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1.	  	  WIMPs	  vs	  ADM	  vs	  sterile	  neutrinos	  vs	  axions	  

The	  WIMP	  “miracle”	  can	  explain	  the	  observed	  DM	  density.	  
Connected	  to	  new	  weak/TeV	  scale	  physics	  e.g.	  susy.	  
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FIG. 1. Evolution of the cosmological WIMP abundance as a
function of x = m/T . Note that the y-axis spans 25 orders of
magnitude. The thick curves show the WIMP mass density,
normalized to the initial equilibrium number density, for
different choices of annihilation cross section �σv� and mass
m. Results form = 100GeV, are shown for weak interactions,
�σv� = 2 × 10−26 cm3s−1, (dashed red), electromagnetic
interactions, �σv� = 2×10−21 cm3s−1 (dot-dashed green), and
strong interactions, �σv� = 2 × 10−15 cm3s−1 (dotted blue).
For the weak cross section the thin dashed curves show the
WIMP mass dependence for m = 103 GeV (upper dashed
curve) and m = 1GeV (lower dashed curve). The solid black
curve shows the evolution of the equilibrium abundance for
m = 100GeV. This figure is an updated version of the figure
which first appeared in Steigman (1979) [11].

where n is the number density of χ’s, a is the cosmological

scale factor, the Hubble parameter H = a
−1

da/dt

provides a measure of the universal expansion rate, and

�σv� is the thermally averaged annihilation rate factor

(“cross section”). For the most part we use natural

units with h̄ ≡ c ≡ k ≡ 1. When χ is extremely

relativistic (T � m), the equilibrium density neq =

3ζ(3)gχT
3
/(4π

2
), where ζ(3) ≈ 1.202. In contrast, when

χ is non-relativistic (T <∼ m), its equilibrium abundance

is neq = gχ (mT/(2π))
3/2

exp(−m/T ). If χ could be

maintained in equilibrium, n = neq and its abundance

would decrease exponentially. However, when the χ

abundance becomes very small, equilibrium can no longer

be maintained (the χ’s are so rare they can’t find each

other to annihilate) and their abundance freezes out.

This process is described next.

We begin by referring to Fig. 1, where the evolution

of the mass density of WIMPs of mass m, normalized

to the initial equilibrium WIMP number density, is

shown as a function of x = m/T , which is a proxy for

“time”, for different values of �σv�. With this definition,

the final asymptotic value is proportional to the relic

abundance, as will be seen later. Later in this section

it is explained how this evolution is calculated, but first

we call attention to some important features. During

the early evolution when the WIMP is relativistic (T >∼
m), the production and annihilation rates far exceed

the expansion rate and n = neq is a very accurate,

approximate solution to Eq. (1). It can be seen in Fig. 1

that, even for T <∼ m, the actual WIMP number density

closely tracks the equilibrium number density (solid black

curve). As the Universe expands and cools and T drops

further below m, WIMP production is exponentially

suppressed, as is apparent from the rapid drop in neq.

Annihilations continue to take place at a lowered rate

because of the exponentially falling production rate. At

this point, equilibrium can no longer be maintained and,

n deviates from (exceeds) neq. However, even for T <∼ m,

the annihilation rate is still very fast compared to the

expansion rate and n continues to decrease, but more

slowly than neq. For some value of T � m, WIMPs

become so rare that residual annihilations also cease and

their number in a comoving volume stops evolving (they

“freeze out”), leaving behind a thermal relic.

It is well known that weak-scale cross sections

naturally reproduce the correct relic abundance in the

Universe, whereas other stronger (or weaker) interactions

do not. This is a major motivation for WIMP dark

matter. Note that while for “high” masses (m >∼ 10 GeV)

the relic abundance is insensitive to m, for lower

masses the relic abundance depends sensitively on mass,

increasing (for the same value of �σv�) by a factor of two.

There are two clearly separated regimes in this

evolution – “early” and “late”. The evolution

equation (Eq. (1)) can be solved analytically by different

approximations in these two regimes. During the

early evolution, when the actual abundance tracks the

equilibrium abundance very closely (n ≈ neq), the rate

of departure from equilibrium, d(n − neq)/dt, is much

smaller than the rate of change of dneq/dt. In the late

phase, where n � neq, the equilibrium density neq may

be ignored compared to n and Eq. (1) may be integrated

directly. This strategy allows the evolution to be solved

analytically in each of the two regimes and then joined

at an intermediate matching point which we call x∗.
Because the deviation from equilibrium, (n − neq), is

growing exponentially for x ≈ x∗, the value of x∗ is

relatively insensitive (logarithmically sensitive) to the

choice of (n− neq)∗.

Since the dynamics leading to freeze out occurs during

the early, radiation dominated (ρ = ρR) evolution of the

Universe, it is useful to recast physical quantities in terms

of the cosmic background radiation photons. The total

radiation density may be written in terms of the photon

energy density (ργ) as ρ = (gρ/gγ)ργ where, gρ counts

the relativistic (m < T ) degrees of freedom contributing

to the energy density,

gρ ≡
�

B

gB

�
TB

Tγ

�4

+
7

8

�

F

gF

�
TF

Tγ

�4

. (2)

7

the large factor 1 + α∗(Γ/H)∗ � 1 (see the dotted blue
curves in Fig. 4), with most of the residual annihilations
occurring for T∗ ≥ T >∼ T∗/2. Thus, it is expected that
the value of (Γ/H)∗ will have an impact on the predicted
relic density. Note that previous studies have ignored
the 1 in the denominator of Eq. (17) and have assumed
that α∗ = 1. These approximations incur an error of
∼ 3 − 5% and can affect the calculation substantially,
especially for masses in the range 1− 10GeV, where the
impact of the changing values of g(T ) is large. As may be
seen from Fig. 4, both (Γ/H)∗ and α∗ depend strongly on
mass. Our analytical framework takes these effects into
account.

3. Relic Abundance

Having determined Yf , (see Eq. (17)), calculating the
relic abundance is straightforward. The frozen out
WIMP abundance Yf is equal to the present day WIMP
abundance (Yf = Y0), so that the cosmological WIMP
mass fraction is

Ω =
mYf s0

ρcrit

=
8πG

3H2
0

�
mH∗s0
�σv�s∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
, (19)

resulting in

Ωh2 =
9.92× 10−28

�σv�

�
x∗

g
1/2
∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
. (20)

Note that this result has no explicit mass dependence
but x∗, g∗, andα∗, and (Γ/H)∗ are all mass-dependent.
Recall that the units for units for �σv�, here and
elsewhere, are cm3s−1. For 10−1 ≤ m (GeV) ≤ 104

we find that 0.97 <∼ (Γ/H)∗/(1 + α∗(Γ/H)∗) <∼ 1.07,
varying noticeably with mass, as shown in Fig. 4. In most
previous analyses the term involving (Γ/H)∗ in Eq. (20)
is either ignored or assumed to be unity. This small but
non-negligible effect is relevant for the low mass regime,
that is currently of great interest, and retaining it we find

1026�σv� = 0.902

�
0.11

Ωh2

��
x∗

g
1/2
∗

��
(Γ/H)∗

1 + α∗(Γ/H)∗

�
.

(21)
This result for �σv� as a function of the WIMP mass,
assuming the a best-fit value for Ωh2 = 0.11, is shown as
the dashed (red) curve in Fig. 5. This general result for
the relic abundance of a thermal WIMP, whether or not
it is a dark matter candidate, derived by an approximate
analytic approach to solving the evolution equation [6, 11]
agrees to better than ∼ 3% with the results of the
direct numerical integration of the evolution equation
(solid black curve in Fig. 5) described below in §II C.
For analytic results accurate to ∼ 5%, the last factor
in Eq. (21) may be approximated by 1.02.
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FIG. 5. The thermal annihilation cross section required for
Ωχh

2 = 0.11 as a function of the mass for a Majorana
WIMP. The solid (black) curve is from numerical integration
of the evolution equation and the dashed (red) curve is for
the approximate analytic solution in Eq. (20). Note that the
agreement between analytical and numerical results is better
than ∼ 3%. For comparison, the thin horizontal line shows
the canonical value �σv� = 3× 10−26 cm3s−1.

C. Numerical Results and Discussion

To compare with the approximate analytic results
we have calculated the relic abundance by numerically
integrating the WIMP evolution equation, Eq. (5). We
transform this equation into a simple dimensionless form,

dY

dx
= λ

�
1 +

1

3

d(lngs)

d(lnT )

�
gs

g
1/2
ρ

1

x2
(Y 2

eq − Y
2), (22)

where λ ≡ 2.76 × 1035m�σv� and Yeq =
0.145 (gχ/gs)x3/2e−x (m is in GeV and �σv� in cm3s−1).
An approximation made here is to use the non-relativistic
expression for neq in Yeq. This has negligible impact on
our results. For m in the range 10−1 − 10 4 GeV and
�σv� in the range 10−26 − 10−25 cm3s−1, λ has values in
the range 108 − 1014. The equation to be integrated is
therefore numerically stiff. We find it useful to make the
replacement W = lnY and to integrate

dW

dx
=

λ

x2

�
1 +

1

3

d(lngs)

d(lnT )

�
gs

g
1/2
ρ

(e(2Weq−W ) − eW ) , (23)

where W does not change by many orders of magnitude
over the range of integration. This significantly reduces
the computational effort. In particular, one can work
with lower precision and still determine the solution quite
accurately.

Steigman,	  Dasgupta,	  Beacom:	  Phys.	  Rev.	  D86	  (2012)	  023506	  

Ωχ =
mχnχ

ρc
� 6× 10−27 cm3s−1

�σAv�
� 0.2 for �σv� � 3× 10−26 cm3s−1

WIMP	  decouples	  from	  the	  thermal	  plasma	  when	  non-‐relaJvisJc	  and	  Boltzmann	  suppressed.	  



The	  WIMP	  miracle	  requires	  this	  similarity	  to	  be	  a	  	  
coincidence.	  
	  
Ωv	  is	  due	  to	  a	  parJcle-‐anJparJcle	  asymmetry,	  not	  
the	  non-‐relaJvisJc	  decoupling	  of	  a	  self-‐conjugate	  or	  	  
symmetric	  relic.	  
	  
MoJvates	  “asymmetric	  dark	  maeer	  (ADM)”:	  
DM	  and	  VM	  densiJes	  both	  due	  to	  related	  
parJcle-‐number	  asymmetries.	  
	  
DM	  mass	  scale	  typically	  few	  to	  10s	  of	  GeV	  range.	  

Why	  is	  Ωd	  ≈	  5Ωv?	  



eV	  

keV	  

MeV	  

GeV	  

TeV	  

PeV	  

LHν	  

RHν	  

warm	  DM	  

Simply	  add	  RH	  Majorana	  
neutrinos	  to	  minimal	  SM!	  

EeV	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Electroweak	  	  scale	  

N1	  

Original	  idea:	  	  Dodelson	  &	  Widrow	  PRL	  72	  (1993)	  17	  
	  
Shi,	  Fuller:	  PRL	  82	  (1999)	  2832	  
Kusenko,	  Petraki:	  Phys	  Rev	  D77	  (2008)	  065014	  
Canep,	  Drewes,	  Frossard,	  Shaposhnikov:	  arXiv:1208.4607	  

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates density, and hue
velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high velocity dispersion). Each box is 1.5
Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which are also present,
although less well defined, in the CDM case.

a similar rmax. By assuming that the mass density in the
subhaloes containing the observed dwarf spheroidals follows
an NFW profile (Navarro et al. 1996, 1997), Boylan-Kolchin
et al. (2011) found the locus of possible (rmax, Vmax) pairs
that are consistent with the observed half-light radii and
their enclosed masses. This is represented by the shaded re-
gion in Fig. 4. As Boylan-Kolchin et al. (2011) observed with
their larger sample, several of the largest CDM subhaloes
have higher maximum circular velocities than appears to be
the case for the Milky Way bright dwarf spheroidals. By
contrast, the largest WDM subhaloes are consistent with
the Milky Way data.

Rather than assuming a functional form for the mass
density profile in the observed subhaloes, a more direct ap-
proach is to compare the observed masses within the half-
light radii of the dwarf spheroidals with the masses within
the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to
associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall
mass of 3.2×109M! in the WDM case, and 6.0×109M!

in the CDM case.

The Large and Small Magellanic Clouds and the
Sagittarius dwarf are all more luminous than the
9 dwarf spheroidals considered by Boylan-Kolchin
et al. (2011) and by us. As noted above, the Milky
Way is exceptional in hosting galaxies as bright as
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Figure 4. The correlation between subhalo maximum circular ve-
locity and the radius at which this maximum occurs. Subhaloes
lying within 300kpc of the main halo centre are included. The
12 CDM and WDM subhaloes with the most massive
progenitors are shown as blue and red filled circles re-
spectively; the remaining subhaloes are shown as empty
circles. The shaded area represents the 2σ confidence region for
possible hosts of the 9 bright Milky Way dwarf spheroidals deter-
mined by Boylan-Kolchin et al. (2011).

the Magellanic Clouds, while Sagittarius is in the
process of being disrupted so its current mass is
difficult to estimate. Boylan-Kolchin et al. hypoth-
esize that these three galaxies all have values of
Vmax > 60kms−1 at infall and exclude simulated sub-
haloes that have these values at infall as well as

c© 2011 RAS, MNRAS 000, ??–8
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counts of satellite galaxies in future surveys will strongly constrain the allowed mass of 
WDM particles (e.g., Maccio et al. 2010; Polisensky & Ricotti 2011)
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Figure 5. Circular velocity curves for the 12 CDM (left) and
WDM (right) subhaloes that had the most massive progenitors.
The 3 red curves represent subhaloes with the most massive pro-
genitors, which could correspond to those currently hosting coun-
terparts of the LMC, SMC and the Sagittarius dwarf. The 9 black
curves might more fairly be compared with the data for the 9
bright dwarf spheroidal galaxies of the Milky Way considered by
Wolf et al. (2010). Deprojected half-light radii and their corre-
sponding half-light masses, as determined by Wolf et al. (2010)
from line-of-sight velocity measurements, are used to derive the
half-light circular velocities of each dwarf spheroidal. These veloc-
ities and radii are shown as coloured points. The legend indicates
the colour coding of the different galaxies.

ies, while the CDM subhaloes are almost all too massive at
the corresponding radii. The CDM subhaloes have central
masses that are typically 2-3 times larger than the Milky
Way satellites. There is one CDM subhalo that lies at lower
masses than all 9 dwarf spheroidals, but this had one of the
three most massive progenitors and has been almost com-
pletely destroyed by tidal forces.

Fig. 4 and 5 show that the WDM subhaloes are less
centrally concentrated than those in the corresponding CDM
halo. Concentrations typically reflect the epoch at which the
halo formed (Navarro et al. 1996b, 1997; Eke et al. 2001).
To investigate systematic differences in the formation epoch
of the WDM and CDM subhaloes in our sample, we must
choose a suitable definition of formation time. Since we are
considering only the central mass, and we do not wish to
introduce scatter in any correlation by using subhaloes that
may have been stripped, we define the formation time as
the first time at which the total progenitor mass exceeds the
mass within 1 kpc at infall. The correlation of this redshift
with the mass within 1 kpc at infall is shown in Fig. 6 for the
12 most massive WDM and CDM progenitors that survive to
z = 0 as distinct subhaloes. Evidently, the proto subhaloes
that form later, which are generally WDM not CDM ones,
have the lowest central masses. The mean difference between
the top 12 WDM and CDM proto-subhalo masses within 1
kpc is approximately a factor 2.

Because of their later formation time, the infalling
WDM subhaloes already have lower central masses than
those falling into the corresponding CDM haloes. As their
mass is less centrally concentrated, the WDM subhaloes are
more susceptible to stripping. While this is most impor-
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Figure 6. The correlation between subhalo central mass at infall
and the redshift of formation, zform, defined as the redshift at
which the total mass of each proto subhalo first exceeded this
value. Central mass is defined within 1 kpc, and CDM and WDM
results are shown with blue and red symbols respectively.

tant in the outer regions of the subhaloes, the mass profiles
in Fig. 5 show that the inner regions of some of the sub-
haloes have also endured significant depletion since infall.
Fig. 7 shows, for both WDM and CDM subhaloes, the ra-
tio, Mz=0(< r)/Minfall, of the present day mass contained
within r = 0.5, 1 and 2 kpc to the mass at infall, as a
function of the central mass at infall at the chosen radius.
On average, the median mass at infall for WDM is lower
by ∼ 0.15 dex than the corresponding mass for CDM. One
subhalo gains mass between infall and z = 0 because it ac-
cretes another subhalo. While there is a large scatter among
the different subhaloes, with some having lost the majority
of their central mass since infall, no significant systematic
difference between WDM and CDM subhaloes is apparent.
This implies that the reason why the WDM subhaloes pro-
vide a better fit to the half-light masses of the 9 Milky Way
dwarf spheroidals studied by Wolf et al. (2010) is not excess
stripping but the later formation time, and correspondingly
typical lower concentration, of the WDM proto subhaloes
compared to their CDM counterparts.

4 DISCUSSION AND CONCLUSIONS

The properties of the satellite galaxies of the Milky Way
have posed a longstanding puzzle for CDM theories of galaxy
formation. Two aspects of this puzzle have reportedly been
separately and independently solved. One is the luminos-
ity function of the satellites. The basic idea - the suppres-
sion of galaxy formation in small haloes by a combination
of feedback effects produced by the reionization of gas at
high redshift and supernova heating - was suggested by
Kauffmann, White, & Guiderdoni (1993) and explored thor-
oughly in the early 2000s (Bullock et al. 2000; Benson et al.
2002; Somerville 2002) and has been revisited many times
since then (see Font et al. 2011, and references therein for
the most recent discussion). The other aspect concerns the
dynamical state of the satellites. Strigari et al. (2010) have
shown that there exist subhaloes in the Aquarius CDM sim-

c© 2011 RAS, MNRAS 000, ??–8

From	  Lovell	  et	  al:	  MNRAS	  420,	  231	  (2012)	  	  

warm,	  cool,	  chilled:	  
small-‐scale	  structure	  	  
problem?	  



Strong	  CP	  problem.	  

Neutron	  EDM	  bound	  θ	  <	  10-‐10	  

Peccei-‐Quinn	  soluJon	  turns	  θ	  into	  a	  field:	  implies	  very	  light	  pseudoscalar	  boson,	  	  
the	  axion.	  
	  
Perfectly	  legiJmate	  candidate	  −	  but	  the	  strong	  CP	  problem	  can	  be	  solved	  without	  
axions	  being	  a	  dominant	  component	  of	  DM.	  

LQCD ⊃ θ Tr(GµνG̃µν)



In	  ADM	  models:	  	  
	  	  	  	  -‐	  the	  “visible	  sector”	  is	  the	  SM	  or	  some	  extension	  
	  	  	  	  -‐	  the	  “dark	  sector”	  may	  be	  some	  other	  gauge	  theory	  

G	  =	  GV	  x	  GD	  x	  GV+D	  

The	  sectors	  then	  decouple	  at	  low	  energies.	  
	  
In	  most	  models	  the	  VM	  &	  DM	  number	  densiJes	  are	  similar,	  
so	  the	  dark	  sector	  has	  to	  contain	  a	  stable	  GeV-‐scale	  parJcle.	  

2.	  	  ADM	  GENERALITIES	  

or	  otherwise	  just	  fermions	  and/or	  scalars.	  

The	  sectors	  are	  coupled	  in	  the	  very	  early	  universe,	  and	  
the	  asymmetries	  get	  related.	  

See	  later	  comment	  on	  alternate	  mass	  scale	  possibility	  



What	  stabilises	  massive	  parJcles?	  	  In	  the	  SM:	  

proton	  (anJproton)	  =	  lightest	  parJcle	  carrying	  conserved	  baryon	  number	  	  
electron	  (positron)	  =	  lightest	  parJcle	  carrying	  conserved	  electric	  charge	  	  
lightest	  neutrino	  =	  lightest	  half-‐integer	  spin	  parJcle	  (angular	  mom.	  conservaJon)	  
neutrons	  in	  appropriate	  nuclei	  =	  bound	  state	  effect	  

We	  hypothesise	  at	  least	  a	  “dark	  baryon	  number	  BD”.	  
	  
Some	  models	  have	  a	  “dark	  EM”	  and	  hence	  dark	  radiaJon.	  
Some	  interacJon	  has	  to	  “annihilate	  the	  symmetric	  part”.	  
If	  not	  dark	  EM,	  then	  something	  else,	  e.g.	  Yukawa	  mediated	  
annihilaJon	  into	  dark	  massless	  fermions.	  	  And	  so	  on.	  
	  
Neff	  is	  an	  important	  constraint:	  discuss	  later.	  



2.1	  Symmetry	  structure	  

Dark	  sector:	  	  BD	  (analogue	  of	  visible	  baryon	  number	  BV).	  
The	  asymmetry	  in	  the	  dark	  sector	  is	  in	  BD.	  

Visible	  sector:	  	  best	  to	  consider	  (B-‐L)V,	  because	  it	  is	  
anomaly-‐free,	  and	  above	  the	  EW	  phase	  transiJon	  we	  
have	  to	  take	  into	  account	  sphaleron	  reprocessing.	  	  	  
E.g.	  we	  can	  have	  the	  iniJal	  visible-‐sector	  asymmetry	  
purely	  in	  lepton	  number.	  

η(X) ≡
�

i

Xi(ni − nī)/sAsymmetry:	  



Dodelson	  and	  Widrow:	  PRL	  64	  (1990)	  340	  
Davoudiasl	  et	  al:	  PRL	  105	  (2010)	  211304	  
Bell,	  Petraki,	  Shoemaker,	  RV:	  PRD	  84	  (2011)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  123505	  
Cheung,	  Zurek:	  PRD	  84	  (2011)	  035007	  
von	  Harling,	  Petraki,	  RV:	  JCAP	  1205	  (2012)	  021	  
others	  …	  see	  1305.4939	  for	  full	  reference	  list.	  

At	  late	  Jmes	  and	  low	  temperatures,	  BV	  and	  BD	  are	  separately	  conserved	  –	  
ensures	  stability	  of	  protons	  and	  DM.	  

At	  early	  Jmes	  and	  high	  temperatures:	  	  Bbro	  violated	  	  but	  Bcon	  strictly	  conserved.	  

Generate	  Bbro	  asymmetry	  using	  dynamics	  obeying	  Sakharov	  condiJons.	  	  Then	  

The	  B-‐L	  number	  of	  VM	  is	  secretly	  cancelled	  by	  the	  DM!	  

Case	  1:	  Baryon-‐symmetric	  universe	  

Bcon ≡ (B − L)V −BD

Bbro ≡ (B − L)V + BD

Conserved:	  

Broken:	  

η((B − L)V ) = η(BD) = η(Bbro)/2



Stabilising	  conserved	  
(baryon)	  number	  	  

VISIBLE	  SECTOR	   DARK	  SECTOR	  

Simultaneous	  creaJon	  of	  correlated	  asymmetries.	  
“Pangenesis”	  “Cogenesis”	  

η((B − L)V ) = η(Bbro)/2 η(BD) = η(Bbro)/2



VISIBLE	  SECTOR	   DARK	  SECTOR	  

asymmetry	  	  
created	  here	  

shared	  s.t.	  	  

IniJally,	  (B-‐L)V	  is	  broken	  but	  BD	  is	  not.	  
	  
During	  the	  chemical	  equilibraJon,	  some	  non-‐
trivial	  combinaJon	  of	  (B-‐L)V	  and	  BD	  is	  conserved.	  
	  
The	  sectors	  subsequently	  decouple.	  

Case	  2:	  visible	  to	  dark	  reprocessing	  

η(BD) �= 0η((B − L)V ) �= 0

η((B − L)V ) ∼ η(BD)



VISIBLE	  SECTOR	   DARK	  SECTOR	  

asymmetry	  	  
created	  here	  

shared	  s.t.	  	  

Case	  3:	  dark	  to	  visible	  reprocessing	  

η(BD) �= 0η((B − L)V ) �= 0

η((B − L)V ) ∼ η(BD)

IniJally,	  BD	  is	  broken	  but	  (B-‐L)V	  is	  not.	  
	  
During	  the	  chemical	  equilibraJon,	  some	  non-‐
trivial	  combinaJon	  of	  (B-‐L)V	  and	  BD	  is	  conserved.	  
	  
The	  sectors	  subsequently	  decouple.	  



Case	  4:	  iniJal	  asymmetries	  develop	  independently	  
IniJally,	  both	  (B-‐L)V	  and	  BD	  are	  broken.	  
	  
To	  relate	  the	  asymmetries,	  subsequent	  interacJons	  should	  preserve	  some	  non-‐trivial	  combinaJon	  
of	  (B-‐L)V	  and	  BD.	  
	  
The	  sectors	  subsequently	  decouple.	  

VISIBLE	  
SECTOR	  

η((B − L)V ) �= 0

DARK	  
SECTOR	  

η(BD) �= 0

Asymmetry	  created	   Asymmetry	  created	  

η((B − L)V ) ∼ η(BD)

One	  version	  of	  mirror	  DM	  cosmology:	  sectors	  remain	  decoupled:	  different	  T,	  but	  idenJcal	  
microphysics!	  



CreaJng	  an	  asymmetry	  (Sakharov	  1967):	  

1.   ViolaJon	  of	  parJcle	  number	  conservaJon	  
2.   C	  and	  CP	  violaJon	  
3.   Out-‐of-‐equilibrium	  process	  

1.   Obvious	  
	  
2.	  
	  
3.	  	  	  	  

Rate i→ f(∆B = b) �= Rate ī→ f̄(∆B = −b)

Rate i→ f(∆B = b) �= Rate f → i(∆B = −b)

2.2	  Asymmetry	  generaJon	  



Common	  general	  mechanisms:	  
Out-‐of-‐equilibrium	  decays	  of	  heavy	  parJcles:	  

Γ(ψ → x1 x2 . . .) �= Γ(ψ → x∗1 x∗2 . . .)

Affleck-‐Dine:	  producJon	  of	  charged	  scalar	  condensate	  through	  Jme-‐dep.	  phase.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Supersymmetry,	  uses	  flat	  direcJons.	  

First-‐order	  phase	  transiJon:	  nucleaJon	  of	  bubbles	  of	  true	  vacuum,	  sphalerons,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CP-‐violaJng	  collisions	  with	  bubble	  walls.	  

Asymmetric	  freeze-‐out:	  DM	  parJcles	  coannihilate	  with	  SM	  parJcles	  at	  a	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  different	  rate	  from	  DM	  anJparJcles.	  

Asymmetric	  thermal	  producJon	  (asymmetric	  freeze-‐in):	  	  DM	  and	  anJ-‐DM	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  never	  in	  thermal	  equilibrium;	  slowly	  produced	  at	  different	  rates.	  

Spontaneous	  genesis:	  	  Sakharov	  condiJons	  presuppose	  CPT	  invariance.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Expanding	  universe	  induces	  effecJve	  CPT	  violaJon.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Asymmetry	  generaJon	  in	  eq.	  without	  C,	  CP	  violaJon.	  



2.3	  Freeze-‐out	  in	  presence	  of	  an	  	  
asymmetry:	  

Y�

Y�

Yeq

YΗ�0�

20 40 60 80 10010�12

10�11

10�10

10�9

10�8

x

Y��x�

Figure 1. Evolution of Y ±(x) illustrating the effect of the asymmetry η. After freeze-out both Y −

and Y + continue to evolve as the anti-particles find the particles and annihilate. The Y ±
η=0 curve

shows the abundance for η = 0, a mass m = 10 GeV and annihilation cross-section σ0 = 2 pb. In
contrast, with a non-zero asymmetry η = ηB = 0.88× 10−10 and same mass and cross-section, the
more abundant species (here Y +) is depleted less than when η = 0. Also shown is the equilibrium
solution Yeq(x).

In the above we have also defined req ≡ e−2ξ(x), where ξ is determined by

2 sinh ξ =
η

Yeq
. (2.13)

Notice from (2.12) that we have taken into account the temperature dependence in

heff and geff. Because geff is monotonically increasing with T , we see that the parentheses

in the definition of g1/2∗ is positive definite. In the numerical results that follow we use the

data table from DarkSUSY [48] for the temperature dependence of g∗(T ) and heff(T ).
6

Eq. (2.10) reproduces the well known case η = 0 for which one finds that r = 1 for

any x. We will instead focus on scenarios with η �= 0 in the following. As shown in Fig. 1,

the effect of nonzero η is to deplete the less abundant species more efficiently compared to

η = 0 for the same annihilation cross section and mass.

2.2 The relic abundance of asymmetric species

Equation (2.10) can be solved by numerical methods and imposing an appropriate initial

condition at a scale x = xi ≥ 10, where the non-relativistic approximation works very well.

Although we have chosen xi = 10, we have checked that larger values (10 < xi < xf , where

xf is defined below) do not alter the final result. From (2.10) one sees that in the early

6Note that we use the notation of DarkSUSY for the massless degrees of freedom parameters. To

translate our notation to that of Kolb and Turner [49] one should make the substitutions geff → g∗ and

heff → g∗S .

– 6 –
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Figure 2. Here we plot the annihilation cross section σ0 required to reproduce the correct DM

abundance ΩDM via a s-wave process n = 0 (above plot) and p-wave n = 1 (bottom plot) for a given

dark matter mass m, and for various values of the primordial asymmetry η = �ηB . The line for

� = 0 corresponds to the usual thermal WIMP scenario. Notice that the fractional asymmetry runs

from r∞ = 0 in the upper part of the curves to r∞ = 1 when the lines converge on the standard

thermal WIMP curve. The effect of the QCD phase transition appears as a bump at m � 20

GeV, as anticipated in the text. Note that the bottom plot is basically enhanced by a factor

Φn=0/Φn=1 ∼ (n + 1)xf compared to the former. As a reference, recall that 1 pb � 2.6 × 10
−9

GeV
−2

.
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Graesser,	  Shoemaker,	  Vecchi:	  JHEP	  1110	  (2011)	  110	  

σ � few × σWIMP
to	  annihilate	  the	  symmetric	  
part	  



2.4	  Dark	  interacJons	  

A	  logical	  and	  elegant	  possibility	  is	  that	  the	  symmetric	  part	  annihilates	  into	  
light	  dark-‐sector	  states	  –	  dark	  radiaJon	  –	  to	  parallel	  what	  happens	  in	  the	  
visible	  sector.	  
	  
There	  are	  many	  microphysical	  possibiliJes.	  	  Main	  constraint	  is	  Neff	  (see	  later).	  
	  
A	  simple,	  elegant	  possibility	  is	  an	  unbroken	  dark	  U(1)	  force	  –	  dark	  EM.	  
Dark-‐charge	  neutrality	  =>	  at	  least	  two	  oppositely	  charged	  dark	  species,	  
plasma	  ionised	  or	  in	  neutral	  dark	  atoms.	  	  Direct-‐detecJon	  prospects	  through	  
kineJc	  mixing	  with	  usual	  photon.	  

A	  variant	  on	  dark	  EM	  has	  U(1)	  spontaneously	  broken	  and	  dark	  photon	  massive,	  
but	  lighter	  than	  the	  DM.	  	  The	  symmetric	  part	  can	  annihilate	  into	  dark	  photons	  
which,	  through	  kineJc	  mixing,	  subsequently	  decay	  into,	  say,	  e+e-‐.	  



AnnihilaJng	  the	  symmetric	  part	  
without	  dark	  radiaJon:	  

D	  

D	  

SM	  

SM	  

annihilaJon	  

direct	  
detecJon	  

D	  

D	  

SM	  

SM	  

m	  

m	  

m	  

m	  

D	  

D	  

SM	  

SM	  Direct	  annihilaJon	  to	  SM	  parJcles	  
constrained	  by	  direct	  detecJon	  and	  colliders.	  
Role	  for	  flavour/Lorentz	  structure.	   annihilaJon	  through	  	  

on-‐shell	  unstable	  mediator	  

contribuJon	  to	  direct	  	  
detecJon	  through	  loop	  

Bai	  et	  al:	  JHEP	  1012	  (2010)	  048;	  Buckley:	  PRD	  84	  (2011)	  043510;	  Fox	  et	  al:	  PRD86	  (2012)	  015010;	  March-‐Russell	  et	  al:	  1203:4854	  

collider	  producJon	  

An	  example:	  



2.5	  	  Dark	  maeer	  mass	  scale	  

The	  few-‐GeV	  scale	  arises	  when	  the	  asymmetry	  transfer	  or	  simultaneous	  
genesis	  interacJons	  decouple	  while	  the	  DM	  parJcle	  is	  relaJvisJc.	  
	  
AlternaJve:	  the	  decoupling	  temperature	  is	  of	  order	  the	  DM	  mass,	  but	  
somewhat	  smaller.	  	  Then	  the	  DM	  parJcle	  is	  starJng	  to	  become	  Boltzmann	  
suppressed	  as	  the	  transfer	  stops.	  	  The	  DM	  number	  density	  is	  lower,	  and	  hence	  
the	  mass	  scale	  must	  be	  higher	  e.g.	  weak	  scale,	  or	  RH	  breaking	  scale,	  etc.	  
	  
DM	  mass	  scale	  ~	  (5	  –	  10)	  x	  transfer	  decoupling	  temperature.	  

See	  e.g.	  	  Barr,	  Chivukula,	  Farhi:	  PLB241	  (1990)	  387.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Cohen,	  Zurek:	  PRL	  104	  	  (2010)	  101301	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Buckley,	  Randall:	  JHEP	  1109	  (2011)	  009	  	  

Focus	  on	  the	  more	  common	  few-‐GeV	  scale	  case	  here.	  
For	  ADM	  to	  be	  really	  compelling,	  need	  good	  reason	  for	  
this	  mass	  scale.	  



The	  DM	  mass	  you	  need	  depends	  on	  the	  ADM	  model.	  

Baryon-‐symmetric	  models:	   mDM � qDM × (1.6− 5) GeV

Other	  cases:	  depends	  on	  details	  of	  the	  chemical	  equilibrium.	  
	  
One	  special	  case	  (single	  dark	  baryon	  species,	  relaJvisJc	  decoupling):	  

mDM � q−1
DM
× (5− 7) GeV

Ibe	  et	  al	  PLB708,	  112	  (2012)	  

qDM	  =	  baryonic	  charge	  of	  DM	  

Ideas:	  (1)	  mDM	  ~	  QCD	  scale,	  e.g.	  mirror	  DM	  
	  	  	  	  	  	  	  	  	  	  	  	  (2)	  mDM	  =	  (λ~10-‐2)	  x	  mEW	  	  
	  	  	  	  	  	  	  	  	  	  	  	  (3)	  hidden	  sector	  visible	  sector	  dark	  sector	  



Recipe	  for	  ADM	  model	  building:	  

•  Choose	  case	  1,	  2,	  3	  or	  4	  and	  specify	  the	  visible-‐dark	  	  
	  	  	  	  	  	  interacJons	  
•  Choose	  an	  asymmetry-‐generaJng	  dynamics	  
•  Define	  the	  internal	  microphysics	  of	  the	  dark	  sector	  
•  Explain	  how	  the	  symmetric	  dark	  component	  is	  

	  annihilated	  
•  Make	  sure	  no	  astro/cosmo/parJcle	  constraints	  are	  

	  violated	  

Many	  papers	  do	  not	  specify	  all	  of	  these	  elements	  



Case	  1:	  Baryon-‐symmetric	  

Hylogenesis	  (Davoudiasl	  et	  al	  2010):	  

(i)  Asymmetry	  generaJon	  due	  to	  out-‐of-‐equilibrium	  decays.	  

(ii)  Mediator	  sector:	  	  Dirac	  fermions	  X1,2	  with	  MX2	  >	  MX1	  >	  TeV.	  	  X1	  produced	  
	  non-‐thermally	  in	  early	  universe	  by	  condensate	  decay.	  

(iii) 	  Dark	  sector	  is:	  	  spont.	  broken	  U(1)’	  gauge	  theory;	  kineJc	  mixing	  w	  photon	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DM	  is	  Dirac	  fermion	  Y,	  complex	  scalar	  Φ;	  GeV-‐scale	  masses	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  U(1)’:	  	  X’s	  are	  neutral,	  Y	  and	  Φ	  equal	  &	  opposite	  charges	  
	  
(iv) 	  Mediator-‐VM	  &	  mediator-‐DM	  couplings:	  
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Hylogenesis:
A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter
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We present a novel mechanism for generating both the baryon and dark matter densities of the
Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the
Standard Model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced
non-thermally in low-temperature reheating, sequester antibaryon number in the hidden sector,
thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark
matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of
dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

I. Introduction: Precision cosmological measurements
indicate that a fraction Ωb ! 0.046 of the energy content
of the Universe consists of baryonic matter, while Ωd !
0.23 is made up of dark matter (DM) [1]. Unfortunately,
our present understanding of elementary particles and
interactions, the Standard Model (SM), cannot account
for the abundance of either observed component of non-
relativistic particles.
In this Letter we propose a unified mechanism,

hylogenesis1, to generate the baryon asymmetry and the
dark matter density simultaneously. The SM is extended
to include a new hidden sector of states with masses near
a GeV and very weak couplings to the SM. Such sectors
arise in many well-motivated theories of physics beyond
the SM, and have received much attention within the
contexts dark matter models [2], and high luminosity,
low-energy precision measurements [3].
The main idea underlying our mechanism is that some

of the particles in the hidden sector are charged under
a generalization of the global baryon number (B) sym-
metry of the SM. This symmetry is not violated by any
of the relevant interactions in our model. Instead, equal
and opposite baryon asymmetries are created in the vis-
ible and hidden sectors, and the Universe has zero total
B. These asymmetries are generated when (i) the TeV-
scale states X1 and its antiparticle X̄1 (carrying equal
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decays into visible and hidden baryonic states. The X1
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dark matter densities within a concrete model realizing

1 From Greek, hyle “primordial matter” + genesis “origin.”

this mechanism in Section II.
A potentially spectacular signature of our model is that
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(a = 1, 2, with masses mX2
> mX1

! TeV), a Dirac
fermion Y , and a complex scalar Φ (with masses mY ∼
mΦ ∼ GeV). These fields couple through the “neutron
portal” (XU cDcDc) and a Yukawa interaction:

− L ⊃
λa

M2
X̄aPRd ūcPRd+ ζa X̄aY

cΦ∗ + h.c. (1)
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Y , and Φ are stable due to their B and gauge charges if
their masses satisfy

|mY −mΦ| < mp +me < mY +mΦ . (2)

Y and Φ are the “hidden antibaryons” that comprise the
dark matter. Furthermore, there exists a physical CP-
violating phase arg(λ∗

1λ2ζ1ζ∗2 ) that cannot be removed
through phase redefinitions of the fields.
We also introduce a hidden U(1)′ gauge symmetry un-

der which Y and Φ have opposite charges±e′, whileXa is
neutral. We assume this symmetry is spontaneously bro-
ken at the GeV scale, and has a kinetic mixing with SM

neutron	  portal	  
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(v)  CP-‐violaJng	  decays	  are	  X1udd	  and	  X1Yc	  Φ*	  and	  charge	  conjugates.	  
	  λ,	  ζ	  coupling	  constants	  have	  CP-‐violaJng	  phases.	  

	  
	  
	  
	  
(vi)  Symmetric	  part	  annihilated	  by	  U(1)’	  interacJons:	  YYcZ’Z’,	  ΦΦ*Z’Z’,	  with	  

	  Z’	  decaying	  to	  SM	  states	  via	  kineJc	  mixing.	  
	  
(vii)  DM	  mass	  is	  simply	  given	  by	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =>	  mY	  +	  mΦ	  ≈	  5	  GeV.	  

(viii) 	  InteresJng	  signature:	  	  

2

X1

u

d

d

X1

X2

Y

Φ

u

d

d

FIG. 1: Tree-level and one-loop graphs for decay X1 → udd.

hypercharge U(1)Y via the coupling −κ
2
BµνZ ′

µν , where
Bµν and Z ′

µν are the U(1)Y and U(1)′ field strength ten-
sors. At energies well below the electroweak scale the
effect of this mixing is primarily to generate a vector
coupling of the massive Z ′ gauge boson to SM particles
with strength −cWκQeme. The GeV-scale Z ′ masses
we consider here can be consistent with observations for
10−6 ! κ ! 10−2 [3].
Baryogenesis begins when a non-thermal, CP-

symmetric population of X1 and X̄1 is produced in the
early Universe. These states decay through X1 → udd
or X1 → ȲΦ∗ (and their conjugates). An asymmetry
between the partial widths for X1 → udd and X̄1 → ūd̄d̄
arises from interference between the diagrams shown in
Fig. 1, and is characterized by

ε =
1

2ΓX1

[

Γ(X1 → udd)− Γ(X̄1 → ūd̄d̄)
]

(3)

#
m5

X1
Im[λ∗

1λ2ζ1ζ∗2 ]

256π3 |ζ1|2 M4mX2

,

where we have assumed that the total decay rate ΓX1

is dominated by X1 → Ȳ Φ∗ over the three-quark mode,
and that mX2

$ mX1
. For ε %= 0, X1 decays generate

a baryon asymmetry in the visible sector, and by CPT
an equal and opposite baryon asymmetry in the hidden
sector. These asymmetries can be “frozen in” by the
weakness of the coupling between both sectors.
We model the non-thermal production of X1 as a re-

heating process after a period where the energy content
of the Universe was dominated by the coherent oscilla-
tions of a scalar field ϕ. This field could be the inflaton,
or it could be a moduli field arising from an underlying
theory with supersymmetry [12] or a compactification of
string theory [13]. As ϕ oscillates, it decays to visible
and hidden sector states reheating these two sectors. We
suppose that a fraction of the ϕ energy density ρϕ is con-
verted into X1, X̄1 states, while the remainder goes into
visible and hidden sector radiation which quickly ther-
malizes due to gauge interactions.
The dynamics of hylogenesis and reheating are gov-

erned by the Boltzmann equations

d

dt

(

a3ρϕ
)

= −Γϕ a3ρϕ , (4a)

d

dt

(

a3s
)

= +Γϕ a3ρϕ/T , (4b)

d

dt

(

a3nB

)

= εNXΓϕa
3ρϕ/mϕ (4c)

with ϕ mass mϕ and decay rate Γϕ. s ≡ sHS + sSM =
(2π2/45)gsT 3 is the total entropy density of SM and HS

states (assumed in kinetic equilibrium at temperature
T with an effective number of entropy degrees of free-
dom gs(T ) ), and nB is the baryon number density in
the visible sector (i.e. quarks). The scale factor a(t) is
determined by the Friedmann equation H2 ≡ (ȧ/a)2 =
(8πG/3) (ρϕ + ρr), where ρr ≡ (π2/30)gT 4 is the total
radiation density and g(T ) is the effective number of de-
grees of freedom. NX is the average number of X1 states
produced per ϕ decay.
Eq. (4a) describes the depletion of the oscillating field

energy due to redshifting and direct ϕ decays and has the
simple solution ρϕ ∝ e−Γϕta−3, while Eq. (4b) gives the
rate of entropy production due to decays and describes
the reheating of the Universe. We adopt the convention
that reheating occurs at temperature TRH , defined when
ρr(TRH) = ρϕ(TRH). This occurs near the characteristic
decay time t # Γ−1

ϕ , where the total decay width Γϕ takes
the form [9, 13] Γϕ = m3

ϕ/(4πΛ2). Here, Λ is a large
energy scale corresponding to the underlying ultraviolet
dynamics. For example, Λ ∼ MPl = 2.43 × 1018 GeV
for many moduli in string theory or supergravity. At
reheating, the radiation temperature is approximately [9]

TRH # 5 MeV

(

10

g

)1/4 (MPl

Λ

)

( mϕ

100 TeV

)3/2
. (5)

We require TRH " 5MeV to maintain successful nucle-
osynthesis.
Eq. (4c) determines the comoving density of visible

baryons. The remnant of the intermediate X1 stage ap-
pears in the right-hand-side of Eq. (4c). The factor ε
encodes the X1 decay asymmetry. In writing Eq. (4) we
implicitly take mX1

$ T and ΓX1
$ Γϕ, H . The former

condition implies inverse decays and scattering reactions
that could wash out the asymmetry, such as ūX1 → dd ,
are suppressed by Boltzmann factors of e−mX1

/T , while
the latter condition is satisified for |ζ1| $ m2

ϕ/(mX1
Λ).

The hidden-visible baryon asymmetry can also be washed
out by YΦ → 3q̄ scattering. A sufficient condition for this
washout process to be ineffective is

TRH ! (2 GeV)





∑

a,b

λaλ∗

bζ
∗

aζb TeV6

M4mXamXb





−1/5

. (6)

The allowed TRH increases roughly linearly with the mass
scale (M4m2

X1,2
)1/6.

The resulting baryon asymmetry today is given by

ηB ≡ nB/s =
εNXTRH

mϕ
f(mϕΓϕ) . (7)

Assuming that reheating occurs instantaneously, one can
show analytically that f = 3/4. A numerical solution to
Eqs. (4) reveals f # 1.2, with less than 10% variation
over a wide range of (mϕ,Γϕ). Larger values of TRH

(larger mϕ for fixed Λ) allow for greater production of
baryons.
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FIG. 1: Tree-level and one-loop graphs for decay X1 → udd.
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]

(3)

#
m5

X1
Im[λ∗

1λ2ζ1ζ∗2 ]

256π3 |ζ1|2 M4mX2

,

where we have assumed that the total decay rate ΓX1
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Eqs. (4) reveals f # 1.2, with less than 10% variation
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For the parameter values mϕ = 2000 TeV, Λ = MPl,
NX = 1, we find TRH ! 400 MeV and ηB/ε ! 2.5×10−7.
The observed value of the baryon asymmetry is obtained
for Im[λ∗

1λ2ζ2/ζ1]m5
X1

/(M4mX2
) ∼ 3. Smaller values of

ε and mϕ are viable for Λ < MPl.
We have implicitly assumed that the Z ′ maintains ki-

netic equilibrium between the SM and hidden sectors.
This will occur if ΓZ′〈1/γ〉 > H , where γ is a relativistic
time dilation factor, which implies [14]

κ > 1.5× 10−8
( g

10

)1/2 ( mZ′

GeV

)−1
(

T

GeV

)3/2

, (8)

provided TRH > mZ′ . After baryogenesis, the CP-
symmetric densities of hidden states are depleted very
efficiently through annihilation Y Ȳ → Z ′Z ′ and ΦΦ∗ →
Z ′Z ′ provided mZ′ < mY , mΦ, with the Z ′ decaying
later to SM states by mixing with the photon. The cross-
section for Y Ȳ → Z ′Z ′ is given by [14]

〈σv〉 =
e′4

16π

1

m2
Y

√

1−m2
Z′/m2

Y (9)

! (1.6× 10−25cm3/s)

(

e′

0.05

)4 (3 GeV

mY

)2

.

Annihilation of Φ∗Φ is given by a similar expression.
These cross sections are much larger than what is needed
to obtain the correct DM abundance by ordinary ther-
mal freeze-out, and all of the non-asymmetric DM den-
sity will be eliminated up to an exponentially small re-
mainder [15]. Note that the annihilation process may
occur later than is typical for thermal freeze-out for
TRH ! mY,Φ/20, but even in this case the remaining
non-asymmetric density will be negligibly small [16].
The role of the hidden Z ′ in our model is to ensure

the thermalization and symmetric annihilation of Y and
Φ. A more minimal alternative is to couple Φ to the SM
Higgs boson h via the operator ξ |h|2|Φ|2. For ξ " 10−3,
this interaction, together with Y XΦ and |Φ|4, appears
to be sufficient for both thermalization and symmetric
annihilation.
The residual CP-asymmetric density of Y,Φ is not

eliminated and makes up the DM [17]. The relic num-
ber density is fixed by total baryon number conservation:
nY = nΦ = nB. Thus the ratio between the energy den-
sities of DM and visible baryons is

Ωd/Ωb = (mY +mΦ)/mp . (10)

Present cosmological observations imply Ωd/Ωb =
4.97 ± 0.28 [1], which corresponds to a range
4.4GeV ! mY +mΦ ! 4.9GeV, or 1.7GeV !
mY ,mΦ ! 2.9GeV when combined with the con-
straint |mY −mΦ| < mp +me.
III. Dark Matter Signatures: A novel signature
of this mechanism is that DM can annihilate nucle-
ons through inelastic scattering processes of the form

X1,2

Y,Φ Φ∗, Ȳ

u
u
d

u
s̄p K+

FIG. 2: Diagram for induced nucleon decay processes pY →
K+Φ∗ and pΦ → K+Ȳ .

Y N → Φ∗M and ΦN → Ȳ M mediated byX1,2, whereN
is a nucleon and M is a meson (Fig. 2). We call this pro-
cess induced nucleon decay (IND). IND mimics standard
nucleon decay N → Mν, but with different kinemat-
ics of the daughter meson, summarized in Table I. For
down-scattering processes, where the mass of the initial
DM state is greater than the final DM state, the meson
momentum pM from IND can be much greater than in
nucleon decay. The quoted range of pM corresponds to
the range of allowed masses (mY ,mΦ) consistent with
Eqs. (2, 10). For fixed masses, pM is monochromatic,
with negligible broadening from the local DM halo ve-
locity. (We also note a related study considering lepton-
number violating inelastic DM-nucleon scattering [18].)
To estimate the rate of IND we consider the specific op-

erator (λa/M2)(ūcd)R(X̄s)R that mediates Φp → Ȳ K+,
illustrated in Fig. 2. Treating the Φ and Y states as
spectators, the hadronic matrix element can be estimated
from the value computed for the p → K+ν decay through
the corresponding three-quark operator [19]. We find
that the sum of the IND scattering rates pΦ → K+Ȳ
and pY → K+Φ∗ is given by

(σv)IND = C (10−39cm3/s)

∣

∣

∣

∣

∣

∑

a

TeV3

maM2/λ∗
aζa

∣

∣

∣

∣

∣

2

(11)

where 0.5 < C < 1.6, depending on mΦ,Y within the al-
lowed range. We expect IND modes from other operators
to be roughly comparable. This estimate, which relies on
a chiral perturbation theory expansion that is expected
to be poorly convergent for pM ∼ 1 GeV, is approximate
at best.
An effective proton lifetime τp can be defined as the

inverse IND scattering rate per target nucleon, τ−1
p =

nDM (σv)IND . With a local DM density of 0.3 GeV/cm3,
(σv)IND = 10−39cm3/s corresponds to a lifetime of
τp ! 1032 yr. This is similar to the current lifetime bound

Decay mode pSND
M (MeV) pIND

M (MeV)

N → π 460 800 - 1400

N → K 340 680 - 1360

N → η 310 650 - 1340

TABLE I: Daughter meson M ∈ {π,K, η} momentum pM for
standard nucleon decay (SND) and down-scattering IND.
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erator (λa/M2)(ūcd)R(X̄s)R that mediates Φp → Ȳ K+,
illustrated in Fig. 2. Treating the Φ and Y states as
spectators, the hadronic matrix element can be estimated
from the value computed for the p → K+ν decay through
the corresponding three-quark operator [19]. We find
that the sum of the IND scattering rates pΦ → K+Ȳ
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where 0.5 < C < 1.6, depending on mΦ,Y within the al-
lowed range. We expect IND modes from other operators
to be roughly comparable. This estimate, which relies on
a chiral perturbation theory expansion that is expected
to be poorly convergent for pM ∼ 1 GeV, is approximate
at best.
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(σv)IND = 10−39cm3/s corresponds to a lifetime of
τp ! 1032 yr. This is similar to the current lifetime bound

Decay mode pSND
M (MeV) pIND

M (MeV)

N → π 460 800 - 1400
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TABLE I: Daughter meson M ∈ {π,K, η} momentum pM for
standard nucleon decay (SND) and down-scattering IND.



Affleck-‐Dine	  pangenesis	  (from	  von	  Harling,	  Petraki,	  RV	  2012):	  
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(i)  Asymmetry	  generaJng	  mechanism	  is	  AD:	  	  coherent	  oscillaJons	  of	  “charged”	  
	  scalar	  field	  defining	  a	  flat	  direcJon	  in	  a	  susy	  theory.	  

	  
(ii)  Visible	  sector	  is	  the	  MSSM	  plus	  RH	  neutrino	  superfields.	  	  Role	  of	  BV	  is	  (B-‐L)V.	  

(iii)  Dark	  sector:	  	  U(1)D	  gauge	  theory;	  Δ,	  Λ	  chiral	  superfields	  &	  vector-‐like	  
partners:	  

(iv)  U(1)D	  dark	  EM	  annihilates	  the	  symmetric	  part.	  

(v)  Choose	  flat	  direcJon,	  e.g.	  	  

right-handed neutrinos. Including these fields yields additional F -term constraints which lift
FDs involving the SU(2)L-invariant combination LHu already at the renormalisable level.
Furthermore, the product of different visible-sector monomials which individually correspond
to F -flat directions does not always correspond to an F -flat direction itself. This should be

taken into account when using Table 2. Let us now consider monomials O(d)
q . Since the

dark-sector superpotential in Eq. (5.2) only contains mass terms, all such monomials fulfil
the constraints from F -flatness at the renormalisable level.

In summary, FDs which are suitable for pangenesis are associated with monomials of
the type shown in Eq. (5.4) with the constraint that the visible-sector component satisfies
the F -flatness conditions arising from the renormalisable superpotential of Eq. (5.1). The set
of these monomials obviously depends on the (B − L)-charge of the ‘basis monomials’ ∆Λ
and ∆̄Λ̄. For example, for the choices qDM = 1

2 , 2, 3, such directions are, amongst others:

(∆Λ)2ucdcdc for qDM =
1

2
, (5.5)

∆Λ (ucdcdc)2 for qDM = 2, (5.6)

∆Λ dcdcdcLL for qDM = 3. (5.7)

Since there are three families of quarks and leptons, each of these monomials actually gives
rise to several FDs. The above monomials are (by construction) the lowest order gauge-
invariant operators involving a particular set of fields. They ultimately lift the corresponding
FDs, and they are responsible for the generation of a net X charge, according to the dynamics
described in the previous section.

However, it is possible that other non-renormalisable operators of lower order also con-
tribute to the potential along the field directions associated with the monomials of pangenesis.
This is the case if there exist gauge-invariant operators of the type

Wlift ⊃
1

Mn−3
∗

χOn−1(φi) , (5.8)

where χ is a field that does not participate in the FD under consideration, and On−1(φi) is
a dimension-(n− 1) operator involving only FD fields φi (but not necessarily the entirety of
them). To reproduce the dynamics described in Sec. 4, it is necessary that n > d, where d
is the dimension of the X-violating monomial in the superpotential. This ensures that the
term |φ|2(n−1), which the superpotential term of Eq. (5.8) contributes to the FD potential,
has a negligible effect on the dynamics of the AD field.

In the preceding discussion, we identified FDs for which no operators of the type of
Eq. (5.8) with n ! 3 exist. Let us now discuss operators of this type, potentially relevant for
directions of pangenesis, with n > 3. There are no such operators involving only dark-sector
fields, as long as the FD involves either the monomial ∆Λ or ∆̄Λ̄, but not both. Indeed, all
dark-sector gauge-invariant monomials have the form

Wlift ⊃
1

M2k+2!−3
∗

(∆∆̄)k(ΛΛ̄)! , (5.9)

where k and # are positive integers. The contribution of these terms to the potential vanishes
for k+# " 2 since ∆̄ = Λ̄ = 0, along a FD involving only∆Λ (and vice versa if the FD contains
∆̄Λ̄). On the other hand, the richer field content of the visible sector may allow for operators
of the type of Eq. (5.8), If such operators exist, they may reduce the multiplicity of the FDs
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(vi)  The	  dark	  maeer	  is	  “atomic”,	  U(1)D	  hydrogen-‐like	  bound	  states	  of	  the	  
	  fermionic	  components	  δ	  (“dark	  proton”)	  and	  λ	  (“dark	  electron”)	  of	  Δ	  	  
	  and	  Λ,	  respecJvely.	  Dark	  maeer	  mass:	  mδ	  +	  mλ	  =	  	  qDM	  (1.6	  –	  5)	  GeV.	  
	  (Ensure	  that	  LSP	  is	  underabundant.)	  

	  
(vii)	  Constraints:	  

A.	  	  Atomic	  DM	  recombinaJon	  before	  maeer-‐rad	  equality.	  	  Easily	  saJsfied.	  
	  
B.   Self	  interacJon	  upper	  bound	  from	  Bullet	  cluster	  	  αD	  >	  0.1	  or	  so.	  

C.   Dark	  radiaJon	  …	  

	  
	  	  	  	  	  	  	  	  	  assuming	  massless	  dark	  photons,	  which	  is	  not	  ruled	  out.	  
	  
	  
	  
Can	  also	  spontaneously	  break	  U(1)D	  and	  have	  the	  dark	  Z’	  (sub-‐GeV	  
mass)	  decay	  via	  kineJc	  mixing	  with	  photons	  into	  SM	  states.	  

∆Neff � 0.45



Case	  2:	  Visible-‐to-‐dark	  

One	  example	  will	  be	  briefly	  described	  for	  completeness.	  
Kaplan,	  Luty,	  Zurek:	  PRD	  79	  (2009)	  115016	  	  

(i) 	  B-‐L	  asymmetry	  is	  generated	  at	  a	  high	  scale	  via	  an	  unspecified	  mechanism.	  
	  
(ii)  Dark	  sector:	  gauge	  singlet	  superfields	  X,	  Xbar	  with	  L	  =	  ±1/2	  and	  susy	  mass.	  

(iii)  Transfer	  operator	  is	  	  
	  
(iv)  AnnihilaJon	  of	  symmetric	  part:	  e.g.	  light	  NMSSM	  pseudoscalar	  like	  in	  Haba	  &	  

	  Matsumoto	  model.	  	  Second	  example:	  use	  fields	  in	  the	  UV	  compleJon.	  
	  
(v)  DM	  mass	  =	  11-‐13	  GeV.	  	  Origin	  of	  mass	  scale	  suggested	  as	  NMSSM	  EW	  physics:	  
	  

This paper is organized as follows. In Section 2, we describe concrete models and
explain in detail how they give rise to the observed dark matter density. In Section
3, we discuss direct detection signals. In Section 4, we discuss novel collider signals

in this class of models. Section 5 contains our conclusions.

2 Models

It is simple to construct specific models that generate ADM, and we will give three

examples below. We find it simplest to explain the details of the mechanism in terms
of a specific “reference” model. The remaining models will be described more briefly.

2.1 Reference Model: L = 1
2

ADM

We begin with a supersymmetric model in which the dark matter carries lepton
number. Supersymmetry (SUSY) is not necessary for the dark matter mechanism we
are studying, but it allows a direct connection to a realistic and compelling model

of electroweak physics, and leads to very interesting collider phenomenology. Before
going into the details of the model, we outline its general features:

• The dark matter sector consists of a pair of gauge singlet chiral superfields X, X̄
with L = ±1

2
. This allows a supersymmetric mass term of the form X̄X. There

may be ∆L = 2 breaking of lepton number from Majorana neutrino masses, but

a Z4 subgroup of U(1)L remains unbroken. This forbids Majorana mass terms
of the form X2 and X̄2 that can efficiently wipe out the asymmetry, and also

guarantees that the lightest component of X is a stable dark matter candidate.

• A B − L asymmetry generated at high scales is transfered to the dark matter

via the effective interaction

∆Weff =
1

Mi
X̄2LiHu, (2.1)

where Mi is a high mass scale parameterizing the new physics that generates
the interaction. The lowest-dimension interactions allowed by the unbroken

Z4 subgroup of U(1)L are dimension-5 operators of the form ∆W ∼ X4. As
long as these drop out of equilibrium at a temperature where Eq. (2.1) is still

in equilibrium, the asymmetry will be transfered to the visible sector. The
interaction Eq. (2.1) naturally goes out of equilibrium as the tempurature drops

further, and the dark matter asymmetry freezes in.

3

The fact that the X mass is somewhat larger than the näıve estimate of 5 GeV is due
to X < B, which in turn can be traced to the fact that the model contains more ba-
ryons than X particles: in relativistic equilibrium conserved charges are proportional

to the number of degrees of freedom carrying that charge.3

It is also possible that the interactions Eq. (2.1) decouple below the electroweak

phase transition. In this case, integrating out both the top and the superpartners,
we obtain

X

B
=

13

40
(2.12)

and therefore

mX ! 13 GeV. (2.13)

We now discuss the origin of the dark matter mass. This is a supersymmetric Dirac
mass arising from a superpotential term ∆W = mXX̄X. The question of why mX is

close to the weak scale is similar to the “µ problem” of supersymmetric models, which
is explaining the origin of the supersymmetric Higgs mass term ∆Weff = µHuHd.
Perhaps the simplest solution is the next-to-minimal supersymmetric standard model

(NMSSM) in which the required mass terms are given by the VEV of a singlet field
S:

∆W = λXSXX̄ + λHSHuHd +
κ

3
S3. (2.14)

This model naturally generates a VEV for S of order the electroweak scale and gives
the required mass terms for Higgs and X particles. Very importantly for dark matter
phenomenology, it also gives a direct coupling of X to the standard model, allowing

the dark matter to be directly detected.

The final ingredient is that the thermal abundance of X particles and antiparticles

must efficiently annihilate, so that the relic density of dark matter is given by the X
particle-antiparticle asymmetry. This requires 〈σannv〉 >∼ pb. In the context of the

NMSSM, a simple possibility is X̄X → aa, where a is the lightest pseudoscalar in
the Higgs sector. This is unsuppressed in the early universe as long as ma <∼ mX .
It is natural for a to be light if A terms are small, in which case a is a pseudo

Nambu-Goldstone boson of a global U(1)R symmetry. The annihiation comes from
the coupling

∆Leff = mXX̄Xeia/s + h.c., (2.15)

3We must also impose the condition that the universe has no net electric charge. Since X does
not carry charge, this condition restricts only the relative number of standard model particles, and
does not affect the scaling argument above.
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Incomplete	  reference	  list:	  
Foot,	  RV:	  PRD68	  (2003)	  021304;	  69	  (2004)	  123510	  
Shelton,	  Zurek:	  PRD82	  (2010)	  123512	  
Haba,	  Matsumoto:	  Prog	  Theor	  Phys	  125	  (2011)	  1311	  
Buckley,	  Randall:	  JHEP	  1109	  (2011)	  009	  

Mirror	  DM	  (Foot	  and	  RV,	  2003-‐2004):	  

The	  dark	  sector	  is	  isomorphic	  to	  the	  SM,	  and	  a	  discrete	  symmetry	  between	  
them	  is	  enforced.	  
	  
Microphysics	  is	  the	  same,	  but	  cosmological	  macrophysics	  MUST	  be	  different:	  
T’	  <	  T	  at	  BBN	  =>	  different	  astrophysical	  evoluJon	  in	  the	  two	  sectors.	  

effecJve	  ops.	  for	  reprocessing	  asym.	  

L = LSM(ψ) + LSM(ψ�
) + �FµνF �

µν + κφ†φφ�†φ�
+

�
1

MN ij
L̄iφ̃ R�

jφ
�
+ H.c.

�

Steps:	  	  (1)	  InflaJon:	  T’>0,	  T=0.	  	  (2)	  Then	  B’/L’	  mirror	  asymmetries	  generated.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  (3)	  EffecJve	  ops.	  reprocess	  into	  B/L	  asymmetries.	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  (4)	  “Magic”:	  something	  causes	  heaJng	  of	  ordinary	  sector,	  so	  that	  T	  >	  T’.	  

Case	  3:	  dark-‐to-‐visible	  



We	  analysed	  the	  outcomes	  for	  different	  i,j	  dominaJng	  the	  asymmetry	  
transfer,	  and	  for	  the	  case	  that	  the	  iniJal	  state	  is:	  

B = L = 0 B�
u1R

= B�
d1R

= B�
d2R
�= 0L�

L1
= L�

L2
= L�

L3
�= 0

You	  get	  ΩB	  ~	  ΩB’	  always,	  and	  ΩB	  ≈	  0.22	  ΩB’	  for	  i,j	  =	  1,1	  	  and	  2,2.	  	  	  	  

Darkogenesis	  (Shelton	  &	  Zurek	  2010)	  

	  (i)	   	  Dark	  asymmetry	  generated	  via	  1st-‐order	  PT.	  
	  
(ii)  Dark	  sector	  is	  susy	  chiral	  SU(2)D	  gauge	  theory;	  LH	  fermions	  in	  doublets,	  

	  RH	  fermions	  singlets;	  anomalous	  dark-‐fermion	  number;	  spontaneous	  
	  breaking	  by	  SU(2)D	  Higgs	  doublets.	  

	  
(iii)  The	  transfer	  is	  either	  via	  effecJve	  operators	  or	  EW	  sphalerons;	  both	  

	  of	  course	  require	  a	  messenger	  sector.	  
	  
(iv)  The	  symmetric	  part	  annihilates	  into	  NMSSM-‐like	  pseudoscalar	  pGBs	  

	  	  in	  some	  cases,	  and	  into	  specially	  introduced	  light	  fermions	  in	  others.	  
	  
(v) 	  DM	  is	  lightest	  dark	  sector	  fermion;	  mass	  GeV	  or	  above.	  



Darkgenesis	  (Haba	  &	  Matsumoto	  2010)	  

	  (i)	   	  Dark	  asymmetry	  generated	  via	  out-‐of-‐equilibrium	  decays.	  
	  
(ii)  Dark	  sector	  is	  (susy):	  	  
	  
(iii)  SuperpotenJal:	  
	  
	  
	  
	  
	  
	  
	  
	  
(iv)  The	  symmetric	  part	  annihilates	  into	  very	  light	  bosons	  “s”.	  
	  
(v) 	  DM	  is	  Xbar	  fermion;	  mass	  =	  11	  GeV.	  

In this letter, we propose a novel mechanism to generate a suitable baryon asym-

metry from dark sector [8]. This is a Baryogenesis through a reverse pathway of the
ADM scenario. At first, the asymmetry of the dark matter is generated in the early

universe, and after that, it is transferred into a suitable baryon asymmetry in the SM

sector. This mechanism generates not only the baryon asymmetry but also the correct

amount of dark matter density. Since the dark sector does not receive severe constraint

from current experiments, we can easily construct a model to generate the dark matter

asymmetry. This is a contra-distinctive feature to conventional scenarios.

Dark sector

First, we show our setup in the framework of supersymmetry (SUSY). We introduce

X , X̄ and Yi (i = 1, 2) fields into the next-to-minimal supersymmetric standard model
(NMSSM). These fields are singlet under SM gauge groups, and fermionic components

of X and X̄ correspond to dark and anti-dark matter particles, respectively. Scalar

components are expected to be heavier than the fermionic ones due to soft SUSY break-

ing terms. Z4R symmetry, which is a part of U(1)R, and the lepton number symmetry

(U(1)L) are imposed in the Lagrangian, and we postulate that only the U(1)L symme-

try is softly broken. Charge assignments of the fields are as follows.

X X̄ Yi

Z4R i −i −1
U(1)L 1/2 −1/2 1

With the charge assignments above, the superpotential is written by

W = WNMSSM −
Mi

2
YiYi −mXX̄ +

κi

2
YiX̄

2 + λSXX̄ +
yi
2Λ

X̄2LiHu +
y′i
2Λ

X̄2YiS, (1)

where Li is the i-th generation (i = 1, 2, 3) lepton doublet, Hu is the Higgs doublet

giving the masses of up-type quarks, and S is the singlet field predicted in the NMSSM.

The superpotential of the NMSSM is denoted by WNMSSM. In the superpotential, we

write down operators up to O(1/Λ), where Λ is an energy scale characterizing the
strength of interactions that break the lepton number of dark sector. There exist other

operators of this order which does not break the number. They are, however, not

relevant to following discussions, and we omit writing those operators explicitly. Mass

matrix of Yi has already been diagonalized and whose mass eigenvalues Mi as well as

the dark matter mass m are real and positive by appropriate redefinitions of Yi, X

fields. In our setup, we consider a case where Y is much heavier than X and X̄ . One
of the coupling constants κi is still complex in this basis, which will be the origin of

the dark matter asymmetry. On the other hand, the non-renormalizable interaction

2
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The	  dark	  sectors	  of	  ADM	  models	  are	  rich	  and	  interesJng!	  

Extreme	  example:	  mirror	  maeer	  i.e.	  exactly	  isomorphic	  to	  SM	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (Blinnikov&Khlopov;	  Foot,	  Lew,	  RV,	  …)	  	  

Generic	  possible	  features:	   •  mulJ-‐component	  
•  dark	  electromagneJsm	  &	  dark	  “atoms”	  
•  dark	  radiaJon,	  dark	  “neutrinos”	  
•  mediator	  sector	  
•  common	  extra	  Z-‐boson	  
•  Higgs	  boson	  mixing	  
•  self-‐interacJng	  at	  some	  level	  

Generic	  constraints:	   •  extra	  radiaJon	  at	  BBN/recomb.	  (Planck!)	  
•  self-‐interacJons	  from	  triaxiality	  of	  DM	  haloes	  
	  	  	  	  	  	  of	  ellipJcal	  galaxies,	  and	  clusters	  (Bullet	  etc.)	  
•  direct	  detecJon	  (Z’,	  kineJc	  mixing,	  …)	  
•  collider	  (Higgs	  mixing,	  Z’,	  monojets,	  …)	  
•  Capture	  in	  stars	  

4.	  PHENOMENOLOGY	  



Does	  ADM	  phenomenology	  have	  to	  be	  unconvenJonal?	  	  NO.	  
	  
	  
But	  it	  is	  very	  interesJng	  that	  generically	  it	  is	  unconvenJonal.	  
	  
	  
How	  different	  from	  standard	  should	  DM	  properJes	  be?	  
Does	  ADM	  provide	  a	  new	  paradigm	  to	  solve	  the	  DM	  problems?	  

Kallia’s	  ques/ons:	  



Extra	  radiaJon:	  

gVT 3
V

gDT 3
D

=
gV,dec

gD,dec

Entropy	  conservaJon:	  

implies:	   gD,dec � 18
�gD

2

�1/4 � gV,dec

106.75

�
(∆Neff)3/4

where:	   ∆ρ =
7π2

120

�
4
11

�4/3

∆Neff T 4
V

BBN	  allows	  ΔNeff	  ≤	  1.	  
	  

Various	  CMB/BAO	  combinaJons	  @	  95%	  C.L.	  give	  	  
-‐0.3	  <	  ΔNeff	  <	  1	  



Structure	  formaJon	  and	  galacJc	  dynamics:	  

galacJc	  and	  sub-‐galacJc	  problems:	   •  cores	  vs	  cusps	  
•  missing	  satellites	  
•  “too	  big	  to	  fail”	  
•  co-‐rotaJng	  plane	  of	  satellites	  

constraints:	   •  triaxiality	  of	  DM	  haloes	  around	  ellipJcal	  galaxies	  
•  Bullet	  cluster	  

small-‐scale	  structure	  
wash	  out;	  
self-‐interacJng	  DM	  

bounds	  on	  
DM	  self-‐ints.	  

Ingredients	  for	  a	  soluJon:	   •  late	  DM	  decoupling	  from	  dark	  radiaJon	  
	  	  	  	  	  	  (Silk	  damping,	  acousJc	  oscillaJon	  damping)	  
•  v-‐indep.	  self-‐int.	  XsecJon:	  near	  0.6	  cm2/g	  
•  v-‐dep.	  self-‐int.	  XsecJon:	  can	  resolve	  sub-‐gal.	  
	  	  	  	  	  	  problems	  but	  maintain	  triaxiality	  

Too	  many	  to	  cite!	  	  See	  1305:4939	  for	  references	  



Direct	  detecJon:	  

Possible	  ADM-‐nucleon	  interacJons:	  	  Z’	  coupled	  to	  anomaly-‐free	  Bcon	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Dark-‐photon	  kineJc	  mixing	  with	  photon	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Dark-‐visible	  Higgs	  mixing	  

σSI
Bcon

� (10−46cm2) q2
DM

� g

0.1

�4
�

3 TeV
M

�4

g,	  M	  =	  Z’	  coupling,	  mass	  

σSI
D
� (10−40cm2)

� �

10−4

�2 � gD

0.1

�2
�

1 GeV
MD

�4 kineJc	  mixing	  ε	  	  
dark-‐photon	  coupling,	  mass	  =	  gD,	  MD	  	  

(Both	  evaluated	  for	  mDM	  =	  5	  GeV.)	  

The	  kineJc-‐mixing	  case	  can	  give	  a	  cross-‐secJon	  large	  enough	  to	  be	  roughly	  
compaJble	  with	  DAMA,	  CoGeNT,	  CRESST	  and	  CDMS;	  mutual	  compaJbility	  is	  
not	  perfect,	  and	  there	  is	  tension	  with	  XENON.	  
	  
By	  varying	  parameters,	  	  can	  easily	  be	  small	  enough	  to	  saJsfy	  XENON	  bound.	  

Short	  
range	  



Long	  range	  
Mirror	  DM	  with	  massless	  mirror	  photon	  

Foot:	  PRD69	  (2004)	  036001;	  D82	  (2010)	  095001;	  PLB703	  (2011)	  7;	  1305.4316	  	  

General	  hidden-‐sector	  DM	  with	  massless	  dark	  photon	  
Foot:	  1209.5602	  

MulJ-‐component	  ionised	  DM,	  masses	  mi.	  	  	  
Massless	  mirror/dark-‐photon	  interacJons	  thermalise	  the	  species,	  	  
to	  give	  mass-‐dependent	  velocity	  dispersions:	  

vi � vrot

�
m̄

mi

�1/2

m̄ ≡ Σjnjmj/Σjnj

Most	  massive	  states,	  e.g.	  mirror	  Fe,	  	  give	  largest	  signal	  if	  abundant	  enough.	  
They	  also	  have	  the	  smallest	  velocity	  dispersions:	  tail	  of	  distribuJon	  shorter.	  
This	  can	  parJally	  explain	  why	  the	  higher-‐threshold	  XENON	  expt.	  has	  no	  signal	  
while	  lower-‐threshold	  expts.	  have	  signals.	  
	  
Interplay	  b/w	  mi-‐dep	  vel.	  disp.	  	  and	  long-‐range	  DM-‐nucleon	  microscopic	  	  
interacJon	  can	  bring	  DAMA,	  CoGeNT,	  CRESST-‐II	  into	  good	  agreement.	  	  	  
SJll	  some	  tension	  with	  XENON100.	  

Single-‐species	  DM	  with	  light	  but	  not	  massless	  mediator	  ϕ:	  	  
mϕ~10	  MeV	  for	  mDM~10	  GeV	  preferred.	   Fornengo,	  Panci,	  Regis:	  PRD84	  (2011)	  115002	  



Indirect	  detecJon:	  

(i)	  Par/ally	  asymmetric	  DM	  is	  possible.	  	  AnnihilaJon	  rate:	  

ΓADM

ΓSDM
=

σ0

σ0,WIMP

4 r∞
(1 + r∞)2

r∞�1−−−−→ 4σ0

σ0,WIMP

exp
�
−2σ0

σ0,WIMP

�
r ≡ n(χ̄)

n(χ)
→ r∞ at	  late	  Jmes	  

n=0	  is	  S-‐wave,	  	  n=1	  is	  p-‐wave	   Ann.	  rate	  exponenJally	  suppressed	  
for	  any	  

�σv� = σ0(T/mDM)n

σ0 > few × σ0,W IMP

(ii)	  CoannihilaJons.	  	  EffecJve	  asymmetry	  transfer	  operators:	  

L�X, eff = O(SM, qV)O(DS, qD)

can	  induce	  coannihilaJons	  of	  DM	  with	  SM	  baryons	  or	  leptons.	  
InteresJng	  example	  is	  induced	  nucleon	  decay	  –	  can	  be	  disJnguished	  from	  
spontaneous	  proton	  decay.	  
If	  qD=qDM,	  then	  DM	  can	  decay	  asymmetrically	  to	  SM	  parJcles	  and	  anJparJcles	  	  
if	  kinemaJcally	  allowed.	  

qV	  (qD)	  =	  charge	  of	  SM	  (DS)	  op.	  under	  (B-‐L)V	  	  (BD).	  

Chang,	  Goodenough:	  PRD84	  (2011)	  023524;	  Masina,	  Sannino:	  JCAP	  1109	  (2011)	  021;	  1304.2800;	  Feng,	  Kang:	  1304.7492	  

Davoudiasl	  et	  al	  PRD84	  (2011)	  096008	  



(iii)	  Present-‐day	  DM	  bound	  state	  formaJon	  in	  galacJc	  haloes	  

Can	  get	  bound	  states	  if	  DM	  has	  aeracJve	  self-‐interacJons.	  
	  
Bound	  state	  formaJon	  could	  be	  occurring	  today,	  with	  emission	  of	  radiaJon	  
that	  can	  turn	  into	  SM	  parJcles.	  

Pearce,	  Kusenko:	  1303.7294	  



Capture	  in	  stars:	  

My	  co-‐author	  is	  the	  expert	  on	  this,	  so	  I	  won’t	  say	  much.	  
Main	  points:	  

•  No	  annihilaJons	  means	  DM	  can	  accumulate	  in	  stars	  (losses	  can	  occur	  
	  	  	  	  	  	  	  	  through	  co-‐annihilaJons	  and	  evaporaJon).	  
	  
•  	  	  In	  the	  Sun	  and	  main-‐sequence	  stars:	  can	  alter	  helioseismology	  and	  	  
	  	  	  	  	  	  	  	  neutrino	  fluxes	  through	  energy	  transport	  due	  to	  DM-‐nucleus	  scaeering.	  
	  
•  	  	  Fermionic	  ADM	  can	  exceed	  Chandrasekhar	  limit	  in	  a	  neutron	  star,	  thus	  
	  	  	  	  	  	  	  	  form	  black	  hole	  and	  consume	  it.	  Old	  NS	  =>	  bounds.	  
	  
•  	  	  Bosonic	  ADM	  can	  do	  the	  same,	  but	  bounds	  very	  sensiJve	  to	  inevitable	  DM	  
	  	  	  	  	  	  	  	  self-‐interacJons.	  	  In	  many	  cases,	  there	  are	  no	  meaningful	  bounds.	  

Too	  many	  papers	  to	  cite	  here,	  sorry	  (including	  to	  my	  co-‐author)!	  	  See	  1305.4939	  for	  complete	  references.	  	  	  	  



Collider	  signatures	  

(i)	  Z’	  decays	  to	  the	  dark	  sector:	  

Gauged	  Bcon = (B − L)V −BD

Invisible	  width	  due	  to	  Z’	  decays	  to	  DS	  and	  neutrinos.	  
p	  p	  	  ZZ’	  	  l+	  l-‐	  (or	  γ)	  +	  missing	  ET.	  
Get	  coupling	  to	  neutrinos	  from	  Drell-‐Yan	  and	  use	  of	  weak-‐isospin	  invariance.	  
Thus	  measure	  non-‐neutrino	  invisible	  width.	  

Petriello	  et	  al:	  PRD77	  (2008)	  115020;	  Gershtein	  et	  al:	  PRD78	  (2008)	  095002	  	  

(ii)	  Monojets	  (hylogenesis	  example):	  

⇒ qq� → q̄Ψ̄Φ∗1
Λ3

(uR)c dR (dR)c ΨR Φ + H.c.

Ψ, Φ dark-‐sector	  species	  

Davoudiasl	  et	  al:	  PRD84	  (2011)	  096008	  

Monojet	  cross-‐secJon	  sensiJvity	  to	  about	  7	  �	  with	  100	  �-‐1	  at	  14	  TeV	  LHC.	  
Probe	  few-‐TeV	  scale	  of	  new	  physics.	  



5.	  FINAL	  REMARKS	  

•  Why	  is	  Ωd	  ≈	  5Ωv?	  	  This	  smells	  like	  an	  
	  	  	  	  	  	  important	  clue	  as	  to	  the	  nature	  of	  DM.	  
•  ADM	  allows	  the	  dark	  sector	  to	  have	  rich	  
	  	  	  	  	  	  physics.	  
•  Many	  models	  have	  been	  proposed.	  
•  ADM	  can	  have	  the	  right	  stuff	  to	  solve	  the	  
	  	  	  	  	  small-‐scale	  structure	  problems.	  
•  Can	  help	  reconcile	  the	  direct-‐detecJon	  
	  	  	  	  	  experimental	  results.	  



Does	  ADM	  phenomenology	  have	  to	  be	  unconvenJonal?	  	  NO.	  
	  
	  
But	  it	  is	  very	  interesJng	  that	  generically	  it	  is	  unconvenJonal.	  
	  
	  
How	  different	  from	  standard	  should	  DM	  properJes	  be?	  
Does	  ADM	  provide	  a	  new	  paradigm	  to	  solve	  the	  DM	  problems?	  

To	  reiterate:	  


