Résultats de SDSS3/BOSS CMASS DR9

Galaxy map 3.8 billion years ago

Galaxy map 5.5 billion years ago

CMB 13.7 billion years ago

J.-Ch. Hamilton, É. Aubourg, J. Bautista, N. Busca, A. Labatie, <u>M. Vargas</u>

Programme

- Rappels cosmologiques
 - ★ Histoire de l'expansion, distances et paramètres cosmologiques
 - ★ Résultats sur l'Énergie sombre
 - ★ Oscillations acoustiques de baryons

BOSS : Baryon Oscillations Spectroscopic Survey

- ★ L'héritage de SDSS I et II
- ★ SDSSIII / BOSS

La corrélation spatiale des LRG avec DR9

- ★ Sélection de l'échantillon, complétude
- ★ Fonction de corrélation à deux points, Spectre de puissance
- Contraintes cosmologiques
 - ★ Principe des analyses
 - ★ Résultats
- Perspectives

Modèle FLRW

Relativité Générale

 $\bigstar \quad f\left(\begin{array}{c} \text{M\'etrique de} \\ \text{l'espace - temps} \end{array}\right) = 8\pi G\left(\begin{array}{c} \text{Distribution} \\ \text{de matière} \end{array}\right)$

Principe Cosmologique

★ L'univers est homogène et isotrope aux grandes échelles

Métrique de Friedman-Lemaître-Robertson-Walker

$$\star ds^2 = dt^2 - a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right] \qquad k = \begin{cases} 0 & \to \text{ Plat} \\ 1 & \to \text{ Fermed} \\ -1 & \to \text{ Ouver} \end{cases}$$

Équations de Friedman pour a(t)

- L'évolution de a(t) dépend des densités des différentes espèces:
 - Matière relativiste
- Matière non relativiste
- Constante cosmologique (ou énergie sombre ...)

Caractéristiques de FLRW

• Univers en expansion

★ Taux d'expansion: Paramètre de Hubble. Aujourd'hui : H₀~72 km.s⁻¹.Mpc⁻¹

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}\left(\frac{\rho}{\rho_{c}} + \frac{k}{a^{2}H_{0}^{2}} + \frac{\Lambda}{3H^{2}}\right),$$
$$= H_{0}^{2}\left(\Omega_{m} + \Omega_{k} + \Omega_{\Lambda}\right)$$

$$H(z) = H_0 \sqrt{\Omega_k^0 \times (1+z)^2 + \Omega_m^0 \times (1+z)^3 + \Omega_X(z)}$$

Redshift: boost entre réferentiels locaux et distants

$$1 + z = \frac{a_0}{a}$$

Distances: non triviales

Caractéristiques de FLRW

• Univers en expansion

★ Taux d'expansion: Paramètre de Hubble. Aujourd'hui : H₀~72 km.s⁻¹.Mpc⁻¹

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}\left(\frac{\rho}{\rho_{c}} + \frac{k}{a^{2}H_{0}^{2}} + \frac{\Lambda}{3H^{2}}\right),$$
$$= H_{0}^{2}\left(\Omega_{m} + \Omega_{k} + \Omega_{\Lambda}\right)$$

$$H(z) = H_0 \sqrt{\Omega_k^0 \times (1+z)^2 + \Omega_m^0 \times (1+z)^3 + \Omega_X(z)}$$

Redshift: boost entre réferentiels locaux et distants

1 billion uears

ଚ୍ଚ ତ

$$1 + z = \frac{a_0}{a}$$

Distances: non triviales

Distances en cosmologie

Différence de coordonnées:

 $r(z) = \int_{0}^{r} \frac{\mathrm{d}r}{\sqrt{1 - kr'^2}} = \int_{t}^{t_0} \frac{\mathrm{d}t'}{a(t')} = \frac{1}{a_0} \int \frac{\mathrm{d}z'}{H(z')}$

Dépendent de:

- ★ <u>Manière de les mesurer</u>
 - différence de coordonnées x paramètre d'échelle (non mesurable): distance propre (comobile) $D_p(z) = a_0 r(z) = \int_0^z \frac{dz'}{H(z')}$
 - luminosité apparente sachant la luminosité absolue :
 - distance de luminosité

$$D_l(z) = D_p(z) \times (1+z)$$

- Taille angulaire apparente sachant la taille physique:
 - distance angulaire

$$D_a(z) = D_p(z)/(1+z)$$

Profondeur en redshift sachant la taille physique: Distance radiale $dz = a_0 \frac{da}{a^2} = \frac{a_0 \dot{a}}{a^2} dt = (1+z)H(z)dx$

★ des paramètres cosmologiques via H(z)

 $H(z) = H_0 \sqrt{\Omega_k^0 \times (1+z)^2 + \Omega_m^0 \times (1+z)^3 + \Omega_X(z)}$

Distance(s) : fct de la cosmologie

En pratique:

- ★ Da = Dp = DI = Dt pour z petit
- ★ Da < Dp < Dl

• Une galaxie à z=2:

- ★ est à une distance comobile de 5.3 Gpc/h
- ★ a le diamètre angulaire de la même galaxie située à 1.8 Gpc/h
- a la luminosité apparente de la même galaxie située à 16 Gpc/h

Énergie noire:

 dans un Univers avec énergie noire, tout semble plus lointain à cause de l'accélération de l'expansion

Diagrammes de Hubble

• Mesurer l'une des distances en fonction de z

- ★ Chandelle standard (SNIa)
- ★ Étalon de distance standard (BAO)
- ★ Horloge standard (?)

• Mesure des paramètres cosmologiques

Diagrammes de Hubble

Mesurer l'une des distances en fonction de z

- ★ Chandelle standard (SNIa)
- ★ Étalon de distance standard (BAO)
- ★ Horloge standard (?)

Mesure des paramètres cosmologiques

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - -I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - -I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - -I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - -I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

• Questions:

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

CMB:
distance angulaire à z=1100
Mesure de H0
(~locale)
SNIa:
distance de luminosité
BAO SDSSII:
distance angulaire

- Nature de Λ
 - valeur de Ω_{Λ}
 - équation d'état de Λ :
 - -I : ~ Constante cosmologique [gravité]
 - autre : Dark Energy [contenu matériel]

Univers jeune: ionisé

- ★ Photons et baryons couplés
- Propagation d'ondes de pression

Découplage matière-rayonnement: Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

Univers jeune: ionisé

- Photons et baryons couplés
 Propagation d'ondes de pression
- Découplage matière-rayonnement: Univers neutre
 - ★ Les photons s'échappent (CMB)
 - ★ Baryons: excès à l'horizon sonore (150 Mpc)
 - ★ Matière noire restée au centre
 - ★ Un excès demeure à 150 Mpc

Univers jeune: ionisé

Photons et baryons couplés
 Propagation d'ondes de pression

Découplage matière-rayonnement: Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

Univers jeune: ionisé

- Photons et baryons couplés
 Procession d'audre de la service
 - Propagation d'ondes de pression

Découplage matière-rayonnement: Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

Univers jeune: ionisé

- Photons et baryons couplés
 Proposition d'andre de proposition
- Propagation d'ondes de pression
- Découplage matière-rayonnement: Univers neutre
 - ★ Les photons s'échappent (CMB)
 - ★ Baryons: excès à l'horizon sonore (150 Mpc)
 - ★ Matière noire restée au centre
 - ★ Un excès demeure à 150 Mpc

Univers jeune: ionisé

- Photons et baryons couplés
 Proposition d'andre de proposition
- Propagation d'ondes de pression
 Découplage matière-rayonnement:

Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Observations des BAO

Observations des BAO

BAO et matière noire

BAO: Règle standard

The second have a second from the second second

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

BAO 3D ou isotropisées ?

• Rappel:

- Direction transverse:
- → Distance angulaire : $D_a(z) \propto \int \frac{dz}{H(z)}$
 - fection radiale. $\Delta z \propto rac{1}{H(z)}$

• Mesures 3D:

- \star r_{\perp} (2D) et r_{\parallel} (1D)
- ★ Informations cosmo complémentaires
- Symétrique dans la bonne cosmo
- Test de Alcock-Paczynski (1979) \star

Mesures isotropisées ★ $\xi(r) = \xi(\sqrt{r_{\parallel}^2 + r_{\perp}^2})$ ★ sensible à Dv(z) $D_v(z) = \left[D_a^2(z)cz/H(z)\right]^{1/3}$

Luminous Galaxies

BAO 3D ou isotropisées ?

• Rappel:

- Direction transverse:
- → Distance angulaire : $D_a(z) \propto \int \frac{dz}{H(z)}$
 - épaisseur en z : $\Delta z \propto \frac{1}{H(z)}$

• Mesures 3D:

- \star r_{\perp} (2D) et r_{\parallel} (1D)
- ★ Informations cosmo complémentaires
- Symétrique dans la bonne cosmo
- Test de Alcock-Paczynski (1979)

 Mesures isotropisées ★ $\xi(r) = \xi(\sqrt{r_{\parallel}^2 + r_{\perp}^2})$ ★ sensible à Dv(z) $D_v(z) = \left[D_a^2(z)cz/H(z) \right]^{1/3}$

Redshift space distorsions

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Redshift space distorsions

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Redshift space distorsions

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Effet Kaiser

→ surdensité ←

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Effet Kaiser

→ surdensité ←

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

/ observateur

Doigts de Dieu

surdensité

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

/ observateur

Doigts de Dieu

surdensité

Redshift space distorsions

- On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

BAO dans le «vrai monde»

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- ★ On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

★ Non linéarités:

effondrement gravitationnel non linéaire: lisse les structures aux petites échelles et à bas z

Tout cela complique l'analyse...

Non linéarités: [Padmanabhan et al., 2012]

BAO dans le «vrai monde»

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

- On mesure (θ, ϕ, z)
- \star z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$
 - Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
 - Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

★ Non linéarités:

effondrement gravitationnel non linéaire: lisse les structures aux petites échelles et à bas z

Tout cela complique l'analyse...

Non linéarités: [Padmanabhan et al., 2012]

Non linéarités + RSD

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Diagramme de Hubble BAO

Programme

Rappels cosmologiques

- ★ Histoire de l'expansion, distances et paramètres cosmologiques
- ★ Résultats sur l'Énergie sombre
- ★ Oscillations acoustiques de baryons

BOSS : Baryon Oscillations Spectroscopic Survey

- L'héritage de SDSS I et II
- ★ SDSSIII / BOSS

La corrélation spatiale des LRG avec DR9

- ★ Sélection de l'échantillon, complétude
- ★ Fonction de corrélation à deux points, Spectre de puissance
- Contraintes cosmologiques
 - ★ Principe des analyses
 - ★ Résultats
- Perspectives

SDSS-III / BOSS

Projet principal de SDSS-III
 Telescope APO (Nouveau-Mexique)
 2.5 m

• Relevé spectroscopique

- ★ Photométrie de SDSS-II (targets)
- ★ 2 spectros à deux bras: 1000 fibres
 - ____3600 Å < λ < 10000 Å
 - $\lambda/\Delta\lambda \sim 3000$
- ★ 10000 degrés carrés :
 - I.5 Millions de galaxies LRG (z~0.7)
 - I 00 000 Quasars avec forêt Ly- α à z~2.5

Objectifs:

- ★ Position du pic BAO à
 - 1% à z=0.6
 - I.5% à z=2.5
- Meilleures contraintes sur l'énergie sombre avant la prochaine génération

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

BOSS LRGVs. SDSS-II

•2x volume

- •5x density
- IOx statistics
- •1,600,000 LRGs

SDSS main sample SDSS I+II BOSS (SDSS III)

Perspectives sur D.E.

[Tiré de M.Vargas]

Programme

Rappels cosmologiques

- ★ Histoire de l'expansion, distances et paramètres cosmologiques
- ★ Résultats sur l'Énergie sombre
- ★ Oscillations acoustiques de baryons

BOSS : Baryon Oscillations Spectroscopic Survey

- ★ L'héritage de SDSS I et II
- ★ SDSSIII / BOSS

La corrélation spatiale des LRG avec DR9

- ★ Sélection de l'échantillon, complétude
- ★ Fonction de corrélation à deux points, Spectre de puissance
- Contraintes cosmologiques
 - \star Principe des analyses
 - ★ Résultats
- Perspectives

Recent articles

Overview: galaxy distance measurements, analysis, and interpretations

Anderson, L. M. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon</u> <u>Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6594)</u>.

Implications for cosmology

Sánchez, A. G. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6616)</u>.

Testing General Relativity with galaxy velocities

Reid, B. A. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6641)</u>.

Testing General Relativity with passive galaxies

Tojeiro, R. et al. 2012, <u>The Clustering of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Measuring structure growth using Passive galaxies</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6565)</u>.

Controlling for errors

Ross, A. J. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics</u>, submitted to XXXXX and available on the <u>arXiv preprint server (1203.6499)</u>.

Comparisons to synthetic data

Manera, M. et al. 2012, <u>The Clustering of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: A Large Sample of Mock Galaxy Catalogues</u>, submitted to XXXXX and available on the <u>arXiv preprint server (1203.6609)</u>.

Recent articles

Overview: galaxy distance measurements, analysis, and interpretations Anderson, L. M. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon</u> <u>Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6594)</u>.

Implications for cosmology

Sánchez, A. G. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6616)</u>.

Testing General Relativity with galaxy velocities

Reid, B. A. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6641)</u>.

Testing General Relativity with passive galaxies

Tojeiro, R. et al. 2012, <u>The Clustering of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Measuring structure growth using Passive galaxies</u>, submitted to *Monthly Notices of the Royal Astronomical Society* and available on the <u>arXiv preprint server (1203.6565)</u>.

Controlling for errors

Ross, A. J. et al. 2012, <u>The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics</u>, submitted to XXXXX and available on the <u>arXiv preprint server (1203.6499)</u>.

Comparisons to synthetic data

Manera, M. et al. 2012, <u>The Clustering of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: A Large Sample of Mock Galaxy Catalogues</u>, submitted to XXXXX and available on the <u>arXiv preprint server (1203.6609)</u>.

Photométrie SDSS-II 5 bandes (u, g, r, i, z)

Objectif: CMASS

échantillon complet, uniforme en masse (LRG) et limité en volume entre z~0.4 et z~0.8

Coupures:

- d_{perp}:
 - ~ proportionnel à z
- Coupure en masse:
 - LRG
- Coupure en magnitude i:
 - limité en volume

Contamination stellaire < 1%Efficacité 99%

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Photométrie SDSS-II ★ 5 bandes (u, g, r, i, z)

Objectif: CMASS

★ échantillon complet, uniforme en masse (LRG) et limité en volume entre z~0.4 et z~0.8

Coupures:

- d_{perp}:
 - ~ proportionnel à z
- Coupure en masse:
 - LRG
- Coupure en magnitude i:
- limité en volume

Contamination stellaire < 1%Efficacité 99%

dperp

0.5

Photométrie SDSS-II ★ 5 bandes (u, g, r, i, z)

Objectif: CMASS

★ échantillon complet, uniforme en masse (LRG) et limité en volume entre z~0.4 et z~0.8

Coupures:

- d_{perp}:
 - ~ proportionnel à z
- Coupure en masse:
 - LRG
- Coupure en magnitude i: limité en volume

Grand z Évolution Passive pour une galaxie de Petit z Log(M)=11.25 (Modèle Maraston 2011) 0.0 **SDSS Photometry+ AGES redshift** 21 16 17 18 19 20 i mag [Tiré de M.Vargas] Contamination stellaire < 1%

AGES Red Galaxies

Fiducial Cut

Cmoss Cut

Efficacité 99%

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Photométrie SDSS-II ★ 5 bandes (u, g, r, i, z)

Objectif: CMASS

★ échantillon complet, uniforme en masse (LRG) et limité en volume entre z~0.4 et z~0.8

Coupures:

- d_{perp}:
 - ~ proportionnel à z
- Coupure en masse:
 - LRG
- Coupure en magnitude i:
 - limité en volume

On veut:

 ★ Des objets spectrés et spectroscopiquement CMASS
 ★ qui ait été des targets CMASS
 _ (des erreurs peuvent se glisser...)
 ★ Ou bien des objets déjà connus
 _ (attention au double comptage...)
 ★ Gérer les collisions de fibres
 _ impossible de placer deux fibres plus proches de 62 arcsec

Spectra No CMASS

Completeness =

 $\frac{Spectra}{Targets}$

Retirer des cibles les objets
 spectroscopiquement non CMASS

Spectra CMASS

P C

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

On veut:

 ★ Des objets spectrés et spectroscopiquement CMASS
 ★ qui ait été des targets CMASS
 _ (des erreurs peuvent se glisser...)
 ★ Ou bien des objets déjà connus
 _ (attention au double comptage...)
 ★ Gérer les collisions de fibres
 _ impossible de placer deux fibres plus

Targets CMASS

Spectra No CMASS Targets No CMASS

Completeness

Completeness =

proches de 62 arcsec

 $\frac{Spectra}{Targets}$

Retirer des cibles les objets
 spectroscopiquement non CMASS

Spectra CMASS

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Spectra

No CMASS

On veut:

 ★ Des objets spectrés et spectroscopiquement CMASS
 ★ qui ait été des targets CMASS
 _ (des erreurs peuvent se glisser...)
 ★ Ou bien des objets déjà connus
 _ (attention au double comptage...)
 ★ Gérer les collisions de fibres
 _ impossible de placer deux fibres plus proches de 62 arcsec

Targets CMASS

Legacy

Targets No CMASS

Spectra CMASS

spectroscopiq

Completeness

Completeness

 $\frac{Spectra}{Targets}$

Retirer des cibles les objets
 spectroscopiquement non CMASS

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Spectra

No CMASS

On veut:

 ★ Des objets spectrés et spectroscopiquement CMASS
 ★ qui ait été des targets CMASS
 _ (des erreurs peuvent se glisser...)
 ★ Ou bien des objets déjà connus
 _ (attention au double comptage...)
 ★ Gérer les collisions de fibres
 _ impossible de placer deux fibres plus proches de 62 arcsec

Targets CMASS

Legacy

Fiber Collision

> Targets No CMASS

Spectra CMASS

Completeness =

 $\frac{Spectra}{Targets}$

Retirer des cibles les objets
 spectroscopiquement non CMASS

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

[Anderson et al, 2012]

- $Completeness = \frac{Spectra}{Targets}$
- rarement =

Définition:

- Survey en cours
- ★ Taux de succès non uniforme
 - essentiellement du à la météo

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Définition:

 $Completeness = \frac{Spectra}{Targets}$

rarement =

- Survey en cours
- ★ Taux de succès non uniforme
 - essentiellement du à la météo

Importance:

- Corriger ξ(r)des effets de non uniformité du sampling
 - Utilisation d'un échantillon «random» dans l'estimateur de $\xi(r)$
 - $\hat{\xi}_{PH} = \frac{DD}{RR}$ [version simple]
 - pondérer en fonction de la densité de galaxies [Feldman, Kaiser, Peacock, 1993]

Définition:

Completeness =

rarement =

- Survey en cours
- ★ Taux de succès non uniforme

Spectra

Targets

essentiellement du à la météo

Importance:

- Corriger ξ(r)des effets de non uniformité du sampling
 - Utilisation d'un échantillon «random» dans l'estimateur de $\xi(r)$
 - $\hat{\xi}_{PH} = \frac{DD}{RR}$ [version simple]
 - pondérer en fonction de la densité de galaxies [Feldman, Kaiser, Peacock, 1993]

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Définition:

Completeness =

rarement =

- Survey en cours
- ★ Taux de succès non uniforme

Spectra

Targets

essentiellement du à la météo

Importance:

- Corriger ξ(r)des effets de non uniformité du sampling
 - Utilisation d'un échantillon «random» dans l'estimateur de $\xi(r)$
 - $\hat{\xi}_{PH} = \frac{DD}{RR}$ [version simple]
 - pondérer en fonction de la densité de galaxies [Feldman, Kaiser, Peacock, 1993]

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Définition:

Completeness =

rarement =

- Survey en cours
- ★ Taux de succès non uniforme

Spectra

Targets

essentiellement du à la météo

Importance:

- Corriger ξ(r)des effets de non uniformité du sampling
 - Utilisation d'un échantillon «random» dans l'estimateur de $\xi(r)$
 - $\hat{\xi}_{PH} = \frac{DD}{RR}$ [version simple]
 - pondérer en fonction de la densité de galaxies [Feldman, Kaiser, Peacock, 1993]

Polygons + Data (black) + Random (white)

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Distribution en redshift

Property	NGC	SGC	total
$\bar{N}_{\rm gal}$	222 538	60792	283 330
$\bar{N}_{ m known}$	3766	1810	5576
$\bar{N}_{\rm star}$	7201	1771	8972
\bar{N}_{fail}	3751	1122	4873
\bar{N}_{cp}	14116	3640	17756
$\bar{N}_{ m missed}$	4931	1911	6842
$\bar{N}_{ m used}$	207 246	57 037	264 283
$\bar{N}_{\rm obs}$	233 490	63 685	297 175
\bar{N}_{targ}	256 303	71 046	327 349
Total area / deg ²	2635	709	3344
Effective area / deg2	2584	690	3275

Volume: 2.2 Gpc³

[Anderson et al, 2012]

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

$\xi(r)$ et P(k) isotropisés

Les deux sont en principe équivalents

mais implémentation très différente en pratique

- ★ Erreurs différentes
- x(r) : Landy-Szalay
 P(k) : basé sur des FFT
 - Barres d'erreurs:
 Simulations N-body LasDamas [McBride et al. 2011]
- NB: Choix d'une cosmologie fiducielle (pour avoir des «r»)

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

$\xi(r)$ et P(k) isotropisés

Les deux sont en principe équivalents

- mais implémentation très différente en pratique
- ★ Erreurs différentes
- x(r) : Landy-Szalay
 P(k) : basé sur des FFT

Barres d'erreurs:
 ★ Simulations N-body LasDamas [McBride et al. 2011]

 NB: Choix d'une cosmologie fiducielle (pour avoir des «r»)

[Anderson et al, 2012]

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Cosmologie fiducielle et α

Raisons

- ★ On doit choisir une cosmologie pour calculer les distances
- Difficile d'imaginer un processus itératif (CPU - data + mocks)

Paramètre de dilatation α :

★ pour ξ (r) ajustement de : $\xi^{\text{fit}}(r) = B^2 \xi_{\text{fidu}}(\alpha r) + A(r)$

avec
$$A(r) = \frac{a_1}{r^2} + \frac{a_2}{r} + a_3$$

\star pour P(k) :

 $P_{\text{fidu}}^{\text{fit}}(r) = P^{\text{smooth}}(k) \times P_{\text{fidu}}^{\text{wiggles}}(k/\alpha)$ $P_{\text{fidu}}^{\text{wiggles}}(k) = \frac{P_{\text{fidu}}(k)}{P_{\text{fidu}}^{\text{smooth}}(k)}$

• Toute la cosmologie est dans α

0.06 0.08 0.1 0.12 y=s/D_v(z_m)

[Sanchez et al, 2012]

0.04

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Programme

Rappels cosmologiques

- ★ Histoire de l'expansion, distances et paramètres cosmologiques
- ★ Résultats sur l'Énergie sombre
- ★ Oscillations acoustiques de baryons

BOSS : Baryon Oscillations Spectroscopic Survey

- ★ L'héritage de SDSS I et II
- ★ SDSSIII / BOSS

La corrélation spatiale des LRG avec DR9

- ★ Sélection de l'échantillon, complétude
- ★ Fonction de corrélation à deux points, Spectre de puissance
- Contraintes cosmologiques
 - ★ Principe des analyses
 - ★ Résultats

Perspectives

α et l'horizon sonore

α : cosmologie erronée dans le calcul des distances
 ★ contient le Jacobien de la transformation r → r'

$$d^{3}r' = \left(\frac{D'_{V}(z)}{D_{V}(z)}\right)^{3} d^{3}r \qquad D_{v}(z) = \left[D_{a}^{2}(z)cz/H(z)\right]^{1/3}$$

α dépendance de l'horizon sonore w.r.t. la cosmologie
 ★ Contient le Jacobien de la transformation r_s → r_s'

• Finalement:
$$\alpha = \frac{D_V}{D_{V,\text{fidu}}} \times \frac{r_{s,\text{fidu}}}{r_s} = \frac{D_V/r_s}{(D_V/r_s)_{\text{fidu}}}$$

• Notre observable est donc: $D_V/r_s = \alpha \times (D_V/r_s)_{\rm fidu}$

Deux analyses cosmologiques

[Anderson et al., 2012]

- ← Utilise simplement le paramètre α comme dilatation de la cosmologie
- Ajoute un calcul de ξ(r) et P(k) incluant une reconstruction des non-linéarités [Padmanabhan et al. 2012]
- ★ Contraint D_V/r_s à z=0.57 : 13.67 +/- 0.22 (1.6% - consensus $\xi(r)$, P(k) reco. ou non)
- ★ Combiné avec les autres données cosmologiques: Ω_m , H₀, Ω_k , w₀ et w₁
- ★ Grande robustesse vis à vis des systématiques

[Sanchez et al., 2012]

- ★ Analyse plus complexe utilisant toute la forme de $\xi(r)$
- ★ Inclut aussi un paramètre de dilatation mais exprimé moins simplement
- ★ Permet de contraindre indépendamment D_V et r_s (qui dépend de $\Omega_m h^2$ et $\Omega_b h^2$ au premier ordre)
- ★ Combiné avec les autres données cosmologiques: Ω_m , H₀, Ω_k , f_{ν}, r, w₀

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Diagramme de Hubble

Les BAO de BOSS-CMASS sont équivalentes une SNIa à z=0.57 avec 1.6% de précision au lieu de ~14%

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Paramètres cosmologiques

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Paramètres cosmologiques

Univers primordial

J.-Ch. Hamilton - Séminaire APC - 25/04/2012

Programme

Rappels cosmologiques

- ★ Histoire de l'expansion, distances et paramètres cosmologiques
- ★ Résultats sur l'Énergie sombre
- ★ Oscillations acoustiques de baryons

BOSS : Baryon Oscillations Spectroscopic Survey

- ★ L'héritage de SDSS I et II
- ★ SDSSIII / BOSS

La corrélation spatiale des LRG avec DR9

- ★ Sélection de l'échantillon, complétude
- ★ Fonction de corrélation à deux points, Spectre de puissance

Contraintes cosmologiques

- ★ Principe des analyses
- ★ Résultats

Perspectives

Conclusions et perspectives

- BOSS est à 30% de sa prise de données
- En parfait accord avec le planning du survey
- avec 18% des données :
 - ★ BAO détectées à z=0.57 à 5 σ
 - ★ Mesure de D_V à z=0.57 à 1.6%
 - premières contraintes cosmologiques confortent un Univers plat dominé par une constante cosmologique
 - ★ Meilleures mesures à ce jour sur (w₀,wa)
- Non traité ici: effets systématiques
 - ★ Voir [Ross et al. 2012] arXiv:1203.6499
- Le meilleur reste à venir !
 - ★ Prise de données jusqu'à mi-2014
 - ★ D_V et H(z) à 1% avec les LRG à z=0.6
 - ★ D_V et H(z) à 1.5% avec la forêt Lyman-a des Quasars à z=2.5

mercredi 25 avril 2012

Cf. N. Busca dans qques mois

mercredi 25 avril 2012

. Bautista & M.Vargas

mercredi 25 avril 2012