =
ε�

2|2ϕ�|n
.

(30)

Some values of A for several different n
A1 ≈ 1.25× 105 GeV/cm3 ≈ (1 eV)4,

A4 ≈ 1.6× 1022 GeV/cm3 ≈ (19 keV)4, cm−3 = 7.7× 10−42 GeV3

A5 ≈ 7.8× 1027 GeV/cm3 ≈ (0.5MeV)4,

A9 ≈ 4.9× 1050 GeV/cm3 ≈ (248GeV)4.

(31)

Polytropic index
To avoid the cusp problem of the standard DM dust model, the polytropic fluids
were already considered, suggesting that

3.5 ≤ n ≤ 5 (C.J. Saxton, I. Ferreras, 2010; C.J. Saxton, 2013; ...),

n ≈ 5 (L.G. Cabral-Rosetti, et al., 2004; J. Calvo, et al., 2009),

n = 3 (A. Balaguera-Antolínez, D.F. Mota, M. Nowakowski, 2007),

n = 1 (P.J.E. Peebles, 2000; J. Goodman, 2000; T. Harko, G. Mocanu, 2012; ...).
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Cosmological solution

Let us check that the polytropic fluid does provide a model of the CDM.

Assume that the reference fluid is at rest on average and its density is homogeneous

ξµ = (ξ0(t), 0, 0, 0) and ds2 = dt2 − a2(t)γijdx
idxj ,

εdm = Ωdmεc ∼ 10−6 GeV/cm3, εc = 0.53× 10−5 GeV/cm3,
(32)

ds2 is the interval squared of the FLRW metric. εc is the critical energy density.
Ωdm = 0.20 is the fraction of the DM in the energy content of the present Universe.

Therefore, we can consider that the fluid is in a weak field regime ξ2 ≈ 1 and obeys the
polytropic equation of state (29).

Solution to the equation of covariant divergenceless of the energy-momentum tensor

ε = εdm

(a0

a

)3{
1 +Kε

1/n
dm

[
1−

(a0

a

)3/n]}−n
≈ 2Axn, (33)

a0 is the present-day scale factor. Solution (33) corresponds to the CDM so long as Kε1/ndm � 1.
From (29) and (30), one infers

K =
(2A)−1/n

2(n+ 1)
=
|ϕ�|ε−1/n

�
n+ 1

, Kε
1/n
dm =

|ϕ�|
n+ 1

( εdm
ε�

)1/n
. (34)

From (30), (32), it is evident that Kε1/ndm � 10−6 for any natural number n.

The cosmological value of ξ2(t) as follows from (33)

x ≈
( εdm

2A

)1/n(a0

a

)3/n
= 2(n+ 1)Kε

1/n
dm

(a0

a

)3/n
= 2|ϕ�|

( εdm
ε�

)1/n(a0

a

)3/n
. (35)
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Conclusion

Summary
1 The relativistic fluid stemming from the quantum gravitational anomaly can

be responsible for a considerable part of the CDM.
2 In the weak filed limit, its equation of state is described by a polytrope

characterized by the two universal constants.
3 A virtual lack of reliable experimental data leaves a freedom in selection of

the particular values of these constants.
4 The inclusion of this fluid into the model and its subsequent quantization

provide a self-consistent model of QG (though non-renormalizable).
5 The fluid described by the field ξµ arises with necessity in QG provided the

basic principles of QFT and GR remains intact on the quantum level, i.e., the
general covariance is a fundamental symmetry of Nature.

6 The hypothesis about the identification of this fluid with a considerable part
of the DM can be falsified (see point 2).
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