
Novel detectors for next-generation CMB and 
submm instruments.

Erik Shirokoff, U. Chicago
APC Paris

12 April 2017



Outline

● The universe at millimeter wavelengths
● The kinetic inductance detector
● SuperSpec: On-chip spectroscopy for high-

redshift galaxies
● Future instruments for CMB science.
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Slide from J. Vieira



Current and near-future submm surveys will find 
hundreds of thousands of galaxies: spectroscopic 
followup remains  a bottleneck.

GOODS 850-5; Wang+09

GOODS 850-5; 
Wang+09
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Sensitivity and example spectra at a large 
(25m) single-dish telescope at a good site.



  

Figure from J. Glenn

Spectral lines in the  195-310 GHz atmospheric window.



Epoch of Reionization
with Intensity Mapping

● The first stars and quasars ionized most of the 
hydrogen in the universe.

● We can map ionizing sources, using ionized 
carbon (C+) as a tracer.

● Requires a mm-wave imaging spectrometer and 
hundreds of pixel-months at a good site.

Dunlop & 
McLure



Probes:
– Galaxy clustering
– Mean [CII] intensity and galaxy luminosity function

Gong+12

Tomographic intensity mapping during the 
epoch of reionization



  

Z-Spec: a pioneering mm-wavelength 
spectrometer

120 channels from 190-305 GHz

Image: Earle 2006

First light in 2005, and still in the field
producing science results.
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The Cosmic Microwave Background



CMB Power spectrum

Image: CMB-S4 science book



Further progress in CMB research requires hundreds of 
kilopixels and (at least some) large telescopes.

Image: Bicep2 & Keck Array, BK-VI



Image: CMB-S4 science book
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TES Bolometers: the good, the bad, and the 
hard to read-out.

● Thin-film thermal properties are hard to control.

● SQUID readout is complicated and expensive.

● Limited dynamic range.

● Integration and testing is already a bottleneck.

PolarBear-2 module

● Sensitivity is determined by two parameters:
G(T), Tc.

● Heritage: ~106 person-hours already spent 
turning photons into CMB maps

The good:

The bad:
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The kinetic inductance effect

The DC case:
Cooper pairs carry charge without scattering.
Internal E fields are canceled.

The AC case:
Cooper pairs have momentum.
Acceleration leads to a phase shift between I and V.
This acts like an inductance!

At low temperature:
To 1st order, Lk is constant.
To 2nd order, Lk varies linearly with the number of pairs.

Phase shift leads to E field inside the conductor:
Non-zero resistance from quasiparticle currents
R also varies linearly with number of pairs
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We can make a detector out of this.

P1 P2



  

Microwave resonance leads to natural 
multiplexing:

Figure: Zmuidzinas group



Transmission line MKID: ¼ or ½ wavelength 
antenna-coupled microwave line

Image from Yates+13, A-MKID col.



Direct-absorbing lumped-element KID (LeKID): 
inductor is impedance matched absorber

Image from Mazin group, UCSB



Materials: we're limited by nature, but there are 
several attractive choices
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Multiplexing density / yield trade off

Figure based on Zmuidzinas internal memo

MUX density dominated by resonator collisions

Higher Q, better uniformity → more channels
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Fundamental sensitivity limits

All pair breaking detectors.
For ground based CMB case:

Background limit for all detectors
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Two Level System Noise: hard to predict a 
priori, but follows known scaling laws

Attributed to tunneling states in amorphous dielectrics with broad microwave energy spectra. 

Images: Zmuidzinas 12, J. Gao thesis

Semi-emperical model of Gao et al. agrees with observations: 
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Sensitivity engineering: Thomas Edison science

In principle Mattis-Bardeen equations (and other BCS scalings) 
provide a full description of KID responsivity, G-R noise, and amplifier 
noise terms.

In practice, this works pretty well for aluminum, but poorly for other 
materials.

Solution: Iterate.
1. Make a KID, strive for clean surfaces.
2. Measure NEP.
3. Adjust design based on approximate scaling laws*:

4. GOTO 1.

* In this case, for a resonator operating at a fixed fraction of 
bifurcation power in the linear-response regime.
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Incoming radiation is sorted by narrow 
band filters

Each channel couples to a power 
detector

Channel width and spacing are 
independently adjustable

A general filter bank 
(or cochlear) spectrometer:
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Implementation using thin-film circuits



lens 
footprin t

Lens-coupled twin-slot antenna design for fast 
prototyping

345um



  

Data

Fitted Lorentzian

Binned residuals

System bandpass

Horns offer excellent out-of-band rejection 
(1:104), but fabrication is challenging.



Photon-limited NEP



Photon noise allows us to measure efficiency 
and absolute sensitivity in physical units.



New 50 channel uniform filter bank
with lithographically adjustable mm-wave features



Test structures allow for unambiguous fitting to 
mm-wave channel properties.

Broad-band detectors absorb ~0.1% of mm-wave power on feedline before and after filter bank.

These are long, staggered, to avoid standing wave confusion.

Pairwise differencing of fore/aft/channel KIDs (over) constrain Qc, Qr of channels.



50 Channel mm-wave prototype shows good 
uniformity, reasonable parameters

PRELIMINARY RESULTS:



Early 2018: deploy a 4 pixel demonstration 
instrument at the 50 meter LMT in Mexico



Existing KIDs already meet requirement for a 
broad-band CMB pixel.

Fig by S. Hailey-Dunsheath



Impedance matched microstrip works for low-
impedance materials (Al)



Chicago's CMB-KIDs program: 
Antenna-coupled, multi-band CMB pixels

Note: figure is not (even remotely) to scale.



Broad-band mm-wave feed line to detector 
coupling is a new challenge.

With very little optimization, this approach achieves >90% over any 
single CMB band. Further optimization seems likely to yield universal, 
multi-band coupling designs.



The single-band CMB demonstrator: a KECK-
Array compatible KID focal plane.

Note: figure is not (even remotely) to scale.



Current status

Completed:
● Al resonators
● ALD TiN resonators
● Nb and Nb-Al bilayer microstrip
● DRIE & SU-8 lenslet mounting 

posts
● Twin-slot antenna design
● Cross-under microstrip design
● mm-wave KID coupling design

In progress
● AlMn resonators
● Ti/TiN multilayer 

 resonators
● Full array layout
● Optical tests
● Multi-band filters



Conclusions

● There's a lot of exciting survey science at mm-
wavelengths waiting to be done.

● KIDs have achieved background-limited 
performance.

● On-chip mm-wave circuits will revolutionize the 
science return of a single focal plane.

● It's time to deploy real instruments!



Extra slides follow



RMS scatter in mm-wave frequencies is 0.04%

This is ~6X FWHM for an R=400 channel.



RMS scatter in readout frequencies is 0.2%
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CASPER-ROACH based FPGA systems:
nearly off-the-shelf readout

CASPER-ROACH FPGA board:
Today: $10K, 500 Ch/octave X 1 octave

Cryogenic Low Noise Amplifiers
Today: $2-$4K per readout line

In Aug 2015, MAKO 500 pixel demo run cost $30/pixel for readout.

Reaching $10/pixel is straightforward. Reaching $1/pixel is possible.
Other systems in development. (NIKA (NIKEL) FPGA, Stanford FPGA, 
Caltech GPU, Crimson commercial boards.)
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