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Three mysteries about observing
(or not observing)
electron neutrino interactions...

Chapter 1: Setting the stage...
Chapter 2: Presenting the mysteries...
Chapter 3: Speculating on how the plot may unfold

(with a new and improved
potential ending!)
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We’ve known

about neutrinos
since the 1930’s

The electron flavor
was the first predicted
and first observed!



Neutrinos The usual... © out
interact via //

[
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Weak Interaction

....with a twist
‘ Aged lepton out...

Vv 1n...

Charged Current
\(CC) W-boson




There are 3 types,
which form “weak doublets” with the charged leptons
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Actually, with a modification in the quark sector:

MIXING: quark mass eigenstates = quark weak eigenstates

- L

Vud Vus Vub
Vcd Vcs Vcb
Vi Vis Vib

The CKM
Matrix
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Small effect, Ve \/ -

but clearly
seen 1n weak
interactions...
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] kaon decays,

D meson decays,
etc.



Another feature: “handedness” ... but first, helicity

All spin 1/2 particles have “helicity”

The operator: ¢ - p

right-helicity @ left-helicity @
N 55— §§

Handedness (or chirality) 1s the Lorentz-invariant counterpart

Identical to helicity for massless particles (standard model v's)

Experimental observation of Parity Violation
Neutrinos are LH (and antineutrinos RH) ... always



How do you enforce the law 0.f left-handedness?

Well... what couples left-handed particles to right?

A Dirac mass term
in the SM Lagrangian:

m(VLVR + VRVL)

If you want to build parity violation into “the law”
you want keep this term out of the Lagrangian...
a simple solution is: m=0

in the Standard Model, neutrinos are massless




The problem is...

apparently that’s wrong!



It has long been known that neutrinos can,
in principle, oscillate...

If we postulate:
e Neutrinos have (different) masses

e The Weak Eigenstate is a mixture
of Mass Eigenstates:

( Vi \I _ [ cos@ sinf ) (v
v )\ —sin@ cos ) \ vs

Then a pure v, beam at ¢ = 0,
may evolve a v, component with time!

The Probability for Oscillations...

P,y = sin® 20 sin*(1.27Am*L /E)
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...Depends Upon Two Experimental Parameters:

e [, — The distance from the v source to detector (km)

e I/ — The energy of the neutrinos (GeV)

...And Two Fundamental Parameters:
o Am?=m2—m3 (eV?
e sin226

For v beam with energy E
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Distance from v source (L)



A mystery that I will only touch on... High Am?
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Other oscillation
signals are
well-confirmed!

Confirmed by K2K and
Minos accelerator neutrino exps

Confirmed by SNO and
by Kamland
reactor neutrino exp



The result from the Kamland reactor experiment
also shows the L/E dependence one expects from oscillations!

o Data-BG-GeoV,
— Expectation based on oscl. parameters
+ determined by KamI. AND
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We have a fully self-consistent model

i for how neutrinos behave...
I (m;)”

Ve Uel UeQ Ueg 1

(Amd) e Vp | = | Upr Up2 Ups 2
tm

: m v Vr UT]. U7'2 U7'3 V3

“mixing”’ between neutrinos
E— e (,)’ 1s parameterized by

(Am™),,) . .
4 - () three “mixing angles
012, 013, 053

normal hierarchy



This model is predictive!

Allowed region for
solar neutrino oscillation

measurements,
>
L
5 .
10 =
10—5_— —
0.2 0.3 0.4 05 060708091

fit by Gonzalez-Garcia

tan’s

if this is due to v, = v ..

Thenv, = Vv ..
should be observable
with the same wavelength



This model is predictive!

Allowed region for

solar neutrino oscillation

measurements,
> [
L
5 .
10 B
10—5 —
0.2 0.3 0.4 05 060708091

fits by Gonzalez-Garcia, an old plot, but illustrative!

Allowed region for the
Kamland reactor
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Three mystegi t the




Our Model Vi | = | Upa Up2 Ups Vo

Mystery 1:
m What’s happening here?

Is there any v, content
| v at all?

(Am®),, q
(ml)&

normal hierarchy



Writing that mixing matrix more explicitly...
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The lepton mixing matrix is NOT like the quark matrix!

(WHY???)
Quarks Leptons
7
v
H = - H N
= [l = ) v E m B
- = B E = B
Large entries on diagnonal Moderately large entries
small off diagonal except for one,

which might be zero!



The Frenzy to Find 6,, 1s ON!!!!

Y = beam based,

+ = reactor based,
v, disappearance




How 0, reactor experiments are designed:

Well understood, isotropic source

%e / of electron anti-neutrinos Oscillations observed
@ . (E<8MeV) as a deficit of v,

1.0 1
. sin212613
5 |
Es Unoscillated flux
& observed here
A
Survival Probability
P=1 -sin?20; sin*(1.27 Am? L/E)
|

Distance ~1000 r'neters



Today, the
Limit from
Reactors is here
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Reactor Experiments are disappearance experiments

source Ve detector

start with a
certain flavor

Do you see the
same flavor?

start with a
certain flavor

Do you see a
new flavor?

But appearance is more complicated because of
mysteries 2 and 3!



Mystery 2: Is there CP Violation in the Mixing Matrix Too?

¢;;=cosb);; The CP Violation Parameter
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If so, is it like the quark sector? or not? (Why???)



In the quark sector, CP violation can show up as a
difference in rates of decay for particles vs. antiparticles.

The effect shows up
when you have 2 paths to the same outcome...

u
Particle ) j/

S
C - s You will get an
o interference term
in the decay probability...




Now consider the D°

antiparticle u -
W j/ . ™ There are still 2 paths
T el 5 to the outcome.
D i K*
u u Compared to the D°

the interference
term changes sign!

e.g. DY and DO decays can have different decay rates
if 0 is nonzero!



Nonzero 0 has been seen in the quark mixing matrix,
but it 1s a relatively small effect

But what about the lepton sector???
In a model where...

1. Neutrinos are Majorana particles

2. With GUT scale partners
3. And there 1s CP violation...

Then...
CP violation in the neutrino sector may explain
the matter-antimatter asymmetry in the universe!




Before the electroweak phase transition...

“Left handed” / !- “Right handed” /
N, \ N, \
| -~

B,

Gets mass from the
Majorana term

1£1 MNZ N w5

1 g 2 1 g

+ -
l N l N

The 1nterference terms will have opposite sign!



It’s a big question and
it turns out to be
very hard to answer!

A first step would be observation
of CP violation in the light neutrinos



How would CP violation manifest itself?

In oscillation of muon-flavor to electron-flavor
at the atmospheric Am?

... 1t’s all about the v, events again!




P — ()"

Recall the
2v osc formula: By, = sin” 20 sin” (1.27Am2L/E)

(Am),

For 3 v oscillations, in a vacuum, with CP Violation...

— ()’
(Am")g, .
(ml)-

P = (sin2 655 sin® 26013) (Sill2 Aazy)

F sind (sin 26,3 sin 26053 sin 26,5) (sin® Asy sin Agy)

+ cos d (sin 26,3 sin 2653 sin 26,5) (sin Az cos A3y sin Agy)
/ + (COS2 923 Sill2 2912) (Si112 Agl).

e~/ \ e

terms depending on  terms depending on
mixing angles mass splittings

Aij = Am?j L/AE,

We want to see
if O 1S nonzero



e — ()’

Seeing CP violation is all about interference.

(Am?),,

In a vacuum...

— (m,)’
(AmA)sol 5
(ml)b

P = (sin® Ay sin? 26,3) (sin® A,
(sin® A sin Agy)

+ cos d (sin 26,3 sin 2653 sin 201 ) (sin Agy cos A3y sin Agy)
/‘ + (cos? B3 sin® 20;5) (sin

F sind (sin 26,3 sin 26,3 sin 26,

We want to see The 6-dependent terms
if § is nonzero arise from interference between the
Am,? and Am,,? oscillations




Our equation flips sign between
vV, Ve &V, >V,

In a vacuum...

P = (sin2 655 sin® 26, 3) (Sin2 Aaz)
ind (sin 26,3 sin 26053 sin 26,5) (sin2 A3z sin Agq)
+ cos d (sin 26,3 sin 2653 sin 26,5) (sin Az cos A3y sin Agy)
/‘ + (cos? fy3 sin® 260;5) (sin® Agy).
what we want The matter and antimatter oscillation

to measure probabilities will be different!



The classic 1dea for how to see CP violation:

POSC(VM9 Ve) > POSCWM% Ve)

This1sin a
vacuum (or air).

POSC(V

W



(% (m,)*

Most parameters are well known...

Parameter Present: Assumed Future:

7

Value Uncert.] Value Uncert. ﬁ
B @ T
AmZ, x 107%eVZ 7.65 023 | 7.65 "
Am3, x 1073eV?| 240  0.12 | 240  0.02
sin?(261) 0.846  0.033 | 0.846
sin?(26 1.00 002 .00 0.005
sin?(2613) 0.11  0.06 | 0.05  0.005

Except for that pesky 0!

We will end up having to quote our sensitivity
as allowed regions in both 0,; and 0



This design requires a long baseline!

The Probability for Oscillations...

E— (11,)”

P, = sin®20 sinQ( 1.27TAm?L /E)

Hm v -
B P is maximized when Am?2(L/E) ~ 1
H v

The atmospheric Am? ~0.003 eV?

— (m,)’
I (m,) IfE~3GeV

normal hierarchy Then L = 1000 km !!!




E.g., LBNE -- starting in 2021

Beam from Fermilab o

Shoots to detectors in South Dakota
1300 km

—

And there 1s lots and lots
of matter along a 1300 km path!

also true for LAGUNA and HyperK designs



Mystery 3:

Is the small v, content

up here?

l

P — (11,)°

2

(Am”)

atm

(Am”),,

normal hierarchy

(m,)°

(m,)

(mg)z*

(Am®)

sol

() E—

"

(Am®)

am

(m0,) E— —

inverted hierarchy

or down here?

1.e. What is the
“mass hierarchy”?

Is 1t “opposite” to the
quark sector?
(WHY???)

This affects the
rates of
vV, =V,
Versus

V, =V,



The ground i1s made of matter (electrons)
not antimatter (positrons)

Forward scattering affects neutrinos differently than antineutrinos.

A

This slides the
“allowed ring”
off the diagonal

J This a type of CP violation,

but not what we are
looking for!

V)

vV —V
a

I)OSC(

CPparameter

>

Posc Voce V[S)
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We actually don’t know which direction...

e — ()’

(Am?),,

CP + matter,
Am? <0

— (m,)’
(Am‘)sol \
(ml)b

normal hierarchy

CP + matter,
Am? >0

CPparameter

Posc(vcx% VB)

(m,)’ .
. (Am°)gy
(ml)-

(Am")

am

(m,) e——

inverted hierarchy



We actually don’t know which direction...
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neutrino energy [GeV]

neutrino energy [GeV]
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So now matters become very convoluted.

If I ask: How well can I unravel these mysteries?




But don’t forget the reactors!

They can work on one and only one mystery

613

/

1 - sin?20,; sin?(1.27 Am? LYE)

Reactor
Disappearance
Searches




And it seems that the reactors are looking at just the right place!
New from appearance experiments this summer!
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This still leaves us with:

Long
Base-line

appearance

And this 1s still messy



Not confused by ti mass hierarchy?



AKSALUS

.

Decay
* New Vv source for an ultralarge detector
At rest . .
] — Enhanced neutrino oscillation program
Experlmelilt — New experiments possible
for o, studies
At the e Complementary to the long baseline proposals

— Comparable measurements for osc parameters
— Much improved measurements by combining
DAEOALUS and long-baseline!

Laboratory for
Underground
Science




The plan: Use v, — v,
and exploit the L/E dependence in absolute rates

In a vacuum...

P = (sin2 03 sin? 20,3) (sin2 Aazq) v

F sind (sin 26,3 sin 26053 sin 26,5 ) 48N A3y sin Ag )

+ cos d (sin 26,3 sin 2653 sin 26015 \(sin A3y cos Az sin Ag,
+ (cos? By3 sin? 26 sin? Asq).
2 12 21

e~/ \e e’

terms depending on  terms depending on
mixing angles mass splittings

Aij = Am?j L/4AE,

We want to see
if O 1S nonzero



The terms that depend on 0 change the oscillation wave L dependence

0.035

0.03

0.025

0.02

0.015

0.01

Oscillation Probability

Initial
constraint

Measures the maximum

U

Measures i E_ § =/4
Overall o "

rise o

@ ue Two points along L can untangle

0 * 0,5 (constrained by reactor)

" )

Distance



At low energy and short distances,
Modifications to this vacuum equation
By the mass hierarchy are very small

P = (sin2 03 sin? 20,3) (sin2 Aazq)
F sind (sin 26,3 sin 26053 sin 26,5) (sin® Asy sin Agy)

+ cos d (sin 26,3 sin 2653 sin 26,5) (sin Az cos A3y sin Agy)
/‘ + (cos? fy3 sin® 260;5) (sin® Ag).

e~/ \e e’

terms depending on  terms depending on
mixing angles mass splittings
I can change L and E,

But maintain L/E

And access the same oscillations as long baseline!

We want to see
if O 1S nonzero




So we need:

A multiple baseline
(at least 3 points),
Short baseline,
Low energy,
Experiment
To 1solate

0

Cp



A really nice

low-energy beam p+C —

A nt* decay at rest beam:

+ _ +
O e

Flux | Arb. units]

.
11 l 11 1 1 l 11 1 1 l 1 1 1 l 11 1 1 I 111

Shape driven by nature!

Only the normalization
varies from beam to beam

No intrinsic Ve

Perfect for a

vV, V,

0 10

20 30 40 50 search

Energy MeV]



How do you observe ~50 MeV v, events?

The signal: VAP — e +n

inverse beta decay, IBD /\

You need a lot of free protons!

Use the same ultra-large
detector system as
the long baseline

Water - MEMPHYS, LBNE
Oi1l -- LENA




osc max (1g/2) off max (;t/4) Constrains
at 40 MeV I~ at 40 MeV flux

Our Concept:

It 1s cheaper and easier
To build 3 Decay-at-rest beams Detector
Than to build 1 beam and 3 ultra-large detectors



1.5 km

100ps
Accelerator

8 km
Accelerators

20 km
Accelerators

400us

Beam Off

v

400us

Beam Off

»
»

a

100ps |«

100us

100us

400us

v

a

100pus

400us

400us

» | 100us

100ps |«

v

100ps

20% DF

20% DF

400us

v

S

100us

20% DF

We can know the
distance for an event
by the timing




Luckily, there are other people who want low-energy,
High-power proton sources!

Accelerator driven systems for thorium reactors

Like the accelerators that we need
E C | (and unlike Project X, SNS, etc)
* ~800 MeV protons only

Single energy, no upgrade path
THORIUM ENERGY * No fancy beam structure

QoIS @PIARE  « No stringent emittance requirements

Columbia University,
10-12 October 2011



Among all of the types of accelerators out there...

Cyclotrons -
Synchrotrons
Linacs «+—
FFAGs
I—’ etc.
Very interesting Can do what
R&D ongoing, we need
but these right now,
machines but are expensive.
are not yet
proven Use linacs if

you want a nice
beam for transfer

to another line

and flexibility

on energy (We don’t)

Why cyclotrons?

Inexpensive,

Only practical below ~1 GeV
(ok for us!)

Only good if you don’t need
timing structure (ok!)

Typically single-energy (ok!)

Taps into existing industry

We do not rule out other
options, but cyclotrons
seem like a good fit.




Approaches using
cyclotrons:

The compact cyclotron
with self-extraction

under development
for DTRA at MIT

An H2+ accelerator

for ADS '*"'__ WYY S
applications = w4 (| ¥
., N
Exicion
Under dev. ™=

by INFN, Catania

The stacked cyclotron:

7 cyclotrons
1n one

flux

return

Under dev. for ADS at TAMU



Measurement strategy:

Using near accelerator
measure absolute flux normalization with v-e events to ~1%,
Also, measure the v,O event rate.

12

512




Non-beam backgrounds
Depends on the detector

In water Cerenkov Detectors:

Y, M+ — C+
Atmospheric v, “Invisible muons: * \/
V., +p—=u"+n where
w
ut 1s below Cherenkov threshold, p T n

stops and decays.
Looks just like

Not a background in scintillator!



Non-beam backgrounds, cont’d

* Atmospheric v, IBD events:

Vv, \/

V.+p—=>et+n

: : n
e Diffuse supernova neutrinos b
Measure all of these during the beam off periods:

Beam Off Beam Off

1.5 km 100ps | < 400us +[100ps |« 400us > [100ps
Accelerator
8 km 100ps | < 400us »|100ps |< 400us > | 100us
Accelerators
20 km 100ps | _ 400us _|100ps | 400us . |100us
Accelerators ) )




Beam-related Background

Intrinsic v, in beam
From 1= —u~ events which failed to capture in the beam stop
~4x104 of v, rate (low)

Beam v, in coincidence with random neutron capture signal
Estimated to be very small from Super-K rates

v.-Oxygen CC scatters producing an electron+ n signal

Subsequent n from nuclear de-excitation should be very small.

All fall as 1/r? from the 3 accelerators,
near accelerator provides a measurement



To discuss how well we can do, I need to pick a model...

e Water Cerenkov

e “Homestake Accelerator Arrangement” -- 1.5, 8 and 20 km
e Gd doping of water so the neutron can be observed

* 300 kt (we are stats limited, so you can scale)



Daedalus Phase 1+2 1.5km Data |
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300

1.5km Daedalus Event Energy Distributions

(Signal & Background)
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Compare signal to-background

|__Daedalus Phase 1+2 20km Data__|

| Daedalus Phase 1+2 8km Data I
350 [ -
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So what will we learn about 0 vs 0,; from DAESALUS??
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So what will we learn about 0 vs 0,; from DAESALUS??
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If we succeeded in observing a signal,
what would this plot look like?
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You get a “jelly bean”
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How well do we do on a “jelly bean” plot?
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By construction our capability 1s equal to LBNE,
With same sized detector
But our measurement has completely different issues!
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What the Combined Experiments can do!
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The fraction of “d-space” where a measurement will be >30

Exclusion of §qp= 0° or 180° at 3¢
(300kt Water Cherenkov for 10 year runs)
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Better than a Project X (“superbeam”) experiment!




I have used a US-based example,
but this can be done anywhere you have

1. A detector with a lot of free protons (~100s of ktons).
A scintillator detector should work too.
— This 1s enough to match the conventional beam designs

2. A conventional beam at a reasonable distance.

— This allows you to probe beyond the sensitivity of
superbeams!

There 1s a big wide world of opportunities
for this design!
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Conclusions:

We have learned a lo

But exciting questi eld of oscillations.

We are developing a strong se ents to

Asking, in different ways.
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... T hope DAESALUS will be one of them!



