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Introduction

Geometric structures in gravity
Short history of gauge gravity approach

Introduction

@ Crash-course in differential geometry:

@ Spacetime = 4-dimensional smooth manifold

@ Coframe ¥* = edz*; dual frame field e, = €i,0; (observer)

® Metricg: gop = g(€aep) (lengths and angles)
ds® = GV ® VP

@ Linear connection: 1-form I';,” (parallel transport)

5|V = —0x'Ti5°VP
@ Notation: «,3,--- =0,1,2,3 anholonomic components;
i,j,--- =0,1,2,3 coordinate components

@ Lorentzian signature of the metric is (+1,—1,—1,—1)

@ Local coordinates on manifold: x* = (¢, z%)
t time and spatial coordinates 2%, a = 1,2,3
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Introduction

Geometric structures in gravity

Short history of gauge gravity approach

@ Spacetime metric and linear connection
are a priori independent structures

® Riemannian constraints:

) Digap =0 (metricity)
° Dief — Djef =0 (no torsion)
o

Then connection is expressed in terms of metric (coframe):
FZ‘O/B = fiaﬁ = 65 {Zk]} 6] + €ka €a

{i*;} = (9igj1 + 0jgi — D1gi;) Christoffel symbols.
Elnsteln S GR is based on the Riemannian geometry.
Why torsion? Physics is an experimental science
Test foundations: Lorentz symmetry violation?

Probe spacetime: which geometry?
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Introduction

Geometric structures in gravity

Short history of gauge gravity approach

“...The question whether this
continuum has a Euclidean,
Riemannian, or any other
structure is a question of
physics proper which must be
answered by experience, and
not a question of a conven-
tion to be chosen on grounds
of mere expediency.”

m.mmw;fmmw* A. Einstein, Geometrie
4.‘ ‘W‘ Aot hd =7 i
Z‘ﬁw;ﬁ‘«@ﬁ“‘“‘ﬁmwn und Erfahrung, Sitzungsber.
| St st oy ot L it T ceipfs o preuss. Akad. Wiss. 1 (1921)
o Geoirlbipunhile
““%WQ*JWJTSJ AP 123-130.
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Introduction

Geometric structures in gravity
Short history of gauge gravity approach

Poincaré gauge gravity: history and reviews

@ Timeline: Weyl (1929,1950), Utiyama (1956), Kibble
(1961), Sciama (1962), supergravity (mid-70s), ...
F.W. Hehl et al, Rev. Mod. Phys. 48 (1976) 393

A. Trautman, in: One hundred years after the birth of
A. Einstein, (NY, Plenum, 1980) vol. 1, p. 287

@ D. Ilvanenko, G. Sardanashvily, Phys. Rep. 94 (1983) 1
@ FW. Hehl et al, Phys. Rep. 258 (1995) 1

@ |.L. Shapiro, Phys. Rep. 357 (2002) 113
°
o
°

M.Blagojevi¢, Gravitation and Gauge Symmetries (2002)
Y.N. Obukhov, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95
A. Trautman, in: Encyclopedia of Mathematical Physics,
(Elsevier, Oxford, 2006) vol. 2, p. 189

@ M.Blagojevi¢, EW.Hehl, Gauge Theories of Gravitation.
A Reader with Commentaries (IC Press, London 2013)
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Poincaré hi - . : .
cincare gauge approach in gravity General gauge-theoretic scheme of Yang-Mills-Utiyama
Einstein-Cartan theory

The analogy between charge and spin (Sciama)

@ Yang-Mills theory for internal symmetry group G with N
parameters ¢!, Invariance of action S = [ £(¥, 9;¥) under
global transformations §¥ = ! p; ¥ (p; € G) = current J¢

Noether theorem =— 8iJ} =0 I=1,...,N

@ Local symmetry ¢! (r) = gauge field A7 = Lagrangian
L(V,8,¥) =  L(T,D;V)
Covariant derivative

DV = 9;,¥ — Alp;w

@ Potential 6A! = D;e! = 9! + f1 e’ AK

with structure constants f! ;i of Lie algebra G
@ — covariant conservation law D;.J; =0
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Poincaré gauge approach in gravity

General gauge-theoretic scheme of Yang-Mills-Utiyama
Einstein-Cartan theory

rigid
Conserved

Noether’s symmeilry
current J theorem of
Lagrangian
dJ=0 g
L, w.dv)

‘mat

couplin, local
J /\EA N gauge
symmelry

gauge potential
(connection) A

I (D)

m:lt

s Gauge principle:

conserved current J from symmetry group (Noether)
Local symmetry = gauge potential A: ;% — D;¥
Interaction J A A = Ji Al
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Poincaré gauge approach in gravity

General gauge-theoretic scheme of Yang-Mills-Utiyama
Einstein-Cartan theory

@ Geometrically, A{ is a connection in a fibre bundle
with structure group G over spacetime manifold
@ Field strength is a curvature in this bundle
Fij' = 0;A] — 9;A] — 1 A} AF
Yang-Mills field equations generalize Maxwell’s theory

D;HY9; =J:,  DiFj' + D;Fy’ + DypF;" =0

@ Constitutive relation H = H(F): HY; = -0V (F)/0F;;!

@ Gravity: Poincaré symmetry group G=T,xS0O(1, 3)
@ Global symmetry e/ = {e*,e*¥ = —£f*} — currents

Ji={Za", Sas'=—Spa'}
@ Conservation of energy-momentum & angular momentum
950" =0,  0;Sus" = Zap — Spa



Poincaré gauge approach in gravity

General gauge-theoretic scheme of Yang-Mills-Utiyama
Einstein-Cartan theory

@ Local symmetry = gauge fields (translational & rotational)

AI = { €q Fiaﬁ = —PZ"BO[ }

7 (2R

@ Covariant derivative for matter fields

: 1
D,V = ¢, <ai\1: - irﬁvpm\lﬁ

Poincaré gauge field strengths Ejl: torsion and curvature

T;;* = Oief — Ojef +T'ip” 6] Lg% e
R;* = 9TI;% —9,T;% +T,,PT,;* —T; T,

@ Geometrical structure on the spacetime introduced:
@ Riemann-Cartan manifold — curved & contorted
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Poincaré gauge approach in gravity

General gauge-theoretic scheme of Yang-Mills-Utiyama
Einstein-Cartan theory

Einstein-Cartan-(Sciama-Kibble) theory
@ Gravitational (Hilbert-Einstein) Lagrangian

Vic = %e?ef}ziﬁ“(r) =5
@ Field equations Ric,! — 562“]% — kY,
Tos' = eaTon" + T = KSap’

«

@ Ricci Ricy' = Rog" ef , curvature scalar R = Ric, ‘e
Einstein’s gravitational coupling constant x = 87G//c*
@ Torsion is algebraically related to spin. Expressing
T =T(S), we derive Einstein’s equation

: 1 S
RICZ‘j — §gin = /@ijff
with effective energy-momentum Zf]ff =%+ (S-9)

Einstein-Cartan Theory = GR + contact spin-spin interaction J

Yuri N. Obukhov Prospects of detecting spacetime torsion




Conservation laws and equations of motion
Nonminimal coupling: a loophole for torsion?

Dynamics of test bodies in gauge gravity

@ Probing the geometrical structure of spacetime: How?
@ — dynamics of matter (particles, fluids, bodies)

@ Confusing claims about ‘torsion effects’ on body’s motion
@ #1: GR: particle moves along geodesics @ + T'j; u/uf = 0
Non-Riemannian geometry: particle follows autoparallel
u' + Tjp'u/u” = 0 (H.Kleinert 2000, R. March et al 2011)

@ Compare: neutral particle do not feel Lorentz force!

@ #2: Macroscopic massive body is affected by torsion
(Gravity Probe B: Y. Mao, M.Tegmark, A. Guth, S. Cabi,
Phys. Rev. D76 (2007) 104029)

@ #3: Equivalence principle violates gauge symmetry
(C. Mukku, W.A. Sayed 1979)
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Conservation laws and equations of motion
Nonminimal coupling: a loophole for torsion?

Dynamics of test bodies in gauge gravity

Minimal coupling: conservation laws
@ In gravity, equations of motion need not be postulated
separately, they are derived from conservation laws
@ Noether: Symmetry = conservation law (YM: D;J} = 0)
@ Poincaré gravity accounts for microstructure of matter

Conservation of energy-momentum and angular momentum

DiEkZ = Z]’ZT]m‘] - Smanklmna DZS[]]C]Z == E[Jk}

@ We assume Minimal Coupling! Di = D; — Tii*
@ Many ways to equations of motion. Multipole expansion:
replace body of cont. matter by a ‘particle’ with moments
@ Example: electrodynamical multipoles [ 6z --- z'n.J
with dz* = ' — Y*(7), where Y*(7) is body’s world-line
@ = charge Q = [ J, dipole D' = [ §z'.J, quadrupole etc
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Conservation laws and equations of motion
Nonminimal coupling: a loophole for torsion?

Dynamics of test bodies in gauge gravity

t = const

Multipole method:
In body’s world tube choose reference world-line Y¢. Coords z*
label cross-section ¢ =const. Velocity u® = dY*/dr.
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Conservation laws and equations of motion
Nonminimal coupling: a loophole for torsion?

Dynamics of test bodies in gauge gravity

Equations of motion for extended test body
@ Use analogy between charge and spin. Gravity multipoles
piting, = /51’“ O Y R S giin /536 .ot
@ [Here symbolic notation; for precise deflnltlons see
D. Puetzfeld & YNO, Phys. Rev. D88 (2013) 064025]

@ Integrate conservation laws = multipole equations
@ Monopole: p, nontrivial only, neglect higher multipoles

uiﬁipa =0, u[ipﬂ =0
@ — p; = mu; —> geodesic u‘D;u/ = 0 motion!
Dipole equations of motion
W'D J? = —2ulPl 4 2QedeT, M 4 4Qle 4T
. 1~ -
uzDizpa _ iRabcdedUb + chdvaTbcd
¢ Total momenta: P* = p* — 3K%5° and J* = pl* + 5%
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Conservation laws and equations of motion

Dynamics of test bodies in gauge gravity Nonminimal coupling: a loophole for torsion?

Nonminimal coupling: a loophole for torsion?

@ Minimal coupling: torsion can be probed only by spin

@ Nonminimal coupling model (Goenner 1984) attracts
attention. Nonminimal Lagrangian F Lot (Y, D; W, g45)
depends on coupling function F' = F(g;;, R’ , Tii")

Noether theorem yields conservation laws:
= —F¥yy,

D (sz) — PO = T B = e DT

@ Multipole equations derived. Lowest monopole order:

@ “Pressure”-like force, with £ = fLmat =# 0, = nongeodetic
motion due to coupling function F(R;;i', T;;*)
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Conservation laws and equations of motion

Dynamics of test bodies in gauge gravity Nonminimal coupling: a loophole for torsion?

"‘force” due to nonminimal coupling ~ £V (log F)

Motion of single-pole (structureless) test body, in lowest order
of multipole approximation, is non-geodetic, but surprisingly
simple: non-geodetic “force” is proportional to gradient of
nonminimal coupling function F.
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Dirac fermion particle in Poincaré gauge field

. . Experimental bounds on torsion
Quantum spin dynamics

Dirac particle in gravitational (& electromagnetic) field

@ For Dirac field Lorentz generators are p,3 = — %Uag with
oap = YaYg)- HENCE, COVariant gauge derivative reads

DU = ¢, (ai\p - % AU+ iriﬂﬁ%\p)
@ (+ electromagnetism included). Lagrangian for Dirac field
L= % (Ty*Da¥ — Do Uy*¥) — me VW
@ Poincaré gauge translational & rotational field (a = 1, 2, 3):
=Vl e =wd, (55’ — cK® 510) , L
V and K¢, and 3 x 3 matrix W%, depend arbitrarily on ¢, z*

— Dirac wave equation in Schrodinger form ih%% = 1) J

@ Note: rescaling of ¥ needed to get Hermitian Hamiltonian



Dirac fermion particle in Poincaré gauge field

. . Experimental bounds on torsion
Quantum spin dynamics

@ Denote F0, = VWb, T = Veabcn ~and Z; = L e ArAbc

¢ “abe

Hermitian Dirac Hamiltonian (with w = p — g A)
Ho= BmeV + 2 (mFua® + 0t Flum,)

h
—i—g(K-ﬂ-—i—ﬂ--K)—i—Zc(E-E—T%)

® Foldy-Wouthuysen transformation to reveal physics
Yew = U, Hpw = UHU Y —ihUd, UL
@ Recast Hamiltonian into
H = M+E+O, M =Mp, BE=EB, pO=-0p
@ FW transformation is then constructed as

Be+ M -0
, =/ M2+ 02
Gerom—op " © *
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Dirac fermion particle in Poincaré gauge field

Experimental bounds on torsion

Quantum spin dynamics
(1) )
+ My

@ Computation yields FW Hamiltonian H pyw = H oy

@ The two terms read explicitly
(zemne{pb, F04F 0} + 1{py, ]-'baT}) }

hc® (1
Hily = Be+ 6 {Z’
mct e 1 d b
+ e He{?,{pd,]‘— FratV
(2) hCQ 1 n abc 1 -k d k d k
Hew = T5 0 7 1 Salps Flob {pw, [€(ZF e = FL0aK™ + K704 F ")
o 1]_-1@ (5db:a _ 6da:b)]} + ¢ (Ko + paK®) + he 5 =a
2 d = = 2 Pa T Pa 1 =

@ Here { , } denote anticommutators, 7 = 2¢2 + {e, mc*V'},
m2eV2 4 6% {py, Foo Hpa, Fic}

I = g%, and € =
@ This result is exact — no (weak field etc) approximations for

V, W4, K% T;*%. Planck % is the only small parameter
) b



Dirac fermion particle in Poincaré gauge field
Experimental bounds on torsion

Quantum spin dynamics

Experimental bounds on torsion
@ Evolution of spin (polarization operator II = 53)
% = %[HFW,H] =QxII

@ Theory: spin precession to probe torsion: Adamowicz
(1975), Rumpf (1980), Audretsch (1981), Lammerzahl
(1997); review W.T.Ni, Rep.Prog.Phys. 73 (2010) 056901

@ Experiment: effect of Earth’s gravity on nuclear spins Hg

@ Spin Hamiltonian (torsion 7% = in2T,,\, T = {T°})

Hrw :—gNuNB~H—§w~E— %T-E.
@ B.J. Venema et al, Phys. Rev. Lett. 68 (1992) 135

Limits on torsion from Zeeman energy levels measurements
° IT| < 4.3 x 10" “m™!

@ Recent: C. Gemmel et al, Phys. Rev. D82 (2010) 111901



Conclusions and Outlook

Conclusions and Outlook

@ Poincaré gauge gravity is natural extension of GR
Einstein: geometry of spacetime is a physical question
Spinless matter cannot detect or place limits on torsion
Nonminimal coupling: loophole to detect torsion

Experimental limit on torsion from spin dynamics. Agrees
with estimates C. Lammerzahl, Phys. Lett. A228 (1997)
223; V.A. Kostelecky et al, PRL 100 (2008) 111102

@ Torsion effects elsewhere? Early cosmology modified:
singularity can be avoided due to spin-spin interaction
(Trautman 1973, Poplawski 2012)

@ Work partly done together with Dirk Puetzfeld (Bremen),
Alexander Silenko (Minsk) and Oleg Teryaev (Dubna)
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Conclusions and Outlook

Thanks |

YNO, Phys. Rev. Lett. 86 (2001) 192

YNO, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 95

D. Puetzfeld, YNO, Phys. Rev. D87 (2013) 044045

F.W. Hehl, YNO, D. Puetzfeld, Phys. Lett. A377 (2013) 1775
D. Puetzfeld, YNO, Phys. Rev. D88 (2013) 064025

YNO, A.J. Silenko, O.V. Teryaev, Phys. Rev. D80 (2009)
064044, Phys. Rev. D84 (2011) 024025, Phys. Rev. D 88
(2013) 084014

Yuri N. Obukhov Prospects of detecting spacetime torsion



	Introduction
	Geometric structures in gravity
	Short history of gauge gravity approach

	Poincaré gauge approach in gravity
	General gauge-theoretic scheme of Yang-Mills-Utiyama
	Einstein-Cartan theory

	Dynamics of test bodies in gauge gravity
	Conservation laws and equations of motion
	Nonminimal coupling: a loophole for torsion?

	Quantum spin dynamics
	Dirac fermion particle in Poincaré gauge field
	Experimental bounds on torsion

	Conclusions and Outlook

