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Introduction

Crash-course in differential geometry:
Spacetime = 4-dimensional smooth manifold
Coframe ϑα = eαi dx

i; dual frame field eα = eiα∂i (observer)
Metric g : gαβ = g(eα, eβ) (lengths and angles)

ds2 = gαβϑ
α ⊗ ϑβ

Linear connection: 1-form Γiα
β (parallel transport)

δ||V
α = −δxiΓiβ

αV β

Notation: α, β, · · · = 0, 1, 2, 3 anholonomic components;
i, j, · · · = 0, 1, 2, 3 coordinate components
Lorentzian signature of the metric is (+1,−1,−1,−1)

Local coordinates on manifold: xi = (t, xa)
t time and spatial coordinates xa, a = 1, 2, 3
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Spacetime metric and linear connection
are a priori independent structures

Riemannian constraints:

Digαβ = 0 (metricity)

Die
α
j −Dje

α
i = 0 (no torsion)

Then connection is expressed in terms of metric (coframe):

Γiα
β = Γ̃iα

β = eβk

{
i
k
j

}
ejα + eβk∂ie

k
α

{
i
k
j

}
= 1

2g
kl (∂igjl + ∂jgil − ∂lgij) Christoffel symbols.

Einstein’s GR is based on the Riemannian geometry.

Why torsion? Physics is an experimental science

Test foundations: Lorentz symmetry violation?

Probe spacetime: which geometry?
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Poincaré gauge approach in gravity

Dynamics of test bodies in gauge gravity
Quantum spin dynamics

Conclusions and Outlook

Geometric structures in gravity
Short history of gauge gravity approach

“...The question whether this
continuum has a Euclidean,
Riemannian, or any other
structure is a question of
physics proper which must be
answered by experience, and
not a question of a conven-
tion to be chosen on grounds
of mere expediency.”

A. Einstein, Geometrie
und Erfahrung, Sitzungsber.
preuss. Akad. Wiss. 1 (1921)
123-130.

.
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Poincaré gauge gravity: history and reviews
Timeline: Weyl (1929,1950), Utiyama (1956), Kibble
(1961), Sciama (1962), supergravity (mid-70s), . . .
F.W. Hehl et al, Rev. Mod. Phys. 48 (1976) 393
A. Trautman, in: One hundred years after the birth of
A. Einstein, (NY, Plenum, 1980) vol. 1, p. 287
D. Ivanenko, G. Sardanashvily, Phys. Rep. 94 (1983) 1
F.W. Hehl et al, Phys. Rep. 258 (1995) 1
I.L. Shapiro, Phys. Rep. 357 (2002) 113
M.Blagojević, Gravitation and Gauge Symmetries (2002)
Y.N. Obukhov, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95
A. Trautman, in: Encyclopedia of Mathematical Physics,
(Elsevier, Oxford, 2006) vol. 2, p. 189
M.Blagojević, F.W.Hehl, Gauge Theories of Gravitation.
A Reader with Commentaries (IC Press, London 2013)
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The analogy between charge and spin (Sciama)
Yang-Mills theory for internal symmetry group G with N
parameters εI . Invariance of action S =

∫
L(Ψ, ∂iΨ) under

global transformations δΨ = εIρIΨ (ρI ∈ G) =⇒ current J iI
Noether theorem =⇒ ∂iJ

i
I = 0 I = 1, . . . , N

Local symmetry εI(x) ⇒ gauge field AIi ⇒ Lagrangian

L(Ψ, ∂iΨ) =⇒ L(Ψ,DiΨ)

Covariant derivative

DiΨ = ∂iΨ−AIi ρIΨ

Potential δAIi = Diε
I = ∂iε

I + f IJKε
JAKi

with structure constants f IJK of Lie algebra G

=⇒ covariant conservation law DiJ
i
I = 0
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Gauge principle:
conserved current J from symmetry group (Noether)
Local symmetry =⇒ gauge potential A: ∂iΨ −→ DiΨ
Interaction J ∧A = J iI A

I
i
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Geometrically, AIi is a connection in a fibre bundle
with structure group G over spacetime manifold
Field strength is a curvature in this bundle

Fij
I = ∂iA

I
j − ∂jA

I
i − f IJKA

J
i A

K
j

Yang-Mills field equations generalize Maxwell’s theory

DjH
ij
I = J iI , DiFjk

I +DjFki
I +DkFij

I = 0

Constitutive relation H = H(F ): H ij
I = −∂V (F )/∂Fij

I

Gravity: Poincaré symmetry group G=T4⋊SO(1, 3)

Global symmetry εI =
{
εα, εαβ = −εβα

}
=⇒ currents

J iI =
{
Σα

i, Sαβ
i = −Sβα

i
}

Conservation of energy-momentum & angular momentum

∂iΣα
i = 0, ∂iSαβ

i = Σαβ − Σβα
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Local symmetry ⇒ gauge fields (translational & rotational)

AIi =
{
eαi , Γi

αβ = −Γi
βα

}

Covariant derivative for matter fields

DαΨ = eiα

(
∂iΨ−

1

2
Γi
βγρβγΨ

)

Poincaré gauge field strengths FijI : torsion and curvature

Tij
α = ∂ie

α
j − ∂je

α
i + Γiβ

αeβj − Γjβ
αeβi

Rij
αβ = ∂iΓj

αβ − ∂jΓi
αβ + Γiγ

βΓj
αγ − Γjγ

βΓi
αγ

Geometrical structure on the spacetime introduced:
Riemann-Cartan manifold – curved & contorted
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Einstein-Cartan-(Sciama-Kibble) theory
Gravitational (Hilbert-Einstein) Lagrangian

VEC =
1

2κ
e
α
i e

β
jRαβ

ij(Γ) =
1

2κ
R

Field equations Ricα
i −

1

2
eiαR = κΣα

i

Tαβ
i − eiαTβk

k + eiβTαk
k = κSαβ

i

Ricci Ricαi = Rαβ
ijeβj , curvature scalar R = Ricα

ieαi
Einstein’s gravitational coupling constant κ = 8πG/c4

Torsion is algebraically related to spin. Expressing
T = T (S), we derive Einstein’s equation

R̃icij −
1

2
gijR̃ = κΣeffij

with effective energy-momentum Σeffij = Σij + (S · S)ij

Einstein-Cartan Theory = GR + contact spin-spin interaction
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Probing the geometrical structure of spacetime: How?

=⇒ dynamics of matter (particles, fluids, bodies)

Confusing claims about ‘torsion effects’ on body’s motion

#1: GR: particle moves along geodesics u̇i + Γ̃jk
iujuk = 0

Non-Riemannian geometry: particle follows autoparallel
u̇i + Γjk

iujuk = 0 (H.Kleinert 2000, R. March et al 2011)

Compare: neutral particle do not feel Lorentz force!

#2: Macroscopic massive body is affected by torsion
(Gravity Probe B: Y. Mao, M.Tegmark, A. Guth, S. Cabi,
Phys. Rev. D76 (2007) 104029)

#3: Equivalence principle violates gauge symmetry
(C. Mukku, W.A. Sayed 1979)
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Minimal coupling: conservation laws
In gravity, equations of motion need not be postulated
separately, they are derived from conservation laws
Noether: Symmetry =⇒ conservation law (YM: DiJ

i
I = 0)

Poincaré gravity accounts for microstructure of matter

Conservation of energy-momentum and angular momentum
∗
DiΣk

i = Σj
iTki

j − Smn
lRklm

n,
∗
DiS[jk]

i = −Σ[jk]

We assume Minimal Coupling!
∗
Di = Di − Tki

k

Many ways to equations of motion. Multipole expansion:
replace body of cont. matter by a ‘particle’ with moments
Example: electrodynamical multipoles

∫
δxi1 · · · δxinJ

with δxi = xi − Y i(τ), where Y i(τ) is body’s world-line
=⇒ charge Q =

∫
J , dipole Di =

∫
δxiJ , quadrupole etc

Yuri N. Obukhov Prospects of detecting spacetime torsion



Introduction
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Multipole method:
In body’s world tube choose reference world-line Y a. Coords xa

label cross-section t =const. Velocity ua = dY a/dτ .
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Equations of motion for extended test body
Use analogy between charge and spin. Gravity multipoles

p
i1...in

α =

∫

δx
i1 · · · δxinΣα, s

i1...in
αβ =

∫

δx
i1 · · · δxinSαβ

[Here symbolic notation; for precise definitions see
D. Puetzfeld & YNO, Phys. Rev. D88 (2013) 064025]
Integrate conservation laws =⇒ multipole equations
Monopole: pα nontrivial only, neglect higher multipoles

uiD̃ipα = 0, u[ipj] = 0

=⇒ pi = mui =⇒ geodesic uiD̃iu
j = 0 motion!

Dipole equations of motion

uiD̃iJ
ab = − 2u[aPb] + 2Qcd[aTcd

b] + 4Q[a
cdT

b]cd

uiD̃iP
a =

1

2
R̃abcdJ

cdvb +Qbcd∇̃
aTbc

d

Total momenta: Pa = pa − 1
2K

a
cdS

cd and J ab = p[ab] + Sab
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Nonminimal coupling: a loophole for torsion?
Minimal coupling: torsion can be probed only by spin
Nonminimal coupling model (Goenner 1984) attracts
attention. Nonminimal Lagrangian F Lmat(Ψ,DiΨ, gij)
depends on coupling function F = F (gij , Rkli

j , Tkl
i)

Noether theorem yields conservation laws:
∗

Di

(

FSjk
i
)

= −FΣ[jk],

∗

Di

(

FΣk
i
)

= FΣl
i
Tki

l − FS
m

n
i
Rkim

n − LmatDkF

Multipole equations derived. Lowest monopole order:

Propagation of structureless point particle

muiD̃iu
j = ξ

(
δji − ujui

)
∇ilogF

“Pressure”-like force, with ξ =
∫
Lmat 6= 0, =⇒ nongeodetic

motion due to coupling function F (Rijkl, Tijk)
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Conservation laws and equations of motion
Nonminimal coupling: a loophole for torsion?

Motion of single-pole (structureless) test body, in lowest order
of multipole approximation, is non-geodetic, but surprisingly
simple: non-geodetic “force” is proportional to gradient of
nonminimal coupling function F .
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Dirac fermion particle in Poincaré gauge field
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Dirac particle in gravitational (& electromagnetic) field
For Dirac field Lorentz generators are ραβ = − i

2σαβ with
σαβ = iγ[αγβ]. Hence, covariant gauge derivative reads

DαΨ = eiα

(
∂iΨ−

iq

~
AiΨ+

i

4
Γi
βγσβγΨ

)

(+ electromagnetism included). Lagrangian for Dirac field

L =
i~

2

(
ΨγαDαΨ−DαΨγ

αΨ
)
−mcΨΨ

Poincaré gauge translational & rotational field (a = 1, 2, 3):

e 0̂i = V δ 0i , eâi =W â
b

(
δbi − cKb δ 0i

)
, Γi

αβ

V and Ka, and 3× 3 matrix W â
b depend arbitrarily on t, xa

=⇒ Dirac wave equation in Schrödinger form i~∂ψ
∂t

= Hψ

Note: rescaling of Ψ needed to get Hermitian Hamiltonian
Yuri N. Obukhov Prospects of detecting spacetime torsion
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Denote Fb
a = VW b

â, Υ = V ǫâb̂ĉΓ
âb̂ĉ

and Ξâ =
V
c
ǫ
âb̂ĉ

Γ0̂
b̂ĉ

Hermitian Dirac Hamiltonian (with π = p− qA)

H = βmc2V +
c

2

(
πbF

b
aα

a + αaFb
aπb

)

+
c

2
(K · π + π ·K) +

~c

4
(Ξ ·Σ−Υγ5)

Foldy-Wouthuysen transformation to reveal physics

ψFW = Uψ, HFW = UHU−1 − i~U∂tU
−1

Recast Hamiltonian into

H = βM+E+O, βM = Mβ, βE = Eβ, βO = −Oβ

FW transformation is then constructed as

U =
βǫ+ βM−O

√

(βǫ + βM−O)2
β, ǫ =

√

M2 +O2
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Experimental bounds on torsion

Computation yields FW Hamiltonian HFW = H
(1)
FW +H

(2)
FW

The two terms read explicitly

H
(1)
FW = βǫ +

~c2

16

{

1

ǫ
,
(

2ǫcaeΠe{pb,F
d
c∂dF

b
a}+Πa{pb,F

b
aΥ}

)

}

+
~mc4

4
ǫ
caeΠe

{

1

T
,
{

pd,F
d
cF

b
a∂bV

}

}

,

H
(2)
FW =

~c2

16

{

1

T
,

{

Σa{pn,F
n
b},

{

pk,
[

ǫ
abc(

1

c
Ḟk

c − Fd
c∂dK

k +K
d
∂dF

k
c)

−
1

2
Fk

d

(

δ
dbΞa − δ

daΞb
)

]}

}

}

+
c

2
(Ka

pa + paK
a) +

~c

4
ΣaΞ

a

Here { , } denote anticommutators, T = 2ǫ2 + {ǫ,mc2V },

Πa = βΣa, and ǫ =
√
m2c4V 2 + c2

4 δ
ac{pb,Fb

a}{pd,Fd
c}

This result is exact – no (weak field etc) approximations for
V,W â

b,K
a, Γiαβ . Planck ~ is the only small parameter
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Experimental bounds on torsion
Evolution of spin (polarization operator Π = βΣ)

dΠ

dt
=

i

~
[HFW ,Π] = Ω×Π

Theory: spin precession to probe torsion: Adamowicz
(1975), Rumpf (1980), Audretsch (1981), Lämmerzahl
(1997); review W.T.Ni, Rep.Prog.Phys. 73 (2010) 056901
Experiment: effect of Earth’s gravity on nuclear spins Hg
Spin Hamiltonian (torsion Ťα = 1

2η
µνλαTµνλ, Ť = {Ť a})

HFW = − gNµNB ·Π−
~

2
ω ·Σ−

~c

4
Ť ·Σ.

B.J. Venema et al, Phys. Rev. Lett. 68 (1992) 135
Limits on torsion from Zeeman energy levels measurements

|Ť | < 4.3× 10−14m−1

Recent: C. Gemmel et al, Phys. Rev. D82 (2010) 111901
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Conclusions and Outlook

Poincaré gauge gravity is natural extension of GR

Einstein: geometry of spacetime is a physical question

Spinless matter cannot detect or place limits on torsion

Nonminimal coupling: loophole to detect torsion

Experimental limit on torsion from spin dynamics. Agrees
with estimates C. Lämmerzahl, Phys. Lett. A228 (1997)
223; V.A. Kostelecký et al, PRL 100 (2008) 111102

Torsion effects elsewhere? Early cosmology modified:
singularity can be avoided due to spin-spin interaction
(Trautman 1973, Poplawski 2012)

Work partly done together with Dirk Puetzfeld (Bremen),
Alexander Silenko (Minsk) and Oleg Teryaev (Dubna)
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Poincaré gauge approach in gravity

Dynamics of test bodies in gauge gravity
Quantum spin dynamics

Conclusions and Outlook

Thanks !

YNO, Phys. Rev. Lett. 86 (2001) 192
YNO, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95
D. Puetzfeld, YNO, Phys. Rev. D87 (2013) 044045
F.W. Hehl, YNO, D. Puetzfeld, Phys. Lett. A377 (2013) 1775
D. Puetzfeld, YNO, Phys. Rev. D88 (2013) 064025
YNO, A.J. Silenko, O.V. Teryaev, Phys. Rev. D80 (2009)
064044, Phys. Rev. D84 (2011) 024025, Phys. Rev. D 88
(2013) 084014
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