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1.	
  	
  WIMPs	
  vs	
  ADM	
  vs	
  sterile	
  neutrinos	
  vs	
  axions	
  

The	
  WIMP	
  “miracle”	
  can	
  explain	
  the	
  observed	
  DM	
  density.	
  
Connected	
  to	
  new	
  weak/TeV	
  scale	
  physics	
  e.g.	
  susy.	
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FIG. 1. Evolution of the cosmological WIMP abundance as a
function of x = m/T . Note that the y-axis spans 25 orders of
magnitude. The thick curves show the WIMP mass density,
normalized to the initial equilibrium number density, for
different choices of annihilation cross section �σv� and mass
m. Results form = 100GeV, are shown for weak interactions,
�σv� = 2 × 10−26 cm3s−1, (dashed red), electromagnetic
interactions, �σv� = 2×10−21 cm3s−1 (dot-dashed green), and
strong interactions, �σv� = 2 × 10−15 cm3s−1 (dotted blue).
For the weak cross section the thin dashed curves show the
WIMP mass dependence for m = 103 GeV (upper dashed
curve) and m = 1GeV (lower dashed curve). The solid black
curve shows the evolution of the equilibrium abundance for
m = 100GeV. This figure is an updated version of the figure
which first appeared in Steigman (1979) [11].

where n is the number density of χ’s, a is the cosmological

scale factor, the Hubble parameter H = a
−1

da/dt

provides a measure of the universal expansion rate, and

�σv� is the thermally averaged annihilation rate factor

(“cross section”). For the most part we use natural

units with h̄ ≡ c ≡ k ≡ 1. When χ is extremely

relativistic (T � m), the equilibrium density neq =

3ζ(3)gχT
3
/(4π

2
), where ζ(3) ≈ 1.202. In contrast, when

χ is non-relativistic (T <∼ m), its equilibrium abundance

is neq = gχ (mT/(2π))
3/2

exp(−m/T ). If χ could be

maintained in equilibrium, n = neq and its abundance

would decrease exponentially. However, when the χ

abundance becomes very small, equilibrium can no longer

be maintained (the χ’s are so rare they can’t find each

other to annihilate) and their abundance freezes out.

This process is described next.

We begin by referring to Fig. 1, where the evolution

of the mass density of WIMPs of mass m, normalized

to the initial equilibrium WIMP number density, is

shown as a function of x = m/T , which is a proxy for

“time”, for different values of �σv�. With this definition,

the final asymptotic value is proportional to the relic

abundance, as will be seen later. Later in this section

it is explained how this evolution is calculated, but first

we call attention to some important features. During

the early evolution when the WIMP is relativistic (T >∼
m), the production and annihilation rates far exceed

the expansion rate and n = neq is a very accurate,

approximate solution to Eq. (1). It can be seen in Fig. 1

that, even for T <∼ m, the actual WIMP number density

closely tracks the equilibrium number density (solid black

curve). As the Universe expands and cools and T drops

further below m, WIMP production is exponentially

suppressed, as is apparent from the rapid drop in neq.

Annihilations continue to take place at a lowered rate

because of the exponentially falling production rate. At

this point, equilibrium can no longer be maintained and,

n deviates from (exceeds) neq. However, even for T <∼ m,

the annihilation rate is still very fast compared to the

expansion rate and n continues to decrease, but more

slowly than neq. For some value of T � m, WIMPs

become so rare that residual annihilations also cease and

their number in a comoving volume stops evolving (they

“freeze out”), leaving behind a thermal relic.

It is well known that weak-scale cross sections

naturally reproduce the correct relic abundance in the

Universe, whereas other stronger (or weaker) interactions

do not. This is a major motivation for WIMP dark

matter. Note that while for “high” masses (m >∼ 10 GeV)

the relic abundance is insensitive to m, for lower

masses the relic abundance depends sensitively on mass,

increasing (for the same value of �σv�) by a factor of two.

There are two clearly separated regimes in this

evolution – “early” and “late”. The evolution

equation (Eq. (1)) can be solved analytically by different

approximations in these two regimes. During the

early evolution, when the actual abundance tracks the

equilibrium abundance very closely (n ≈ neq), the rate

of departure from equilibrium, d(n − neq)/dt, is much

smaller than the rate of change of dneq/dt. In the late

phase, where n � neq, the equilibrium density neq may

be ignored compared to n and Eq. (1) may be integrated

directly. This strategy allows the evolution to be solved

analytically in each of the two regimes and then joined

at an intermediate matching point which we call x∗.
Because the deviation from equilibrium, (n − neq), is

growing exponentially for x ≈ x∗, the value of x∗ is

relatively insensitive (logarithmically sensitive) to the

choice of (n− neq)∗.

Since the dynamics leading to freeze out occurs during

the early, radiation dominated (ρ = ρR) evolution of the

Universe, it is useful to recast physical quantities in terms

of the cosmic background radiation photons. The total

radiation density may be written in terms of the photon

energy density (ργ) as ρ = (gρ/gγ)ργ where, gρ counts

the relativistic (m < T ) degrees of freedom contributing

to the energy density,

gρ ≡
�

B

gB

�
TB

Tγ

�4

+
7

8

�

F

gF

�
TF

Tγ

�4

. (2)

7

the large factor 1 + α∗(Γ/H)∗ � 1 (see the dotted blue
curves in Fig. 4), with most of the residual annihilations
occurring for T∗ ≥ T >∼ T∗/2. Thus, it is expected that
the value of (Γ/H)∗ will have an impact on the predicted
relic density. Note that previous studies have ignored
the 1 in the denominator of Eq. (17) and have assumed
that α∗ = 1. These approximations incur an error of
∼ 3 − 5% and can affect the calculation substantially,
especially for masses in the range 1− 10GeV, where the
impact of the changing values of g(T ) is large. As may be
seen from Fig. 4, both (Γ/H)∗ and α∗ depend strongly on
mass. Our analytical framework takes these effects into
account.

3. Relic Abundance

Having determined Yf , (see Eq. (17)), calculating the
relic abundance is straightforward. The frozen out
WIMP abundance Yf is equal to the present day WIMP
abundance (Yf = Y0), so that the cosmological WIMP
mass fraction is

Ω =
mYf s0

ρcrit

=
8πG

3H2
0

�
mH∗s0
�σv�s∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
, (19)

resulting in

Ωh2 =
9.92× 10−28

�σv�

�
x∗

g
1/2
∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
. (20)

Note that this result has no explicit mass dependence
but x∗, g∗, andα∗, and (Γ/H)∗ are all mass-dependent.
Recall that the units for units for �σv�, here and
elsewhere, are cm3s−1. For 10−1 ≤ m (GeV) ≤ 104

we find that 0.97 <∼ (Γ/H)∗/(1 + α∗(Γ/H)∗) <∼ 1.07,
varying noticeably with mass, as shown in Fig. 4. In most
previous analyses the term involving (Γ/H)∗ in Eq. (20)
is either ignored or assumed to be unity. This small but
non-negligible effect is relevant for the low mass regime,
that is currently of great interest, and retaining it we find

1026�σv� = 0.902

�
0.11

Ωh2

��
x∗

g
1/2
∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
.

(21)
This result for �σv� as a function of the WIMP mass,
assuming the a best-fit value for Ωh2 = 0.11, is shown as
the dashed (red) curve in Fig. 5. This general result for
the relic abundance of a thermal WIMP, whether or not
it is a dark matter candidate, derived by an approximate
analytic approach to solving the evolution equation [6, 11]
agrees to better than ∼ 3% with the results of the
direct numerical integration of the evolution equation
(solid black curve in Fig. 5) described below in §II C.
For analytic results accurate to ∼ 5%, the last factor
in Eq. (21) may be approximated by 1.02.
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FIG. 5. The thermal annihilation cross section required for
Ωχh

2 = 0.11 as a function of the mass for a Majorana
WIMP. The solid (black) curve is from numerical integration
of the evolution equation and the dashed (red) curve is for
the approximate analytic solution in Eq. (20). Note that the
agreement between analytical and numerical results is better
than ∼ 3%. For comparison, the thin horizontal line shows
the canonical value �σv� = 3× 10−26 cm3s−1.

C. Numerical Results and Discussion

To compare with the approximate analytic results
we have calculated the relic abundance by numerically
integrating the WIMP evolution equation, Eq. (5). We
transform this equation into a simple dimensionless form,

dY

dx
= λ

�
1 +

1

3

d(lngs)

d(lnT )

�
gs

g
1/2
ρ

1

x2
(Y 2

eq − Y
2), (22)

where λ ≡ 2.76 × 1035m�σv� and Yeq =
0.145 (gχ/gs)x3/2e−x (m is in GeV and �σv� in cm3s−1).
An approximation made here is to use the non-relativistic
expression for neq in Yeq. This has negligible impact on
our results. For m in the range 10−1 − 10 4 GeV and
�σv� in the range 10−26 − 10−25 cm3s−1, λ has values in
the range 108 − 1014. The equation to be integrated is
therefore numerically stiff. We find it useful to make the
replacement W = lnY and to integrate

dW

dx
=

λ

x2

�
1 +

1

3

d(lngs)

d(lnT )

�
gs

g
1/2
ρ

(e(2Weq−W ) − eW ) , (23)

where W does not change by many orders of magnitude
over the range of integration. This significantly reduces
the computational effort. In particular, one can work
with lower precision and still determine the solution quite
accurately.

Steigman,	
  Dasgupta,	
  Beacom:	
  Phys.	
  Rev.	
  D86	
  (2012)	
  023506	
  

Ωχ =
mχnχ

ρc
� 6× 10−27 cm3s−1

�σAv�
� 0.2 for �σv� � 3× 10−26 cm3s−1

WIMP	
  decouples	
  from	
  the	
  thermal	
  plasma	
  when	
  non-­‐relaJvisJc	
  and	
  Boltzmann	
  suppressed.	
  



The	
  WIMP	
  miracle	
  requires	
  this	
  similarity	
  to	
  be	
  a	
  	
  
coincidence.	
  
	
  
Ωv	
  is	
  due	
  to	
  a	
  parJcle-­‐anJparJcle	
  asymmetry,	
  not	
  
the	
  non-­‐relaJvisJc	
  decoupling	
  of	
  a	
  self-­‐conjugate	
  or	
  	
  
symmetric	
  relic.	
  
	
  
MoJvates	
  “asymmetric	
  dark	
  maeer	
  (ADM)”:	
  
DM	
  and	
  VM	
  densiJes	
  both	
  due	
  to	
  related	
  
parJcle-­‐number	
  asymmetries.	
  
	
  
DM	
  mass	
  scale	
  typically	
  few	
  to	
  10s	
  of	
  GeV	
  range.	
  

Why	
  is	
  Ωd	
  ≈	
  5Ωv?	
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MeV	
  

GeV	
  

TeV	
  

PeV	
  

LHν	
  

RHν	
  

warm	
  DM	
  

Simply	
  add	
  RH	
  Majorana	
  
neutrinos	
  to	
  minimal	
  SM!	
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  Electroweak	
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N1	
  

Original	
  idea:	
  	
  Dodelson	
  &	
  Widrow	
  PRL	
  72	
  (1993)	
  17	
  
	
  
Shi,	
  Fuller:	
  PRL	
  82	
  (1999)	
  2832	
  
Kusenko,	
  Petraki:	
  Phys	
  Rev	
  D77	
  (2008)	
  065014	
  
Canep,	
  Drewes,	
  Frossard,	
  Shaposhnikov:	
  arXiv:1208.4607	
  

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates density, and hue
velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high velocity dispersion). Each box is 1.5
Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which are also present,
although less well defined, in the CDM case.

a similar rmax. By assuming that the mass density in the
subhaloes containing the observed dwarf spheroidals follows
an NFW profile (Navarro et al. 1996, 1997), Boylan-Kolchin
et al. (2011) found the locus of possible (rmax, Vmax) pairs
that are consistent with the observed half-light radii and
their enclosed masses. This is represented by the shaded re-
gion in Fig. 4. As Boylan-Kolchin et al. (2011) observed with
their larger sample, several of the largest CDM subhaloes
have higher maximum circular velocities than appears to be
the case for the Milky Way bright dwarf spheroidals. By
contrast, the largest WDM subhaloes are consistent with
the Milky Way data.

Rather than assuming a functional form for the mass
density profile in the observed subhaloes, a more direct ap-
proach is to compare the observed masses within the half-
light radii of the dwarf spheroidals with the masses within
the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to
associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall
mass of 3.2×109M! in the WDM case, and 6.0×109M!

in the CDM case.

The Large and Small Magellanic Clouds and the
Sagittarius dwarf are all more luminous than the
9 dwarf spheroidals considered by Boylan-Kolchin
et al. (2011) and by us. As noted above, the Milky
Way is exceptional in hosting galaxies as bright as
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Figure 4. The correlation between subhalo maximum circular ve-
locity and the radius at which this maximum occurs. Subhaloes
lying within 300kpc of the main halo centre are included. The
12 CDM and WDM subhaloes with the most massive
progenitors are shown as blue and red filled circles re-
spectively; the remaining subhaloes are shown as empty
circles. The shaded area represents the 2σ confidence region for
possible hosts of the 9 bright Milky Way dwarf spheroidals deter-
mined by Boylan-Kolchin et al. (2011).

the Magellanic Clouds, while Sagittarius is in the
process of being disrupted so its current mass is
difficult to estimate. Boylan-Kolchin et al. hypoth-
esize that these three galaxies all have values of
Vmax > 60kms−1 at infall and exclude simulated sub-
haloes that have these values at infall as well as

c© 2011 RAS, MNRAS 000, ??–8
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counts of satellite galaxies in future surveys will strongly constrain the allowed mass of 
WDM particles (e.g., Maccio et al. 2010; Polisensky & Ricotti 2011)
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Figure 5. Circular velocity curves for the 12 CDM (left) and
WDM (right) subhaloes that had the most massive progenitors.
The 3 red curves represent subhaloes with the most massive pro-
genitors, which could correspond to those currently hosting coun-
terparts of the LMC, SMC and the Sagittarius dwarf. The 9 black
curves might more fairly be compared with the data for the 9
bright dwarf spheroidal galaxies of the Milky Way considered by
Wolf et al. (2010). Deprojected half-light radii and their corre-
sponding half-light masses, as determined by Wolf et al. (2010)
from line-of-sight velocity measurements, are used to derive the
half-light circular velocities of each dwarf spheroidal. These veloc-
ities and radii are shown as coloured points. The legend indicates
the colour coding of the different galaxies.

ies, while the CDM subhaloes are almost all too massive at
the corresponding radii. The CDM subhaloes have central
masses that are typically 2-3 times larger than the Milky
Way satellites. There is one CDM subhalo that lies at lower
masses than all 9 dwarf spheroidals, but this had one of the
three most massive progenitors and has been almost com-
pletely destroyed by tidal forces.

Fig. 4 and 5 show that the WDM subhaloes are less
centrally concentrated than those in the corresponding CDM
halo. Concentrations typically reflect the epoch at which the
halo formed (Navarro et al. 1996b, 1997; Eke et al. 2001).
To investigate systematic differences in the formation epoch
of the WDM and CDM subhaloes in our sample, we must
choose a suitable definition of formation time. Since we are
considering only the central mass, and we do not wish to
introduce scatter in any correlation by using subhaloes that
may have been stripped, we define the formation time as
the first time at which the total progenitor mass exceeds the
mass within 1 kpc at infall. The correlation of this redshift
with the mass within 1 kpc at infall is shown in Fig. 6 for the
12 most massive WDM and CDM progenitors that survive to
z = 0 as distinct subhaloes. Evidently, the proto subhaloes
that form later, which are generally WDM not CDM ones,
have the lowest central masses. The mean difference between
the top 12 WDM and CDM proto-subhalo masses within 1
kpc is approximately a factor 2.

Because of their later formation time, the infalling
WDM subhaloes already have lower central masses than
those falling into the corresponding CDM haloes. As their
mass is less centrally concentrated, the WDM subhaloes are
more susceptible to stripping. While this is most impor-
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Figure 6. The correlation between subhalo central mass at infall
and the redshift of formation, zform, defined as the redshift at
which the total mass of each proto subhalo first exceeded this
value. Central mass is defined within 1 kpc, and CDM and WDM
results are shown with blue and red symbols respectively.

tant in the outer regions of the subhaloes, the mass profiles
in Fig. 5 show that the inner regions of some of the sub-
haloes have also endured significant depletion since infall.
Fig. 7 shows, for both WDM and CDM subhaloes, the ra-
tio, Mz=0(< r)/Minfall, of the present day mass contained
within r = 0.5, 1 and 2 kpc to the mass at infall, as a
function of the central mass at infall at the chosen radius.
On average, the median mass at infall for WDM is lower
by ∼ 0.15 dex than the corresponding mass for CDM. One
subhalo gains mass between infall and z = 0 because it ac-
cretes another subhalo. While there is a large scatter among
the different subhaloes, with some having lost the majority
of their central mass since infall, no significant systematic
difference between WDM and CDM subhaloes is apparent.
This implies that the reason why the WDM subhaloes pro-
vide a better fit to the half-light masses of the 9 Milky Way
dwarf spheroidals studied by Wolf et al. (2010) is not excess
stripping but the later formation time, and correspondingly
typical lower concentration, of the WDM proto subhaloes
compared to their CDM counterparts.

4 DISCUSSION AND CONCLUSIONS

The properties of the satellite galaxies of the Milky Way
have posed a longstanding puzzle for CDM theories of galaxy
formation. Two aspects of this puzzle have reportedly been
separately and independently solved. One is the luminos-
ity function of the satellites. The basic idea - the suppres-
sion of galaxy formation in small haloes by a combination
of feedback effects produced by the reionization of gas at
high redshift and supernova heating - was suggested by
Kauffmann, White, & Guiderdoni (1993) and explored thor-
oughly in the early 2000s (Bullock et al. 2000; Benson et al.
2002; Somerville 2002) and has been revisited many times
since then (see Font et al. 2011, and references therein for
the most recent discussion). The other aspect concerns the
dynamical state of the satellites. Strigari et al. (2010) have
shown that there exist subhaloes in the Aquarius CDM sim-

c© 2011 RAS, MNRAS 000, ??–8

From	
  Lovell	
  et	
  al:	
  MNRAS	
  420,	
  231	
  (2012)	
  	
  

warm,	
  cool,	
  chilled:	
  
small-­‐scale	
  structure	
  	
  
problem?	
  



Strong	
  CP	
  problem.	
  

Neutron	
  EDM	
  bound	
  θ	
  <	
  10-­‐10	
  

Peccei-­‐Quinn	
  soluJon	
  turns	
  θ	
  into	
  a	
  field:	
  implies	
  very	
  light	
  pseudoscalar	
  boson,	
  	
  
the	
  axion.	
  
	
  
Perfectly	
  legiJmate	
  candidate	
  −	
  but	
  the	
  strong	
  CP	
  problem	
  can	
  be	
  solved	
  without	
  
axions	
  being	
  a	
  dominant	
  component	
  of	
  DM.	
  

LQCD ⊃ θ Tr(GµνG̃µν)



In	
  ADM	
  models:	
  	
  
	
  	
  	
  	
  -­‐	
  the	
  “visible	
  sector”	
  is	
  the	
  SM	
  or	
  some	
  extension	
  
	
  	
  	
  	
  -­‐	
  the	
  “dark	
  sector”	
  may	
  be	
  some	
  other	
  gauge	
  theory	
  

G	
  =	
  GV	
  x	
  GD	
  x	
  GV+D	
  

The	
  sectors	
  then	
  decouple	
  at	
  low	
  energies.	
  
	
  
In	
  most	
  models	
  the	
  VM	
  &	
  DM	
  number	
  densiJes	
  are	
  similar,	
  
so	
  the	
  dark	
  sector	
  has	
  to	
  contain	
  a	
  stable	
  GeV-­‐scale	
  parJcle.	
  

2.	
  	
  ADM	
  GENERALITIES	
  

or	
  otherwise	
  just	
  fermions	
  and/or	
  scalars.	
  

The	
  sectors	
  are	
  coupled	
  in	
  the	
  very	
  early	
  universe,	
  and	
  
the	
  asymmetries	
  get	
  related.	
  

See	
  later	
  comment	
  on	
  alternate	
  mass	
  scale	
  possibility	
  



What	
  stabilises	
  massive	
  parJcles?	
  	
  In	
  the	
  SM:	
  

proton	
  (anJproton)	
  =	
  lightest	
  parJcle	
  carrying	
  conserved	
  baryon	
  number	
  	
  
electron	
  (positron)	
  =	
  lightest	
  parJcle	
  carrying	
  conserved	
  electric	
  charge	
  	
  
lightest	
  neutrino	
  =	
  lightest	
  half-­‐integer	
  spin	
  parJcle	
  (angular	
  mom.	
  conservaJon)	
  
neutrons	
  in	
  appropriate	
  nuclei	
  =	
  bound	
  state	
  effect	
  

We	
  hypothesise	
  at	
  least	
  a	
  “dark	
  baryon	
  number	
  BD”.	
  
	
  
Some	
  models	
  have	
  a	
  “dark	
  EM”	
  and	
  hence	
  dark	
  radiaJon.	
  
Some	
  interacJon	
  has	
  to	
  “annihilate	
  the	
  symmetric	
  part”.	
  
If	
  not	
  dark	
  EM,	
  then	
  something	
  else,	
  e.g.	
  Yukawa	
  mediated	
  
annihilaJon	
  into	
  dark	
  massless	
  fermions.	
  	
  And	
  so	
  on.	
  
	
  
Neff	
  is	
  an	
  important	
  constraint:	
  discuss	
  later.	
  



2.1	
  Symmetry	
  structure	
  

Dark	
  sector:	
  	
  BD	
  (analogue	
  of	
  visible	
  baryon	
  number	
  BV).	
  
The	
  asymmetry	
  in	
  the	
  dark	
  sector	
  is	
  in	
  BD.	
  

Visible	
  sector:	
  	
  best	
  to	
  consider	
  (B-­‐L)V,	
  because	
  it	
  is	
  
anomaly-­‐free,	
  and	
  above	
  the	
  EW	
  phase	
  transiJon	
  we	
  
have	
  to	
  take	
  into	
  account	
  sphaleron	
  reprocessing.	
  	
  	
  
E.g.	
  we	
  can	
  have	
  the	
  iniJal	
  visible-­‐sector	
  asymmetry	
  
purely	
  in	
  lepton	
  number.	
  

η(X) ≡
�

i

Xi(ni − nī)/sAsymmetry:	
  



Dodelson	
  and	
  Widrow:	
  PRL	
  64	
  (1990)	
  340	
  
Davoudiasl	
  et	
  al:	
  PRL	
  105	
  (2010)	
  211304	
  
Bell,	
  Petraki,	
  Shoemaker,	
  RV:	
  PRD	
  84	
  (2011)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  123505	
  
Cheung,	
  Zurek:	
  PRD	
  84	
  (2011)	
  035007	
  
von	
  Harling,	
  Petraki,	
  RV:	
  JCAP	
  1205	
  (2012)	
  021	
  
others	
  …	
  see	
  1305.4939	
  for	
  full	
  reference	
  list.	
  

At	
  late	
  Jmes	
  and	
  low	
  temperatures,	
  BV	
  and	
  BD	
  are	
  separately	
  conserved	
  –	
  
ensures	
  stability	
  of	
  protons	
  and	
  DM.	
  

At	
  early	
  Jmes	
  and	
  high	
  temperatures:	
  	
  Bbro	
  violated	
  	
  but	
  Bcon	
  strictly	
  conserved.	
  

Generate	
  Bbro	
  asymmetry	
  using	
  dynamics	
  obeying	
  Sakharov	
  condiJons.	
  	
  Then	
  

The	
  B-­‐L	
  number	
  of	
  VM	
  is	
  secretly	
  cancelled	
  by	
  the	
  DM!	
  

Case	
  1:	
  Baryon-­‐symmetric	
  universe	
  

Bcon ≡ (B − L)V −BD

Bbro ≡ (B − L)V + BD

Conserved:	
  

Broken:	
  

η((B − L)V ) = η(BD) = η(Bbro)/2



Stabilising	
  conserved	
  
(baryon)	
  number	
  	
  

VISIBLE	
  SECTOR	
   DARK	
  SECTOR	
  

Simultaneous	
  creaJon	
  of	
  correlated	
  asymmetries.	
  
“Pangenesis”	
  “Cogenesis”	
  

η((B − L)V ) = η(Bbro)/2 η(BD) = η(Bbro)/2



VISIBLE	
  SECTOR	
   DARK	
  SECTOR	
  

asymmetry	
  	
  
created	
  here	
  

shared	
  s.t.	
  	
  

IniJally,	
  (B-­‐L)V	
  is	
  broken	
  but	
  BD	
  is	
  not.	
  
	
  
During	
  the	
  chemical	
  equilibraJon,	
  some	
  non-­‐
trivial	
  combinaJon	
  of	
  (B-­‐L)V	
  and	
  BD	
  is	
  conserved.	
  
	
  
The	
  sectors	
  subsequently	
  decouple.	
  

Case	
  2:	
  visible	
  to	
  dark	
  reprocessing	
  

η(BD) �= 0η((B − L)V ) �= 0

η((B − L)V ) ∼ η(BD)



VISIBLE	
  SECTOR	
   DARK	
  SECTOR	
  

asymmetry	
  	
  
created	
  here	
  

shared	
  s.t.	
  	
  

Case	
  3:	
  dark	
  to	
  visible	
  reprocessing	
  

η(BD) �= 0η((B − L)V ) �= 0

η((B − L)V ) ∼ η(BD)

IniJally,	
  BD	
  is	
  broken	
  but	
  (B-­‐L)V	
  is	
  not.	
  
	
  
During	
  the	
  chemical	
  equilibraJon,	
  some	
  non-­‐
trivial	
  combinaJon	
  of	
  (B-­‐L)V	
  and	
  BD	
  is	
  conserved.	
  
	
  
The	
  sectors	
  subsequently	
  decouple.	
  



Case	
  4:	
  iniJal	
  asymmetries	
  develop	
  independently	
  
IniJally,	
  both	
  (B-­‐L)V	
  and	
  BD	
  are	
  broken.	
  
	
  
To	
  relate	
  the	
  asymmetries,	
  subsequent	
  interacJons	
  should	
  preserve	
  some	
  non-­‐trivial	
  combinaJon	
  
of	
  (B-­‐L)V	
  and	
  BD.	
  
	
  
The	
  sectors	
  subsequently	
  decouple.	
  

VISIBLE	
  
SECTOR	
  

η((B − L)V ) �= 0

DARK	
  
SECTOR	
  

η(BD) �= 0

Asymmetry	
  created	
   Asymmetry	
  created	
  

η((B − L)V ) ∼ η(BD)

One	
  version	
  of	
  mirror	
  DM	
  cosmology:	
  sectors	
  remain	
  decoupled:	
  different	
  T,	
  but	
  idenJcal	
  
microphysics!	
  



CreaJng	
  an	
  asymmetry	
  (Sakharov	
  1967):	
  

1.   ViolaJon	
  of	
  parJcle	
  number	
  conservaJon	
  
2.   C	
  and	
  CP	
  violaJon	
  
3.   Out-­‐of-­‐equilibrium	
  process	
  

1.   Obvious	
  
	
  
2.	
  
	
  
3.	
  	
  	
  	
  

Rate i→ f(∆B = b) �= Rate ī→ f̄(∆B = −b)

Rate i→ f(∆B = b) �= Rate f → i(∆B = −b)

2.2	
  Asymmetry	
  generaJon	
  



Common	
  general	
  mechanisms:	
  
Out-­‐of-­‐equilibrium	
  decays	
  of	
  heavy	
  parJcles:	
  

Γ(ψ → x1 x2 . . .) �= Γ(ψ → x∗1 x∗2 . . .)

Affleck-­‐Dine:	
  producJon	
  of	
  charged	
  scalar	
  condensate	
  through	
  Jme-­‐dep.	
  phase.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Supersymmetry,	
  uses	
  flat	
  direcJons.	
  

First-­‐order	
  phase	
  transiJon:	
  nucleaJon	
  of	
  bubbles	
  of	
  true	
  vacuum,	
  sphalerons,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CP-­‐violaJng	
  collisions	
  with	
  bubble	
  walls.	
  

Asymmetric	
  freeze-­‐out:	
  DM	
  parJcles	
  coannihilate	
  with	
  SM	
  parJcles	
  at	
  a	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  different	
  rate	
  from	
  DM	
  anJparJcles.	
  

Asymmetric	
  thermal	
  producJon	
  (asymmetric	
  freeze-­‐in):	
  	
  DM	
  and	
  anJ-­‐DM	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  never	
  in	
  thermal	
  equilibrium;	
  slowly	
  produced	
  at	
  different	
  rates.	
  

Spontaneous	
  genesis:	
  	
  Sakharov	
  condiJons	
  presuppose	
  CPT	
  invariance.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Expanding	
  universe	
  induces	
  effecJve	
  CPT	
  violaJon.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Asymmetry	
  generaJon	
  in	
  eq.	
  without	
  C,	
  CP	
  violaJon.	
  



2.3	
  Freeze-­‐out	
  in	
  presence	
  of	
  an	
  	
  
asymmetry:	
  

Y�

Y�

Yeq

YΗ�0�

20 40 60 80 10010�12

10�11

10�10

10�9

10�8

x

Y��x�

Figure 1. Evolution of Y ±(x) illustrating the effect of the asymmetry η. After freeze-out both Y −

and Y + continue to evolve as the anti-particles find the particles and annihilate. The Y ±
η=0 curve

shows the abundance for η = 0, a mass m = 10 GeV and annihilation cross-section σ0 = 2 pb. In
contrast, with a non-zero asymmetry η = ηB = 0.88× 10−10 and same mass and cross-section, the
more abundant species (here Y +) is depleted less than when η = 0. Also shown is the equilibrium
solution Yeq(x).

In the above we have also defined req ≡ e−2ξ(x), where ξ is determined by

2 sinh ξ =
η

Yeq
. (2.13)

Notice from (2.12) that we have taken into account the temperature dependence in

heff and geff. Because geff is monotonically increasing with T , we see that the parentheses

in the definition of g1/2∗ is positive definite. In the numerical results that follow we use the

data table from DarkSUSY [48] for the temperature dependence of g∗(T ) and heff(T ).
6

Eq. (2.10) reproduces the well known case η = 0 for which one finds that r = 1 for

any x. We will instead focus on scenarios with η �= 0 in the following. As shown in Fig. 1,

the effect of nonzero η is to deplete the less abundant species more efficiently compared to

η = 0 for the same annihilation cross section and mass.

2.2 The relic abundance of asymmetric species

Equation (2.10) can be solved by numerical methods and imposing an appropriate initial

condition at a scale x = xi ≥ 10, where the non-relativistic approximation works very well.

Although we have chosen xi = 10, we have checked that larger values (10 < xi < xf , where

xf is defined below) do not alter the final result. From (2.10) one sees that in the early

6Note that we use the notation of DarkSUSY for the massless degrees of freedom parameters. To

translate our notation to that of Kolb and Turner [49] one should make the substitutions geff → g∗ and

heff → g∗S .

– 6 –
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Figure 2. Here we plot the annihilation cross section σ0 required to reproduce the correct DM

abundance ΩDM via a s-wave process n = 0 (above plot) and p-wave n = 1 (bottom plot) for a given

dark matter mass m, and for various values of the primordial asymmetry η = �ηB . The line for

� = 0 corresponds to the usual thermal WIMP scenario. Notice that the fractional asymmetry runs

from r∞ = 0 in the upper part of the curves to r∞ = 1 when the lines converge on the standard

thermal WIMP curve. The effect of the QCD phase transition appears as a bump at m � 20

GeV, as anticipated in the text. Note that the bottom plot is basically enhanced by a factor

Φn=0/Φn=1 ∼ (n + 1)xf compared to the former. As a reference, recall that 1 pb � 2.6 × 10
−9

GeV
−2

.
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Graesser,	
  Shoemaker,	
  Vecchi:	
  JHEP	
  1110	
  (2011)	
  110	
  

σ � few × σWIMP
to	
  annihilate	
  the	
  symmetric	
  
part	
  



2.4	
  Dark	
  interacJons	
  

A	
  logical	
  and	
  elegant	
  possibility	
  is	
  that	
  the	
  symmetric	
  part	
  annihilates	
  into	
  
light	
  dark-­‐sector	
  states	
  –	
  dark	
  radiaJon	
  –	
  to	
  parallel	
  what	
  happens	
  in	
  the	
  
visible	
  sector.	
  
	
  
There	
  are	
  many	
  microphysical	
  possibiliJes.	
  	
  Main	
  constraint	
  is	
  Neff	
  (see	
  later).	
  
	
  
A	
  simple,	
  elegant	
  possibility	
  is	
  an	
  unbroken	
  dark	
  U(1)	
  force	
  –	
  dark	
  EM.	
  
Dark-­‐charge	
  neutrality	
  =>	
  at	
  least	
  two	
  oppositely	
  charged	
  dark	
  species,	
  
plasma	
  ionised	
  or	
  in	
  neutral	
  dark	
  atoms.	
  	
  Direct-­‐detecJon	
  prospects	
  through	
  
kineJc	
  mixing	
  with	
  usual	
  photon.	
  

A	
  variant	
  on	
  dark	
  EM	
  has	
  U(1)	
  spontaneously	
  broken	
  and	
  dark	
  photon	
  massive,	
  
but	
  lighter	
  than	
  the	
  DM.	
  	
  The	
  symmetric	
  part	
  can	
  annihilate	
  into	
  dark	
  photons	
  
which,	
  through	
  kineJc	
  mixing,	
  subsequently	
  decay	
  into,	
  say,	
  e+e-­‐.	
  



AnnihilaJng	
  the	
  symmetric	
  part	
  
without	
  dark	
  radiaJon:	
  

D	
  

D	
  

SM	
  

SM	
  

annihilaJon	
  

direct	
  
detecJon	
  

D	
  

D	
  

SM	
  

SM	
  

m	
  

m	
  

m	
  

m	
  

D	
  

D	
  

SM	
  

SM	
  Direct	
  annihilaJon	
  to	
  SM	
  parJcles	
  
constrained	
  by	
  direct	
  detecJon	
  and	
  colliders.	
  
Role	
  for	
  flavour/Lorentz	
  structure.	
   annihilaJon	
  through	
  	
  

on-­‐shell	
  unstable	
  mediator	
  

contribuJon	
  to	
  direct	
  	
  
detecJon	
  through	
  loop	
  

Bai	
  et	
  al:	
  JHEP	
  1012	
  (2010)	
  048;	
  Buckley:	
  PRD	
  84	
  (2011)	
  043510;	
  Fox	
  et	
  al:	
  PRD86	
  (2012)	
  015010;	
  March-­‐Russell	
  et	
  al:	
  1203:4854	
  

collider	
  producJon	
  

An	
  example:	
  



2.5	
  	
  Dark	
  maeer	
  mass	
  scale	
  

The	
  few-­‐GeV	
  scale	
  arises	
  when	
  the	
  asymmetry	
  transfer	
  or	
  simultaneous	
  
genesis	
  interacJons	
  decouple	
  while	
  the	
  DM	
  parJcle	
  is	
  relaJvisJc.	
  
	
  
AlternaJve:	
  the	
  decoupling	
  temperature	
  is	
  of	
  order	
  the	
  DM	
  mass,	
  but	
  
somewhat	
  smaller.	
  	
  Then	
  the	
  DM	
  parJcle	
  is	
  starJng	
  to	
  become	
  Boltzmann	
  
suppressed	
  as	
  the	
  transfer	
  stops.	
  	
  The	
  DM	
  number	
  density	
  is	
  lower,	
  and	
  hence	
  
the	
  mass	
  scale	
  must	
  be	
  higher	
  e.g.	
  weak	
  scale,	
  or	
  RH	
  breaking	
  scale,	
  etc.	
  
	
  
DM	
  mass	
  scale	
  ~	
  (5	
  –	
  10)	
  x	
  transfer	
  decoupling	
  temperature.	
  

See	
  e.g.	
  	
  Barr,	
  Chivukula,	
  Farhi:	
  PLB241	
  (1990)	
  387.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cohen,	
  Zurek:	
  PRL	
  104	
  	
  (2010)	
  101301	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Buckley,	
  Randall:	
  JHEP	
  1109	
  (2011)	
  009	
  	
  

Focus	
  on	
  the	
  more	
  common	
  few-­‐GeV	
  scale	
  case	
  here.	
  
For	
  ADM	
  to	
  be	
  really	
  compelling,	
  need	
  good	
  reason	
  for	
  
this	
  mass	
  scale.	
  



The	
  DM	
  mass	
  you	
  need	
  depends	
  on	
  the	
  ADM	
  model.	
  

Baryon-­‐symmetric	
  models:	
   mDM � qDM × (1.6− 5) GeV

Other	
  cases:	
  depends	
  on	
  details	
  of	
  the	
  chemical	
  equilibrium.	
  
	
  
One	
  special	
  case	
  (single	
  dark	
  baryon	
  species,	
  relaJvisJc	
  decoupling):	
  

mDM � q−1
DM
× (5− 7) GeV

Ibe	
  et	
  al	
  PLB708,	
  112	
  (2012)	
  

qDM	
  =	
  baryonic	
  charge	
  of	
  DM	
  

Ideas:	
  (1)	
  mDM	
  ~	
  QCD	
  scale,	
  e.g.	
  mirror	
  DM	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (2)	
  mDM	
  =	
  (λ~10-­‐2)	
  x	
  mEW	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3)	
  hidden	
  sector	
  visible	
  sector	
  dark	
  sector	
  



Recipe	
  for	
  ADM	
  model	
  building:	
  

•  Choose	
  case	
  1,	
  2,	
  3	
  or	
  4	
  and	
  specify	
  the	
  visible-­‐dark	
  	
  
	
  	
  	
  	
  	
  	
  interacJons	
  
•  Choose	
  an	
  asymmetry-­‐generaJng	
  dynamics	
  
•  Define	
  the	
  internal	
  microphysics	
  of	
  the	
  dark	
  sector	
  
•  Explain	
  how	
  the	
  symmetric	
  dark	
  component	
  is	
  

	
  annihilated	
  
•  Make	
  sure	
  no	
  astro/cosmo/parJcle	
  constraints	
  are	
  

	
  violated	
  

Many	
  papers	
  do	
  not	
  specify	
  all	
  of	
  these	
  elements	
  



Case	
  1:	
  Baryon-­‐symmetric	
  

Hylogenesis	
  (Davoudiasl	
  et	
  al	
  2010):	
  

(i)  Asymmetry	
  generaJon	
  due	
  to	
  out-­‐of-­‐equilibrium	
  decays.	
  

(ii)  Mediator	
  sector:	
  	
  Dirac	
  fermions	
  X1,2	
  with	
  MX2	
  >	
  MX1	
  >	
  TeV.	
  	
  X1	
  produced	
  
	
  non-­‐thermally	
  in	
  early	
  universe	
  by	
  condensate	
  decay.	
  

(iii) 	
  Dark	
  sector	
  is:	
  	
  spont.	
  broken	
  U(1)’	
  gauge	
  theory;	
  kineJc	
  mixing	
  w	
  photon	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DM	
  is	
  Dirac	
  fermion	
  Y,	
  complex	
  scalar	
  Φ;	
  GeV-­‐scale	
  masses	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  U(1)’:	
  	
  X’s	
  are	
  neutral,	
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We present a novel mechanism for generating both the baryon and dark matter densities of the
Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the
Standard Model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced
non-thermally in low-temperature reheating, sequester antibaryon number in the hidden sector,
thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark
matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of
dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

I. Introduction: Precision cosmological measurements
indicate that a fraction Ωb ! 0.046 of the energy content
of the Universe consists of baryonic matter, while Ωd !
0.23 is made up of dark matter (DM) [1]. Unfortunately,
our present understanding of elementary particles and
interactions, the Standard Model (SM), cannot account
for the abundance of either observed component of non-
relativistic particles.
In this Letter we propose a unified mechanism,

hylogenesis1, to generate the baryon asymmetry and the
dark matter density simultaneously. The SM is extended
to include a new hidden sector of states with masses near
a GeV and very weak couplings to the SM. Such sectors
arise in many well-motivated theories of physics beyond
the SM, and have received much attention within the
contexts dark matter models [2], and high luminosity,
low-energy precision measurements [3].
The main idea underlying our mechanism is that some

of the particles in the hidden sector are charged under
a generalization of the global baryon number (B) sym-
metry of the SM. This symmetry is not violated by any
of the relevant interactions in our model. Instead, equal
and opposite baryon asymmetries are created in the vis-
ible and hidden sectors, and the Universe has zero total
B. These asymmetries are generated when (i) the TeV-
scale states X1 and its antiparticle X̄1 (carrying equal
and opposite B charge) are generated non-thermally in
the early Universe (e.g., during reheating), and (ii) X1

decays into visible and hidden baryonic states. The X1

decays violate quark baryon number and CP, and oc-
cur away from equilibrium. Both the visible and hidden
baryons are stable due to a combination of kinematics
and symmetries. The relic density of the hidden baryons
is set by their asymmetry, and they make up the dark
matter of the Universe. We compute the baryon and
dark matter densities within a concrete model realizing

1 From Greek, hyle “primordial matter” + genesis “origin.”

this mechanism in Section II.
A potentially spectacular signature of our model is that

rare processes can transfer baryon number from the hid-
den to the visible sector. Effectively, antibaryonic dark
matter states can annihilate baryons in the visible sector
through inelastic scattering. These events mimic nucleon
decay into a meson and a neutrino, but are distinguish-
able from standard nucleon decay by the kinematics of
the meson. In Section III, we discuss this signature in
more detail, along with its implications for direct detec-
tion and astrophysical systems.
We note that our scenario shares some elements with

Refs. [4–11], but involves a different production mecha-
nism and unique phenomenological consequences.
II. Genesis of Baryons and DM: In our model, the
hidden sector consists of two massive Dirac fermions Xa

(a = 1, 2, with masses mX2
> mX1

! TeV), a Dirac
fermion Y , and a complex scalar Φ (with masses mY ∼
mΦ ∼ GeV). These fields couple through the “neutron
portal” (XU cDcDc) and a Yukawa interaction:

− L ⊃
λa

M2
X̄aPRd ūcPRd+ ζa X̄aY

cΦ∗ + h.c. (1)

Many variations on these operators exist, corresponding
to different combinations of quark flavors and spinor con-
tractions. With this set of interactions one can define a
generalized global baryon number symmetry that is con-
served, with chargesBX = −(BY +BΦ) = 1. The proton,
Y , and Φ are stable due to their B and gauge charges if
their masses satisfy

|mY −mΦ| < mp +me < mY +mΦ . (2)

Y and Φ are the “hidden antibaryons” that comprise the
dark matter. Furthermore, there exists a physical CP-
violating phase arg(λ∗

1λ2ζ1ζ∗2 ) that cannot be removed
through phase redefinitions of the fields.
We also introduce a hidden U(1)′ gauge symmetry un-

der which Y and Φ have opposite charges±e′, whileXa is
neutral. We assume this symmetry is spontaneously bro-
ken at the GeV scale, and has a kinetic mixing with SM
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FIG. 1: Tree-level and one-loop graphs for decay X1 → udd.

hypercharge U(1)Y via the coupling −κ
2
BµνZ ′

µν , where
Bµν and Z ′

µν are the U(1)Y and U(1)′ field strength ten-
sors. At energies well below the electroweak scale the
effect of this mixing is primarily to generate a vector
coupling of the massive Z ′ gauge boson to SM particles
with strength −cWκQeme. The GeV-scale Z ′ masses
we consider here can be consistent with observations for
10−6 ! κ ! 10−2 [3].
Baryogenesis begins when a non-thermal, CP-

symmetric population of X1 and X̄1 is produced in the
early Universe. These states decay through X1 → udd
or X1 → ȲΦ∗ (and their conjugates). An asymmetry
between the partial widths for X1 → udd and X̄1 → ūd̄d̄
arises from interference between the diagrams shown in
Fig. 1, and is characterized by

ε =
1

2ΓX1

[

Γ(X1 → udd)− Γ(X̄1 → ūd̄d̄)
]

(3)

#
m5

X1
Im[λ∗

1λ2ζ1ζ∗2 ]

256π3 |ζ1|2 M4mX2

,

where we have assumed that the total decay rate ΓX1

is dominated by X1 → Ȳ Φ∗ over the three-quark mode,
and that mX2

$ mX1
. For ε %= 0, X1 decays generate

a baryon asymmetry in the visible sector, and by CPT
an equal and opposite baryon asymmetry in the hidden
sector. These asymmetries can be “frozen in” by the
weakness of the coupling between both sectors.
We model the non-thermal production of X1 as a re-

heating process after a period where the energy content
of the Universe was dominated by the coherent oscilla-
tions of a scalar field ϕ. This field could be the inflaton,
or it could be a moduli field arising from an underlying
theory with supersymmetry [12] or a compactification of
string theory [13]. As ϕ oscillates, it decays to visible
and hidden sector states reheating these two sectors. We
suppose that a fraction of the ϕ energy density ρϕ is con-
verted into X1, X̄1 states, while the remainder goes into
visible and hidden sector radiation which quickly ther-
malizes due to gauge interactions.
The dynamics of hylogenesis and reheating are gov-

erned by the Boltzmann equations

d

dt

(

a3ρϕ
)

= −Γϕ a3ρϕ , (4a)

d

dt

(

a3s
)

= +Γϕ a3ρϕ/T , (4b)

d

dt

(

a3nB

)

= εNXΓϕa
3ρϕ/mϕ (4c)

with ϕ mass mϕ and decay rate Γϕ. s ≡ sHS + sSM =
(2π2/45)gsT 3 is the total entropy density of SM and HS

states (assumed in kinetic equilibrium at temperature
T with an effective number of entropy degrees of free-
dom gs(T ) ), and nB is the baryon number density in
the visible sector (i.e. quarks). The scale factor a(t) is
determined by the Friedmann equation H2 ≡ (ȧ/a)2 =
(8πG/3) (ρϕ + ρr), where ρr ≡ (π2/30)gT 4 is the total
radiation density and g(T ) is the effective number of de-
grees of freedom. NX is the average number of X1 states
produced per ϕ decay.
Eq. (4a) describes the depletion of the oscillating field

energy due to redshifting and direct ϕ decays and has the
simple solution ρϕ ∝ e−Γϕta−3, while Eq. (4b) gives the
rate of entropy production due to decays and describes
the reheating of the Universe. We adopt the convention
that reheating occurs at temperature TRH , defined when
ρr(TRH) = ρϕ(TRH). This occurs near the characteristic
decay time t # Γ−1

ϕ , where the total decay width Γϕ takes
the form [9, 13] Γϕ = m3

ϕ/(4πΛ2). Here, Λ is a large
energy scale corresponding to the underlying ultraviolet
dynamics. For example, Λ ∼ MPl = 2.43 × 1018 GeV
for many moduli in string theory or supergravity. At
reheating, the radiation temperature is approximately [9]

TRH # 5 MeV

(

10

g

)1/4 (MPl

Λ

)

( mϕ

100 TeV

)3/2
. (5)

We require TRH " 5MeV to maintain successful nucle-
osynthesis.
Eq. (4c) determines the comoving density of visible

baryons. The remnant of the intermediate X1 stage ap-
pears in the right-hand-side of Eq. (4c). The factor ε
encodes the X1 decay asymmetry. In writing Eq. (4) we
implicitly take mX1

$ T and ΓX1
$ Γϕ, H . The former

condition implies inverse decays and scattering reactions
that could wash out the asymmetry, such as ūX1 → dd ,
are suppressed by Boltzmann factors of e−mX1

/T , while
the latter condition is satisified for |ζ1| $ m2

ϕ/(mX1
Λ).

The hidden-visible baryon asymmetry can also be washed
out by YΦ → 3q̄ scattering. A sufficient condition for this
washout process to be ineffective is

TRH ! (2 GeV)





∑

a,b

λaλ∗

bζ
∗

aζb TeV6

M4mXamXb





−1/5

. (6)

The allowed TRH increases roughly linearly with the mass
scale (M4m2

X1,2
)1/6.

The resulting baryon asymmetry today is given by

ηB ≡ nB/s =
εNXTRH

mϕ
f(mϕΓϕ) . (7)

Assuming that reheating occurs instantaneously, one can
show analytically that f = 3/4. A numerical solution to
Eqs. (4) reveals f # 1.2, with less than 10% variation
over a wide range of (mϕ,Γϕ). Larger values of TRH

(larger mϕ for fixed Λ) allow for greater production of
baryons.
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FIG. 1: Tree-level and one-loop graphs for decay X1 → udd.
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or it could be a moduli field arising from an underlying
theory with supersymmetry [12] or a compactification of
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states (assumed in kinetic equilibrium at temperature
T with an effective number of entropy degrees of free-
dom gs(T ) ), and nB is the baryon number density in
the visible sector (i.e. quarks). The scale factor a(t) is
determined by the Friedmann equation H2 ≡ (ȧ/a)2 =
(8πG/3) (ρϕ + ρr), where ρr ≡ (π2/30)gT 4 is the total
radiation density and g(T ) is the effective number of de-
grees of freedom. NX is the average number of X1 states
produced per ϕ decay.
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energy due to redshifting and direct ϕ decays and has the
simple solution ρϕ ∝ e−Γϕta−3, while Eq. (4b) gives the
rate of entropy production due to decays and describes
the reheating of the Universe. We adopt the convention
that reheating occurs at temperature TRH , defined when
ρr(TRH) = ρϕ(TRH). This occurs near the characteristic
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ϕ , where the total decay width Γϕ takes
the form [9, 13] Γϕ = m3

ϕ/(4πΛ2). Here, Λ is a large
energy scale corresponding to the underlying ultraviolet
dynamics. For example, Λ ∼ MPl = 2.43 × 1018 GeV
for many moduli in string theory or supergravity. At
reheating, the radiation temperature is approximately [9]
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Eq. (4c) determines the comoving density of visible

baryons. The remnant of the intermediate X1 stage ap-
pears in the right-hand-side of Eq. (4c). The factor ε
encodes the X1 decay asymmetry. In writing Eq. (4) we
implicitly take mX1

$ T and ΓX1
$ Γϕ, H . The former

condition implies inverse decays and scattering reactions
that could wash out the asymmetry, such as ūX1 → dd ,
are suppressed by Boltzmann factors of e−mX1

/T , while
the latter condition is satisified for |ζ1| $ m2

ϕ/(mX1
Λ).

The hidden-visible baryon asymmetry can also be washed
out by YΦ → 3q̄ scattering. A sufficient condition for this
washout process to be ineffective is
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. (6)
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The resulting baryon asymmetry today is given by
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εNXTRH
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Assuming that reheating occurs instantaneously, one can
show analytically that f = 3/4. A numerical solution to
Eqs. (4) reveals f # 1.2, with less than 10% variation
over a wide range of (mϕ,Γϕ). Larger values of TRH

(larger mϕ for fixed Λ) allow for greater production of
baryons.
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For the parameter values mϕ = 2000 TeV, Λ = MPl,
NX = 1, we find TRH ! 400 MeV and ηB/ε ! 2.5×10−7.
The observed value of the baryon asymmetry is obtained
for Im[λ∗

1λ2ζ2/ζ1]m5
X1

/(M4mX2
) ∼ 3. Smaller values of

ε and mϕ are viable for Λ < MPl.
We have implicitly assumed that the Z ′ maintains ki-

netic equilibrium between the SM and hidden sectors.
This will occur if ΓZ′〈1/γ〉 > H , where γ is a relativistic
time dilation factor, which implies [14]

κ > 1.5× 10−8
( g

10

)1/2 ( mZ′

GeV

)−1
(

T

GeV

)3/2

, (8)

provided TRH > mZ′ . After baryogenesis, the CP-
symmetric densities of hidden states are depleted very
efficiently through annihilation Y Ȳ → Z ′Z ′ and ΦΦ∗ →
Z ′Z ′ provided mZ′ < mY , mΦ, with the Z ′ decaying
later to SM states by mixing with the photon. The cross-
section for Y Ȳ → Z ′Z ′ is given by [14]

〈σv〉 =
e′4

16π

1

m2
Y

√

1−m2
Z′/m2

Y (9)

! (1.6× 10−25cm3/s)

(

e′

0.05

)4 (3 GeV

mY

)2

.

Annihilation of Φ∗Φ is given by a similar expression.
These cross sections are much larger than what is needed
to obtain the correct DM abundance by ordinary ther-
mal freeze-out, and all of the non-asymmetric DM den-
sity will be eliminated up to an exponentially small re-
mainder [15]. Note that the annihilation process may
occur later than is typical for thermal freeze-out for
TRH ! mY,Φ/20, but even in this case the remaining
non-asymmetric density will be negligibly small [16].
The role of the hidden Z ′ in our model is to ensure

the thermalization and symmetric annihilation of Y and
Φ. A more minimal alternative is to couple Φ to the SM
Higgs boson h via the operator ξ |h|2|Φ|2. For ξ " 10−3,
this interaction, together with Y XΦ and |Φ|4, appears
to be sufficient for both thermalization and symmetric
annihilation.
The residual CP-asymmetric density of Y,Φ is not

eliminated and makes up the DM [17]. The relic num-
ber density is fixed by total baryon number conservation:
nY = nΦ = nB. Thus the ratio between the energy den-
sities of DM and visible baryons is

Ωd/Ωb = (mY +mΦ)/mp . (10)

Present cosmological observations imply Ωd/Ωb =
4.97 ± 0.28 [1], which corresponds to a range
4.4GeV ! mY +mΦ ! 4.9GeV, or 1.7GeV !
mY ,mΦ ! 2.9GeV when combined with the con-
straint |mY −mΦ| < mp +me.
III. Dark Matter Signatures: A novel signature
of this mechanism is that DM can annihilate nucle-
ons through inelastic scattering processes of the form

X1,2

Y,Φ Φ∗, Ȳ

u
u
d

u
s̄p K+

FIG. 2: Diagram for induced nucleon decay processes pY →
K+Φ∗ and pΦ → K+Ȳ .

Y N → Φ∗M and ΦN → Ȳ M mediated byX1,2, whereN
is a nucleon and M is a meson (Fig. 2). We call this pro-
cess induced nucleon decay (IND). IND mimics standard
nucleon decay N → Mν, but with different kinemat-
ics of the daughter meson, summarized in Table I. For
down-scattering processes, where the mass of the initial
DM state is greater than the final DM state, the meson
momentum pM from IND can be much greater than in
nucleon decay. The quoted range of pM corresponds to
the range of allowed masses (mY ,mΦ) consistent with
Eqs. (2, 10). For fixed masses, pM is monochromatic,
with negligible broadening from the local DM halo ve-
locity. (We also note a related study considering lepton-
number violating inelastic DM-nucleon scattering [18].)
To estimate the rate of IND we consider the specific op-

erator (λa/M2)(ūcd)R(X̄s)R that mediates Φp → Ȳ K+,
illustrated in Fig. 2. Treating the Φ and Y states as
spectators, the hadronic matrix element can be estimated
from the value computed for the p → K+ν decay through
the corresponding three-quark operator [19]. We find
that the sum of the IND scattering rates pΦ → K+Ȳ
and pY → K+Φ∗ is given by

(σv)IND = C (10−39cm3/s)

∣

∣

∣

∣

∣

∑

a

TeV3

maM2/λ∗
aζa

∣

∣

∣

∣

∣

2

(11)

where 0.5 < C < 1.6, depending on mΦ,Y within the al-
lowed range. We expect IND modes from other operators
to be roughly comparable. This estimate, which relies on
a chiral perturbation theory expansion that is expected
to be poorly convergent for pM ∼ 1 GeV, is approximate
at best.
An effective proton lifetime τp can be defined as the

inverse IND scattering rate per target nucleon, τ−1
p =

nDM (σv)IND . With a local DM density of 0.3 GeV/cm3,
(σv)IND = 10−39cm3/s corresponds to a lifetime of
τp ! 1032 yr. This is similar to the current lifetime bound

Decay mode pSND
M (MeV) pIND

M (MeV)

N → π 460 800 - 1400

N → K 340 680 - 1360

N → η 310 650 - 1340

TABLE I: Daughter meson M ∈ {π,K, η} momentum pM for
standard nucleon decay (SND) and down-scattering IND.
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cess induced nucleon decay (IND). IND mimics standard
nucleon decay N → Mν, but with different kinemat-
ics of the daughter meson, summarized in Table I. For
down-scattering processes, where the mass of the initial
DM state is greater than the final DM state, the meson
momentum pM from IND can be much greater than in
nucleon decay. The quoted range of pM corresponds to
the range of allowed masses (mY ,mΦ) consistent with
Eqs. (2, 10). For fixed masses, pM is monochromatic,
with negligible broadening from the local DM halo ve-
locity. (We also note a related study considering lepton-
number violating inelastic DM-nucleon scattering [18].)
To estimate the rate of IND we consider the specific op-

erator (λa/M2)(ūcd)R(X̄s)R that mediates Φp → Ȳ K+,
illustrated in Fig. 2. Treating the Φ and Y states as
spectators, the hadronic matrix element can be estimated
from the value computed for the p → K+ν decay through
the corresponding three-quark operator [19]. We find
that the sum of the IND scattering rates pΦ → K+Ȳ
and pY → K+Φ∗ is given by

(σv)IND = C (10−39cm3/s)

∣

∣

∣

∣

∣

∑

a

TeV3

maM2/λ∗
aζa

∣

∣

∣

∣

∣

2

(11)

where 0.5 < C < 1.6, depending on mΦ,Y within the al-
lowed range. We expect IND modes from other operators
to be roughly comparable. This estimate, which relies on
a chiral perturbation theory expansion that is expected
to be poorly convergent for pM ∼ 1 GeV, is approximate
at best.
An effective proton lifetime τp can be defined as the

inverse IND scattering rate per target nucleon, τ−1
p =

nDM (σv)IND . With a local DM density of 0.3 GeV/cm3,
(σv)IND = 10−39cm3/s corresponds to a lifetime of
τp ! 1032 yr. This is similar to the current lifetime bound

Decay mode pSND
M (MeV) pIND

M (MeV)

N → π 460 800 - 1400

N → K 340 680 - 1360

N → η 310 650 - 1340

TABLE I: Daughter meson M ∈ {π,K, η} momentum pM for
standard nucleon decay (SND) and down-scattering IND.



Affleck-­‐Dine	
  pangenesis	
  (from	
  von	
  Harling,	
  Petraki,	
  RV	
  2012):	
  
See	
  also:	
  	
  Bell,	
  Petraki,	
  Shoemaker,	
  RV;	
  Cheung,	
  Zurek;	
  cited	
  earlier	
  

(i)  Asymmetry	
  generaJng	
  mechanism	
  is	
  AD:	
  	
  coherent	
  oscillaJons	
  of	
  “charged”	
  
	
  scalar	
  field	
  defining	
  a	
  flat	
  direcJon	
  in	
  a	
  susy	
  theory.	
  

	
  
(ii)  Visible	
  sector	
  is	
  the	
  MSSM	
  plus	
  RH	
  neutrino	
  superfields.	
  	
  Role	
  of	
  BV	
  is	
  (B-­‐L)V.	
  

(iii)  Dark	
  sector:	
  	
  U(1)D	
  gauge	
  theory;	
  Δ,	
  Λ	
  chiral	
  superfields	
  &	
  vector-­‐like	
  
partners:	
  

(iv)  U(1)D	
  dark	
  EM	
  annihilates	
  the	
  symmetric	
  part.	
  

(v)  Choose	
  flat	
  direcJon,	
  e.g.	
  	
  

right-handed neutrinos. Including these fields yields additional F -term constraints which lift
FDs involving the SU(2)L-invariant combination LHu already at the renormalisable level.
Furthermore, the product of different visible-sector monomials which individually correspond
to F -flat directions does not always correspond to an F -flat direction itself. This should be

taken into account when using Table 2. Let us now consider monomials O(d)
q . Since the

dark-sector superpotential in Eq. (5.2) only contains mass terms, all such monomials fulfil
the constraints from F -flatness at the renormalisable level.

In summary, FDs which are suitable for pangenesis are associated with monomials of
the type shown in Eq. (5.4) with the constraint that the visible-sector component satisfies
the F -flatness conditions arising from the renormalisable superpotential of Eq. (5.1). The set
of these monomials obviously depends on the (B − L)-charge of the ‘basis monomials’ ∆Λ
and ∆̄Λ̄. For example, for the choices qDM = 1

2 , 2, 3, such directions are, amongst others:

(∆Λ)2ucdcdc for qDM =
1

2
, (5.5)

∆Λ (ucdcdc)2 for qDM = 2, (5.6)

∆Λ dcdcdcLL for qDM = 3. (5.7)

Since there are three families of quarks and leptons, each of these monomials actually gives
rise to several FDs. The above monomials are (by construction) the lowest order gauge-
invariant operators involving a particular set of fields. They ultimately lift the corresponding
FDs, and they are responsible for the generation of a net X charge, according to the dynamics
described in the previous section.

However, it is possible that other non-renormalisable operators of lower order also con-
tribute to the potential along the field directions associated with the monomials of pangenesis.
This is the case if there exist gauge-invariant operators of the type

Wlift ⊃
1

Mn−3
∗

χOn−1(φi) , (5.8)

where χ is a field that does not participate in the FD under consideration, and On−1(φi) is
a dimension-(n− 1) operator involving only FD fields φi (but not necessarily the entirety of
them). To reproduce the dynamics described in Sec. 4, it is necessary that n > d, where d
is the dimension of the X-violating monomial in the superpotential. This ensures that the
term |φ|2(n−1), which the superpotential term of Eq. (5.8) contributes to the FD potential,
has a negligible effect on the dynamics of the AD field.

In the preceding discussion, we identified FDs for which no operators of the type of
Eq. (5.8) with n ! 3 exist. Let us now discuss operators of this type, potentially relevant for
directions of pangenesis, with n > 3. There are no such operators involving only dark-sector
fields, as long as the FD involves either the monomial ∆Λ or ∆̄Λ̄, but not both. Indeed, all
dark-sector gauge-invariant monomials have the form

Wlift ⊃
1

M2k+2!−3
∗

(∆∆̄)k(ΛΛ̄)! , (5.9)

where k and # are positive integers. The contribution of these terms to the potential vanishes
for k+# " 2 since ∆̄ = Λ̄ = 0, along a FD involving only∆Λ (and vice versa if the FD contains
∆̄Λ̄). On the other hand, the richer field content of the visible sector may allow for operators
of the type of Eq. (5.8), If such operators exist, they may reduce the multiplicity of the FDs
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(vi)  The	
  dark	
  maeer	
  is	
  “atomic”,	
  U(1)D	
  hydrogen-­‐like	
  bound	
  states	
  of	
  the	
  
	
  fermionic	
  components	
  δ	
  (“dark	
  proton”)	
  and	
  λ	
  (“dark	
  electron”)	
  of	
  Δ	
  	
  
	
  and	
  Λ,	
  respecJvely.	
  Dark	
  maeer	
  mass:	
  mδ	
  +	
  mλ	
  =	
  	
  qDM	
  (1.6	
  –	
  5)	
  GeV.	
  
	
  (Ensure	
  that	
  LSP	
  is	
  underabundant.)	
  

	
  
(vii)	
  Constraints:	
  

A.	
  	
  Atomic	
  DM	
  recombinaJon	
  before	
  maeer-­‐rad	
  equality.	
  	
  Easily	
  saJsfied.	
  
	
  
B.   Self	
  interacJon	
  upper	
  bound	
  from	
  Bullet	
  cluster	
  	
  αD	
  >	
  0.1	
  or	
  so.	
  

C.   Dark	
  radiaJon	
  …	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  assuming	
  massless	
  dark	
  photons,	
  which	
  is	
  not	
  ruled	
  out.	
  
	
  
	
  
	
  
Can	
  also	
  spontaneously	
  break	
  U(1)D	
  and	
  have	
  the	
  dark	
  Z’	
  (sub-­‐GeV	
  
mass)	
  decay	
  via	
  kineJc	
  mixing	
  with	
  photons	
  into	
  SM	
  states.	
  

∆Neff � 0.45



Case	
  2:	
  Visible-­‐to-­‐dark	
  

One	
  example	
  will	
  be	
  briefly	
  described	
  for	
  completeness.	
  
Kaplan,	
  Luty,	
  Zurek:	
  PRD	
  79	
  (2009)	
  115016	
  	
  

(i) 	
  B-­‐L	
  asymmetry	
  is	
  generated	
  at	
  a	
  high	
  scale	
  via	
  an	
  unspecified	
  mechanism.	
  
	
  
(ii)  Dark	
  sector:	
  gauge	
  singlet	
  superfields	
  X,	
  Xbar	
  with	
  L	
  =	
  ±1/2	
  and	
  susy	
  mass.	
  

(iii)  Transfer	
  operator	
  is	
  	
  
	
  
(iv)  AnnihilaJon	
  of	
  symmetric	
  part:	
  e.g.	
  light	
  NMSSM	
  pseudoscalar	
  like	
  in	
  Haba	
  &	
  

	
  Matsumoto	
  model.	
  	
  Second	
  example:	
  use	
  fields	
  in	
  the	
  UV	
  compleJon.	
  
	
  
(v)  DM	
  mass	
  =	
  11-­‐13	
  GeV.	
  	
  Origin	
  of	
  mass	
  scale	
  suggested	
  as	
  NMSSM	
  EW	
  physics:	
  
	
  

This paper is organized as follows. In Section 2, we describe concrete models and
explain in detail how they give rise to the observed dark matter density. In Section
3, we discuss direct detection signals. In Section 4, we discuss novel collider signals

in this class of models. Section 5 contains our conclusions.

2 Models

It is simple to construct specific models that generate ADM, and we will give three

examples below. We find it simplest to explain the details of the mechanism in terms
of a specific “reference” model. The remaining models will be described more briefly.

2.1 Reference Model: L = 1
2

ADM

We begin with a supersymmetric model in which the dark matter carries lepton
number. Supersymmetry (SUSY) is not necessary for the dark matter mechanism we
are studying, but it allows a direct connection to a realistic and compelling model

of electroweak physics, and leads to very interesting collider phenomenology. Before
going into the details of the model, we outline its general features:

• The dark matter sector consists of a pair of gauge singlet chiral superfields X, X̄
with L = ±1

2
. This allows a supersymmetric mass term of the form X̄X. There

may be ∆L = 2 breaking of lepton number from Majorana neutrino masses, but

a Z4 subgroup of U(1)L remains unbroken. This forbids Majorana mass terms
of the form X2 and X̄2 that can efficiently wipe out the asymmetry, and also

guarantees that the lightest component of X is a stable dark matter candidate.

• A B − L asymmetry generated at high scales is transfered to the dark matter

via the effective interaction

∆Weff =
1

Mi
X̄2LiHu, (2.1)

where Mi is a high mass scale parameterizing the new physics that generates
the interaction. The lowest-dimension interactions allowed by the unbroken

Z4 subgroup of U(1)L are dimension-5 operators of the form ∆W ∼ X4. As
long as these drop out of equilibrium at a temperature where Eq. (2.1) is still

in equilibrium, the asymmetry will be transfered to the visible sector. The
interaction Eq. (2.1) naturally goes out of equilibrium as the tempurature drops

further, and the dark matter asymmetry freezes in.

3

The fact that the X mass is somewhat larger than the näıve estimate of 5 GeV is due
to X < B, which in turn can be traced to the fact that the model contains more ba-
ryons than X particles: in relativistic equilibrium conserved charges are proportional

to the number of degrees of freedom carrying that charge.3

It is also possible that the interactions Eq. (2.1) decouple below the electroweak

phase transition. In this case, integrating out both the top and the superpartners,
we obtain

X

B
=

13

40
(2.12)

and therefore

mX ! 13 GeV. (2.13)

We now discuss the origin of the dark matter mass. This is a supersymmetric Dirac
mass arising from a superpotential term ∆W = mXX̄X. The question of why mX is

close to the weak scale is similar to the “µ problem” of supersymmetric models, which
is explaining the origin of the supersymmetric Higgs mass term ∆Weff = µHuHd.
Perhaps the simplest solution is the next-to-minimal supersymmetric standard model

(NMSSM) in which the required mass terms are given by the VEV of a singlet field
S:

∆W = λXSXX̄ + λHSHuHd +
κ

3
S3. (2.14)

This model naturally generates a VEV for S of order the electroweak scale and gives
the required mass terms for Higgs and X particles. Very importantly for dark matter
phenomenology, it also gives a direct coupling of X to the standard model, allowing

the dark matter to be directly detected.

The final ingredient is that the thermal abundance of X particles and antiparticles

must efficiently annihilate, so that the relic density of dark matter is given by the X
particle-antiparticle asymmetry. This requires 〈σannv〉 >∼ pb. In the context of the

NMSSM, a simple possibility is X̄X → aa, where a is the lightest pseudoscalar in
the Higgs sector. This is unsuppressed in the early universe as long as ma <∼ mX .
It is natural for a to be light if A terms are small, in which case a is a pseudo

Nambu-Goldstone boson of a global U(1)R symmetry. The annihiation comes from
the coupling

∆Leff = mXX̄Xeia/s + h.c., (2.15)

3We must also impose the condition that the universe has no net electric charge. Since X does
not carry charge, this condition restricts only the relative number of standard model particles, and
does not affect the scaling argument above.
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Incomplete	
  reference	
  list:	
  
Foot,	
  RV:	
  PRD68	
  (2003)	
  021304;	
  69	
  (2004)	
  123510	
  
Shelton,	
  Zurek:	
  PRD82	
  (2010)	
  123512	
  
Haba,	
  Matsumoto:	
  Prog	
  Theor	
  Phys	
  125	
  (2011)	
  1311	
  
Buckley,	
  Randall:	
  JHEP	
  1109	
  (2011)	
  009	
  

Mirror	
  DM	
  (Foot	
  and	
  RV,	
  2003-­‐2004):	
  

The	
  dark	
  sector	
  is	
  isomorphic	
  to	
  the	
  SM,	
  and	
  a	
  discrete	
  symmetry	
  between	
  
them	
  is	
  enforced.	
  
	
  
Microphysics	
  is	
  the	
  same,	
  but	
  cosmological	
  macrophysics	
  MUST	
  be	
  different:	
  
T’	
  <	
  T	
  at	
  BBN	
  =>	
  different	
  astrophysical	
  evoluJon	
  in	
  the	
  two	
  sectors.	
  

effecJve	
  ops.	
  for	
  reprocessing	
  asym.	
  

L = LSM(ψ) + LSM(ψ�
) + �FµνF �

µν + κφ†φφ�†φ�
+

�
1

MN ij
L̄iφ̃ R�

jφ
�
+ H.c.

�

Steps:	
  	
  (1)	
  InflaJon:	
  T’>0,	
  T=0.	
  	
  (2)	
  Then	
  B’/L’	
  mirror	
  asymmetries	
  generated.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3)	
  EffecJve	
  ops.	
  reprocess	
  into	
  B/L	
  asymmetries.	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4)	
  “Magic”:	
  something	
  causes	
  heaJng	
  of	
  ordinary	
  sector,	
  so	
  that	
  T	
  >	
  T’.	
  

Case	
  3:	
  dark-­‐to-­‐visible	
  



We	
  analysed	
  the	
  outcomes	
  for	
  different	
  i,j	
  dominaJng	
  the	
  asymmetry	
  
transfer,	
  and	
  for	
  the	
  case	
  that	
  the	
  iniJal	
  state	
  is:	
  

B = L = 0 B�
u1R

= B�
d1R

= B�
d2R
�= 0L�

L1
= L�

L2
= L�

L3
�= 0

You	
  get	
  ΩB	
  ~	
  ΩB’	
  always,	
  and	
  ΩB	
  ≈	
  0.22	
  ΩB’	
  for	
  i,j	
  =	
  1,1	
  	
  and	
  2,2.	
  	
  	
  	
  

Darkogenesis	
  (Shelton	
  &	
  Zurek	
  2010)	
  

	
  (i)	
   	
  Dark	
  asymmetry	
  generated	
  via	
  1st-­‐order	
  PT.	
  
	
  
(ii)  Dark	
  sector	
  is	
  susy	
  chiral	
  SU(2)D	
  gauge	
  theory;	
  LH	
  fermions	
  in	
  doublets,	
  

	
  RH	
  fermions	
  singlets;	
  anomalous	
  dark-­‐fermion	
  number;	
  spontaneous	
  
	
  breaking	
  by	
  SU(2)D	
  Higgs	
  doublets.	
  

	
  
(iii)  The	
  transfer	
  is	
  either	
  via	
  effecJve	
  operators	
  or	
  EW	
  sphalerons;	
  both	
  

	
  of	
  course	
  require	
  a	
  messenger	
  sector.	
  
	
  
(iv)  The	
  symmetric	
  part	
  annihilates	
  into	
  NMSSM-­‐like	
  pseudoscalar	
  pGBs	
  

	
  	
  in	
  some	
  cases,	
  and	
  into	
  specially	
  introduced	
  light	
  fermions	
  in	
  others.	
  
	
  
(v) 	
  DM	
  is	
  lightest	
  dark	
  sector	
  fermion;	
  mass	
  GeV	
  or	
  above.	
  



Darkgenesis	
  (Haba	
  &	
  Matsumoto	
  2010)	
  

	
  (i)	
   	
  Dark	
  asymmetry	
  generated	
  via	
  out-­‐of-­‐equilibrium	
  decays.	
  
	
  
(ii)  Dark	
  sector	
  is	
  (susy):	
  	
  
	
  
(iii)  SuperpotenJal:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(iv)  The	
  symmetric	
  part	
  annihilates	
  into	
  very	
  light	
  bosons	
  “s”.	
  
	
  
(v) 	
  DM	
  is	
  Xbar	
  fermion;	
  mass	
  =	
  11	
  GeV.	
  

In this letter, we propose a novel mechanism to generate a suitable baryon asym-

metry from dark sector [8]. This is a Baryogenesis through a reverse pathway of the
ADM scenario. At first, the asymmetry of the dark matter is generated in the early

universe, and after that, it is transferred into a suitable baryon asymmetry in the SM

sector. This mechanism generates not only the baryon asymmetry but also the correct

amount of dark matter density. Since the dark sector does not receive severe constraint

from current experiments, we can easily construct a model to generate the dark matter

asymmetry. This is a contra-distinctive feature to conventional scenarios.

Dark sector

First, we show our setup in the framework of supersymmetry (SUSY). We introduce

X , X̄ and Yi (i = 1, 2) fields into the next-to-minimal supersymmetric standard model
(NMSSM). These fields are singlet under SM gauge groups, and fermionic components

of X and X̄ correspond to dark and anti-dark matter particles, respectively. Scalar

components are expected to be heavier than the fermionic ones due to soft SUSY break-

ing terms. Z4R symmetry, which is a part of U(1)R, and the lepton number symmetry

(U(1)L) are imposed in the Lagrangian, and we postulate that only the U(1)L symme-

try is softly broken. Charge assignments of the fields are as follows.

X X̄ Yi

Z4R i −i −1
U(1)L 1/2 −1/2 1

With the charge assignments above, the superpotential is written by

W = WNMSSM −
Mi

2
YiYi −mXX̄ +

κi

2
YiX̄

2 + λSXX̄ +
yi
2Λ

X̄2LiHu +
y′i
2Λ

X̄2YiS, (1)

where Li is the i-th generation (i = 1, 2, 3) lepton doublet, Hu is the Higgs doublet

giving the masses of up-type quarks, and S is the singlet field predicted in the NMSSM.

The superpotential of the NMSSM is denoted by WNMSSM. In the superpotential, we

write down operators up to O(1/Λ), where Λ is an energy scale characterizing the
strength of interactions that break the lepton number of dark sector. There exist other

operators of this order which does not break the number. They are, however, not

relevant to following discussions, and we omit writing those operators explicitly. Mass

matrix of Yi has already been diagonalized and whose mass eigenvalues Mi as well as

the dark matter mass m are real and positive by appropriate redefinitions of Yi, X

fields. In our setup, we consider a case where Y is much heavier than X and X̄ . One
of the coupling constants κi is still complex in this basis, which will be the origin of

the dark matter asymmetry. On the other hand, the non-renormalizable interaction
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With the charge assignments above, the superpotential is written by

W = WNMSSM −
Mi

2
YiYi −mXX̄ +

κi

2
YiX̄

2 + λSXX̄ +
yi
2Λ

X̄2LiHu +
y′i
2Λ

X̄2YiS, (1)

where Li is the i-th generation (i = 1, 2, 3) lepton doublet, Hu is the Higgs doublet

giving the masses of up-type quarks, and S is the singlet field predicted in the NMSSM.

The superpotential of the NMSSM is denoted by WNMSSM. In the superpotential, we

write down operators up to O(1/Λ), where Λ is an energy scale characterizing the
strength of interactions that break the lepton number of dark sector. There exist other

operators of this order which does not break the number. They are, however, not

relevant to following discussions, and we omit writing those operators explicitly. Mass

matrix of Yi has already been diagonalized and whose mass eigenvalues Mi as well as

the dark matter mass m are real and positive by appropriate redefinitions of Yi, X

fields. In our setup, we consider a case where Y is much heavier than X and X̄ . One
of the coupling constants κi is still complex in this basis, which will be the origin of
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The	
  dark	
  sectors	
  of	
  ADM	
  models	
  are	
  rich	
  and	
  interesJng!	
  

Extreme	
  example:	
  mirror	
  maeer	
  i.e.	
  exactly	
  isomorphic	
  to	
  SM	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Blinnikov&Khlopov;	
  Foot,	
  Lew,	
  RV,	
  …)	
  	
  

Generic	
  possible	
  features:	
   •  mulJ-­‐component	
  
•  dark	
  electromagneJsm	
  &	
  dark	
  “atoms”	
  
•  dark	
  radiaJon,	
  dark	
  “neutrinos”	
  
•  mediator	
  sector	
  
•  common	
  extra	
  Z-­‐boson	
  
•  Higgs	
  boson	
  mixing	
  
•  self-­‐interacJng	
  at	
  some	
  level	
  

Generic	
  constraints:	
   •  extra	
  radiaJon	
  at	
  BBN/recomb.	
  (Planck!)	
  
•  self-­‐interacJons	
  from	
  triaxiality	
  of	
  DM	
  haloes	
  
	
  	
  	
  	
  	
  	
  of	
  ellipJcal	
  galaxies,	
  and	
  clusters	
  (Bullet	
  etc.)	
  
•  direct	
  detecJon	
  (Z’,	
  kineJc	
  mixing,	
  …)	
  
•  collider	
  (Higgs	
  mixing,	
  Z’,	
  monojets,	
  …)	
  
•  Capture	
  in	
  stars	
  

4.	
  PHENOMENOLOGY	
  



Does	
  ADM	
  phenomenology	
  have	
  to	
  be	
  unconvenJonal?	
  	
  NO.	
  
	
  
	
  
But	
  it	
  is	
  very	
  interesJng	
  that	
  generically	
  it	
  is	
  unconvenJonal.	
  
	
  
	
  
How	
  different	
  from	
  standard	
  should	
  DM	
  properJes	
  be?	
  
Does	
  ADM	
  provide	
  a	
  new	
  paradigm	
  to	
  solve	
  the	
  DM	
  problems?	
  

Kallia’s	
  ques/ons:	
  



Extra	
  radiaJon:	
  

gVT 3
V

gDT 3
D

=
gV,dec

gD,dec

Entropy	
  conservaJon:	
  

implies:	
   gD,dec � 18
�gD

2

�1/4 � gV,dec

106.75

�
(∆Neff)3/4

where:	
   ∆ρ =
7π2

120

�
4
11

�4/3

∆Neff T 4
V

BBN	
  allows	
  ΔNeff	
  ≤	
  1.	
  
	
  

Various	
  CMB/BAO	
  combinaJons	
  @	
  95%	
  C.L.	
  give	
  	
  
-­‐0.3	
  <	
  ΔNeff	
  <	
  1	
  



Structure	
  formaJon	
  and	
  galacJc	
  dynamics:	
  

galacJc	
  and	
  sub-­‐galacJc	
  problems:	
   •  cores	
  vs	
  cusps	
  
•  missing	
  satellites	
  
•  “too	
  big	
  to	
  fail”	
  
•  co-­‐rotaJng	
  plane	
  of	
  satellites	
  

constraints:	
   •  triaxiality	
  of	
  DM	
  haloes	
  around	
  ellipJcal	
  galaxies	
  
•  Bullet	
  cluster	
  

small-­‐scale	
  structure	
  
wash	
  out;	
  
self-­‐interacJng	
  DM	
  

bounds	
  on	
  
DM	
  self-­‐ints.	
  

Ingredients	
  for	
  a	
  soluJon:	
   •  late	
  DM	
  decoupling	
  from	
  dark	
  radiaJon	
  
	
  	
  	
  	
  	
  	
  (Silk	
  damping,	
  acousJc	
  oscillaJon	
  damping)	
  
•  v-­‐indep.	
  self-­‐int.	
  XsecJon:	
  near	
  0.6	
  cm2/g	
  
•  v-­‐dep.	
  self-­‐int.	
  XsecJon:	
  can	
  resolve	
  sub-­‐gal.	
  
	
  	
  	
  	
  	
  	
  problems	
  but	
  maintain	
  triaxiality	
  

Too	
  many	
  to	
  cite!	
  	
  See	
  1305:4939	
  for	
  references	
  



Direct	
  detecJon:	
  

Possible	
  ADM-­‐nucleon	
  interacJons:	
  	
  Z’	
  coupled	
  to	
  anomaly-­‐free	
  Bcon	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Dark-­‐photon	
  kineJc	
  mixing	
  with	
  photon	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Dark-­‐visible	
  Higgs	
  mixing	
  

σSI
Bcon

� (10−46cm2) q2
DM

� g

0.1

�4
�

3 TeV
M

�4

g,	
  M	
  =	
  Z’	
  coupling,	
  mass	
  

σSI
D
� (10−40cm2)

� �

10−4

�2 � gD

0.1

�2
�

1 GeV
MD

�4 kineJc	
  mixing	
  ε	
  	
  
dark-­‐photon	
  coupling,	
  mass	
  =	
  gD,	
  MD	
  	
  

(Both	
  evaluated	
  for	
  mDM	
  =	
  5	
  GeV.)	
  

The	
  kineJc-­‐mixing	
  case	
  can	
  give	
  a	
  cross-­‐secJon	
  large	
  enough	
  to	
  be	
  roughly	
  
compaJble	
  with	
  DAMA,	
  CoGeNT,	
  CRESST	
  and	
  CDMS;	
  mutual	
  compaJbility	
  is	
  
not	
  perfect,	
  and	
  there	
  is	
  tension	
  with	
  XENON.	
  
	
  
By	
  varying	
  parameters,	
  	
  can	
  easily	
  be	
  small	
  enough	
  to	
  saJsfy	
  XENON	
  bound.	
  

Short	
  
range	
  



Long	
  range	
  
Mirror	
  DM	
  with	
  massless	
  mirror	
  photon	
  

Foot:	
  PRD69	
  (2004)	
  036001;	
  D82	
  (2010)	
  095001;	
  PLB703	
  (2011)	
  7;	
  1305.4316	
  	
  

General	
  hidden-­‐sector	
  DM	
  with	
  massless	
  dark	
  photon	
  
Foot:	
  1209.5602	
  

MulJ-­‐component	
  ionised	
  DM,	
  masses	
  mi.	
  	
  	
  
Massless	
  mirror/dark-­‐photon	
  interacJons	
  thermalise	
  the	
  species,	
  	
  
to	
  give	
  mass-­‐dependent	
  velocity	
  dispersions:	
  

vi � vrot

�
m̄

mi

�1/2

m̄ ≡ Σjnjmj/Σjnj

Most	
  massive	
  states,	
  e.g.	
  mirror	
  Fe,	
  	
  give	
  largest	
  signal	
  if	
  abundant	
  enough.	
  
They	
  also	
  have	
  the	
  smallest	
  velocity	
  dispersions:	
  tail	
  of	
  distribuJon	
  shorter.	
  
This	
  can	
  parJally	
  explain	
  why	
  the	
  higher-­‐threshold	
  XENON	
  expt.	
  has	
  no	
  signal	
  
while	
  lower-­‐threshold	
  expts.	
  have	
  signals.	
  
	
  
Interplay	
  b/w	
  mi-­‐dep	
  vel.	
  disp.	
  	
  and	
  long-­‐range	
  DM-­‐nucleon	
  microscopic	
  	
  
interacJon	
  can	
  bring	
  DAMA,	
  CoGeNT,	
  CRESST-­‐II	
  into	
  good	
  agreement.	
  	
  	
  
SJll	
  some	
  tension	
  with	
  XENON100.	
  

Single-­‐species	
  DM	
  with	
  light	
  but	
  not	
  massless	
  mediator	
  ϕ:	
  	
  
mϕ~10	
  MeV	
  for	
  mDM~10	
  GeV	
  preferred.	
   Fornengo,	
  Panci,	
  Regis:	
  PRD84	
  (2011)	
  115002	
  



Indirect	
  detecJon:	
  

(i)	
  Par/ally	
  asymmetric	
  DM	
  is	
  possible.	
  	
  AnnihilaJon	
  rate:	
  

ΓADM

ΓSDM
=

σ0

σ0,WIMP

4 r∞
(1 + r∞)2

r∞�1−−−−→ 4σ0

σ0,WIMP

exp
�
−2σ0

σ0,WIMP

�
r ≡ n(χ̄)

n(χ)
→ r∞ at	
  late	
  Jmes	
  

n=0	
  is	
  S-­‐wave,	
  	
  n=1	
  is	
  p-­‐wave	
   Ann.	
  rate	
  exponenJally	
  suppressed	
  
for	
  any	
  

�σv� = σ0(T/mDM)n

σ0 > few × σ0,W IMP

(ii)	
  CoannihilaJons.	
  	
  EffecJve	
  asymmetry	
  transfer	
  operators:	
  

L�X, eff = O(SM, qV)O(DS, qD)

can	
  induce	
  coannihilaJons	
  of	
  DM	
  with	
  SM	
  baryons	
  or	
  leptons.	
  
InteresJng	
  example	
  is	
  induced	
  nucleon	
  decay	
  –	
  can	
  be	
  disJnguished	
  from	
  
spontaneous	
  proton	
  decay.	
  
If	
  qD=qDM,	
  then	
  DM	
  can	
  decay	
  asymmetrically	
  to	
  SM	
  parJcles	
  and	
  anJparJcles	
  	
  
if	
  kinemaJcally	
  allowed.	
  

qV	
  (qD)	
  =	
  charge	
  of	
  SM	
  (DS)	
  op.	
  under	
  (B-­‐L)V	
  	
  (BD).	
  

Chang,	
  Goodenough:	
  PRD84	
  (2011)	
  023524;	
  Masina,	
  Sannino:	
  JCAP	
  1109	
  (2011)	
  021;	
  1304.2800;	
  Feng,	
  Kang:	
  1304.7492	
  

Davoudiasl	
  et	
  al	
  PRD84	
  (2011)	
  096008	
  



(iii)	
  Present-­‐day	
  DM	
  bound	
  state	
  formaJon	
  in	
  galacJc	
  haloes	
  

Can	
  get	
  bound	
  states	
  if	
  DM	
  has	
  aeracJve	
  self-­‐interacJons.	
  
	
  
Bound	
  state	
  formaJon	
  could	
  be	
  occurring	
  today,	
  with	
  emission	
  of	
  radiaJon	
  
that	
  can	
  turn	
  into	
  SM	
  parJcles.	
  

Pearce,	
  Kusenko:	
  1303.7294	
  



Capture	
  in	
  stars:	
  

My	
  co-­‐author	
  is	
  the	
  expert	
  on	
  this,	
  so	
  I	
  won’t	
  say	
  much.	
  
Main	
  points:	
  

•  No	
  annihilaJons	
  means	
  DM	
  can	
  accumulate	
  in	
  stars	
  (losses	
  can	
  occur	
  
	
  	
  	
  	
  	
  	
  	
  	
  through	
  co-­‐annihilaJons	
  and	
  evaporaJon).	
  
	
  
•  	
  	
  In	
  the	
  Sun	
  and	
  main-­‐sequence	
  stars:	
  can	
  alter	
  helioseismology	
  and	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  neutrino	
  fluxes	
  through	
  energy	
  transport	
  due	
  to	
  DM-­‐nucleus	
  scaeering.	
  
	
  
•  	
  	
  Fermionic	
  ADM	
  can	
  exceed	
  Chandrasekhar	
  limit	
  in	
  a	
  neutron	
  star,	
  thus	
  
	
  	
  	
  	
  	
  	
  	
  	
  form	
  black	
  hole	
  and	
  consume	
  it.	
  Old	
  NS	
  =>	
  bounds.	
  
	
  
•  	
  	
  Bosonic	
  ADM	
  can	
  do	
  the	
  same,	
  but	
  bounds	
  very	
  sensiJve	
  to	
  inevitable	
  DM	
  
	
  	
  	
  	
  	
  	
  	
  	
  self-­‐interacJons.	
  	
  In	
  many	
  cases,	
  there	
  are	
  no	
  meaningful	
  bounds.	
  

Too	
  many	
  papers	
  to	
  cite	
  here,	
  sorry	
  (including	
  to	
  my	
  co-­‐author)!	
  	
  See	
  1305.4939	
  for	
  complete	
  references.	
  	
  	
  	
  



Collider	
  signatures	
  

(i)	
  Z’	
  decays	
  to	
  the	
  dark	
  sector:	
  

Gauged	
  Bcon = (B − L)V −BD

Invisible	
  width	
  due	
  to	
  Z’	
  decays	
  to	
  DS	
  and	
  neutrinos.	
  
p	
  p	
  	
  ZZ’	
  	
  l+	
  l-­‐	
  (or	
  γ)	
  +	
  missing	
  ET.	
  
Get	
  coupling	
  to	
  neutrinos	
  from	
  Drell-­‐Yan	
  and	
  use	
  of	
  weak-­‐isospin	
  invariance.	
  
Thus	
  measure	
  non-­‐neutrino	
  invisible	
  width.	
  

Petriello	
  et	
  al:	
  PRD77	
  (2008)	
  115020;	
  Gershtein	
  et	
  al:	
  PRD78	
  (2008)	
  095002	
  	
  

(ii)	
  Monojets	
  (hylogenesis	
  example):	
  

⇒ qq� → q̄Ψ̄Φ∗1
Λ3

(uR)c dR (dR)c ΨR Φ + H.c.

Ψ, Φ dark-­‐sector	
  species	
  

Davoudiasl	
  et	
  al:	
  PRD84	
  (2011)	
  096008	
  

Monojet	
  cross-­‐secJon	
  sensiJvity	
  to	
  about	
  7	
  �	
  with	
  100	
  �-­‐1	
  at	
  14	
  TeV	
  LHC.	
  
Probe	
  few-­‐TeV	
  scale	
  of	
  new	
  physics.	
  



5.	
  FINAL	
  REMARKS	
  

•  Why	
  is	
  Ωd	
  ≈	
  5Ωv?	
  	
  This	
  smells	
  like	
  an	
  
	
  	
  	
  	
  	
  	
  important	
  clue	
  as	
  to	
  the	
  nature	
  of	
  DM.	
  
•  ADM	
  allows	
  the	
  dark	
  sector	
  to	
  have	
  rich	
  
	
  	
  	
  	
  	
  	
  physics.	
  
•  Many	
  models	
  have	
  been	
  proposed.	
  
•  ADM	
  can	
  have	
  the	
  right	
  stuff	
  to	
  solve	
  the	
  
	
  	
  	
  	
  	
  small-­‐scale	
  structure	
  problems.	
  
•  Can	
  help	
  reconcile	
  the	
  direct-­‐detecJon	
  
	
  	
  	
  	
  	
  experimental	
  results.	
  



Does	
  ADM	
  phenomenology	
  have	
  to	
  be	
  unconvenJonal?	
  	
  NO.	
  
	
  
	
  
But	
  it	
  is	
  very	
  interesJng	
  that	
  generically	
  it	
  is	
  unconvenJonal.	
  
	
  
	
  
How	
  different	
  from	
  standard	
  should	
  DM	
  properJes	
  be?	
  
Does	
  ADM	
  provide	
  a	
  new	
  paradigm	
  to	
  solve	
  the	
  DM	
  problems?	
  

To	
  reiterate:	
  


