Next generation reactor neutrino experiment

Yifang Wang Institute of High Energy Physics Paris, April 29, 2013

Neutrino Oscillation

• If the neutrino mass eigenstate is different from that of the weak interaction, neutrinos can oscillate: from one type to another during the flight:

Oscillation probability:

Neutrino oscillation is a great method to probe the neutrino mass Neutrino oscillation is the central issue of neutrino studies

Neutrino Oscillation with 3 Generations

- Known parameters: θ_{23} , θ_{12} , $|\Delta M^2_{23}|$, ΔM^2_{12} ,
- Recent progress: θ_{13} (by reactors)
- Unknown parameters: mass hierarchy(ΔM^2_{23}), phases δ , ρ , σ

Successful Reactor neutrino Experiments

- > Confirmed solar neutrino oscillation and precisely determined θ_{12} , ΔM^2_{12}
- > Discovered non-zero θ_{13}
- May determine the mass hierarchy

Precision:

- Reactor power: ~1%
- v spectrum: ~0.3%
- Fission rate: ~ 2%
- Backgrounds: ~1-3%
- Target mass: ~1-2%
- Efficiency: ~2-3%

Experiments with neutrinos from reactors

Three on-going experiments for \theta_{13}

Experiment	Power (GW)	Baseline(m) Near/Far	Target mass (t) Near/Far	Overburden (MWE) Near/Far	Sensitivity (90%CL)
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Daya Bay

Reno

Double Chooz

$\underline{\theta_{13}}$ is determined in 2012

F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803 F.P. An et al., Chin. Phys.C 37(2013) 011001 2013-4-29 J.K. Ahn et al., Phys.Rev.Lett. 108 (2012) 191802

Y. Abe et la., Phys.Rev. D86 (2012) 052008

The Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI,
UC-Berkeley, UCLA, Univ. of Cincinnati,
Univ. of Houston, Univ. of Wisconsin,
William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ.
of Sci. and Tech., CGNPG, CIAE, Dongguan
Polytech. Univ., Nanjing Univ., Nankai Univ.,
NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ.,

Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Timeline of the Experiment

- Aug. 2003: Experimental plan and the detector design is proposed
- 2006: Project approved in China, and afterwards in other countries
- Oct. 2007: Civil construction started
- Dec.2010: All the blasting for the tunnel and underground hall completed
- ◆ 2008-2011: Detector construction, assembly and installation
- Aug. 2011: Near detector data taking started
- ◆ Dec. 2011: Far detector data taking started → full detector data taking

Daya Bay Experiment: Layout

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules
 Cross check; Reduce errors by 1/√N
- Multiple muon detectors to reduce veto eff. uncertainties
 - ➡ Water Cherenkov: 2 layers
 - ⇒ **RPC:** 4 layers at the top + telescopes

Anti-neutrino Detector (AD)

- Three zones modular structure:
 I. target: Gd-loaded scintillator
 - II. γ -catcher: normal scintillator III. buffer shielding: oil
- 192 8" PMTs/module
- Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12%

Target: 20 t, 1.6m γ-catcher: 20t, 45cm Buffer: 40t, 45cm Total weight: ~110 t

Gd-Loaded Liquid Scintillator

Issue: transparency, aging, ...

Groups	Solvent	Complexant for Gd compound	Quantity(t)
Chooz	IPB	alcohol	5
Palo Verde	PC+MO	EHA	12
Double Chooz	PXE+dodecane	Beta-Dikotonates	8
Reno	LAB	THMA	40
Daya Bay	LAB	THMA	185

A New Type of Oscillation Discovered

Observation of electron anti-neutrino disappearance:

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

announced on Mar. 8, 2012

R = 0.944 ±0.007 (stat) ±0.003 (syst)
Sin²2θ₁₃ = 0.089 ± 0.010(stat) ± 0.005(syst)
$$\chi^2$$
/NDF = 3.4/4, 7.7 σ for non-zero θ₁₃

2013-4-29

Current status and future plan

- Summer (2012) maintenance completed
- Two new AD modules installed
- Data taking resumed in Oct.
- Precision results in three years, $\Delta(\sin^2 2\theta_{13}) \sim 4\%$

<u>What is next after θ_{13} ?</u>

Neutrino oscillation

- ⇒ What is the neutrino mass hierarchy ?
- ⇒ Are there CPV in neutrinos ?
- \Rightarrow Is the neutrino mixing angle θ_{23} maximized ?
- ⇒ Is the neutrino mixing matrix unitary ?
- What are the absolute mass of neutrinos ?
- Are neutrinos their anti-particles ?
- Are there sterile neutrinos ?
- Are there fourth generation neutrinos ?
- How to detect relic neutrinos ?

Idea of the Daya Bay-II Experiment

- 20 kton LS detector
- **3% energy resolution**
- **Rich physics possibilities**
 - ⇒ Mass hierarchy
 - ⇒ Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrinos
 - ⇒ Geoneutrinos
 - ⇒ Sterile neutrinos
 - ⇒ Atmospheric neutrinos
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

The plan: a large LS detector

LS volume: × 20→ for more mass & statistics
 light(PE) × 5→ for resolution

Principle

40 neutrinos/day Arbitrary unit 0.6 "Normal" hierarchy "Inverted" hierarchy ----- Non oscillation θ_{12} oscillation Δm_{12}^{2} { Δm_{23}^{4} 0.5 Normal hierarchy <u>or</u> Inverted hierarchy (atm.) Δm_{22} 0.4 Δm_{12}^2 (solar) 0.3 0.2 $P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$ 0.1 $P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$ 0 30 10 15 20 25 $P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$ L/E (km/MeV)

◆ Precision energy spectrum measurement: Looking for interference between P₃₁and P₃₂ → relative measurement

Mass hierarchy: sensitivity

Thanks to a large θ_{13}

Fourier transformation:

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW Baseline 58 km

L. Zhan, Y.F. Wang, et al., PRD78:111103,2008; PRD79:073007,2009

Taking into account ΔM²_{μμ}

For 6 years data taking:

- Ideally, relative measurement can reach 4σ. With the help of Δm²_{µµ}, Sensitivity can reach 5σ
- Due to reactor core distributions, detector non-linearity uncertainties, etc., relative measurement can reach 3σ . With the help of $\Delta m^2_{\mu\mu}$, Sensitivity can reach 4σ

arXiv:1303.6733

 $A\,\chi^2\,$ method by taking into account $\Delta M^2_{\ \mu\mu}$ from T2K and Nova in the future

Precision measurement of mixing parameters

- Fundamental to the Standard Model and beyond
- Probing the unitarity of U_{PMNS} to ~1% level !
 - Uncertainty from other oscillation parameters and systematic errors, mainly energy scale, are included

	Current	Daya Bay II
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$\sin^2\theta_{12}$	6%	0.7%
$\sin^2\theta_{23}$	20%	N/A
$\sin^2\theta_{13}$	14% → 4%	~ 15%

Will be more precise than CKM matrix elements !

Supernova neutrinos

Less than 20 events observed so far

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- ⇒ Energy: 3×10⁵³ erg
- \Rightarrow L_v the same for all types
- $\Rightarrow \text{ Tem. \& energy } T(\underline{v}_e) = 3.5 \text{ MeV}, \langle E(\underline{v}_e) \rangle = 11 \text{ MeV}$ $T(v_e) = 5 \text{ MeV}, \quad \langle E(v_e) \rangle = 16 \text{ MeV}$ $T(v_x) = 8 \text{ MeV}, \quad \langle E(v_x) \rangle = 25 \text{ MeV}$

Many types of events:

- $\Rightarrow \quad \overline{v_e} + p \rightarrow n + e^+, \sim 3000 \text{ correlated events}$
- \Rightarrow $\overline{v_e} + {}^{12}C \rightarrow {}^{12}B^* + e^+$, ~ 10-100 correlated events
- \Rightarrow v_e + ¹²C \rightarrow ¹²N* + e⁻, ~ 10-100 correlated events
- \Rightarrow $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*, \sim 600$ correlated events
- Water Cerenkov detectors can not see these correlated events

- $\Rightarrow v_{x} + p \rightarrow v_{x} + p, \text{ single events}$
- $\Rightarrow v_e + e^- \rightarrow v_e + e^-, \text{ single events}$
- $\Rightarrow v_{x} + e^{-} \rightarrow v_{x} + e^{-}, \text{ single events}$

Energy spectra & fluxes of all types of neutrinos

<u>Geoneutrinos</u>

Current results:

- ⇒ KamLAND: 40.0±10.5±11.5 TNU
- $\Rightarrow \quad \text{Borexino:} \\ 64 \pm 25 \pm 2 \text{ TNU} \\ \end{cases}$
- Desire to reach an error of 3 TNU: statistically dominant
- Daya Bay II: >×10 statistics, but difficult on systematics
- Background to reactor neutrinos

Challenges

◆ Large detector: >10 kt LS ◆ Energy resolution: < 3%/√E → 1200 p.e./MeV

	KamLAND	Daya Bay II	
LS mass	~1 kt	20 kt	
Energy Resolution	<mark>6%/</mark> √E	<mark>3%/</mark> √E	
Light yield	250 p.e./MeV	1200 p.e./MeV	

More photons, how and how many ?

•	Highly transparent LS:	
	⇒ Attenuation length/D: 15m/16m -	≥ 30m/34m ×0.9
•	High light yield LS:	
	⇒ KamLAND: 1.5g/l PPO → 5g/l Pl	?0
	Light Yield: 30%→ 45%;	× 1.5
•	Photocathode coverage :	
	⇒ KamLAND: 34% → ~ 80%	× 2.3
•	High QE "PMT":	
	⇒ 20" SBA PMT QE: 25% → 35%	× 1.4
	or New PMT QE: $25\% \rightarrow 40\%$	× 1.6
	Both: $25\% \rightarrow 50\%$	× 2.0
		$4.3 - 5.0 \rightarrow (3.0 - 2.5)\% / \sqrt{E}$

Other contributions: 0.5% constant term & 0.5% neutron recoil uncertainty

More Photoelectrons-- PMT

No clearance: coverage 86.5% 1cm clearance: coverage: 83%

20" + 8" PMT 8" PMT for better timing(vertex)

A new type of PMT: higher photon detection eff.

Top: transmitted photocathode

- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP to replace Dynodes no blocking of photons
 - ~ ×2 improvement

Low cost MCP by accepting the following:

- 1. asymmetric surface; 👡
- 2. Blind channels;
- 3. Non-uniform gains -
- 4. Flashing channels

Prototypes

研究所

XIAN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

海南展创光电技术有限公司

IDTONICS

€ 中核 (北京) 核仪器厂

CNNC Beijing Nuclear Instrument Factory

More Photoelectrons-- LS

Longer attenuation length

- Improve raw materials (using Dodecane instead of MO for LAB production)
- \Rightarrow Improve the production process
- ➡ Purification

Higher light yield

- ⇒ Lower temperature
- ➡ fluor concentration optimization

Linear Alky Benzene	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ coloum	18.6 m
Al ₂ O ₃ coloum	22.3 m

0,7

MC example: Energy Resolution

(%) $\overline{(E_{rec}(MeV))}^{+0.9)\%}$ •AD1 Resolution OAD2 **DYBII MC**, based on **DYB MC** (tuned to data), excep **DYBII** Geometry and 80% photocathode coverage Ge n H-capture **SBA PMT: maxQE from 25% -> 35%** (spallation) Lower detector temperature to 4 degree (+13% light) Co LS attenuation length (1m-tube measurement@430nm n Gd-capture from 15m = absoption 24m + Raylay scattering 40 m \checkmark (AmC, IBD, spallation) to 20 m = absorption 40 m + Raylay scattering 40m 2 3 5 8 6 Erec (MeV) Profile of totalPE versus r^3 Mean 1870

<u>IBD Signal</u>

• Signal:

 $\overline{\nu}_e + p \rightarrow e^+ + n$ $\mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma (2.2 \text{ MeV}) \qquad \tau \sim 200 \ \mu \text{s}$

LS without Gd-loading for

- \Rightarrow Better attenuation length \rightarrow resolution
- Lower irreducible accidental backgrounds from LS, important for a larger detector:
 - ✓ With Gd: ~ 10^{-12} g/g
 - ✓ Without Gd: ~ 10^{-16} g/g
- \Rightarrow Less risk
- Longer capture time & lower energy the capture signal
 — more accidental backgrounds

Backgrounds Summary

Assumptions

- → Overburden is 700m
 - $\checkmark~~E_{\mu}$ ~ 211 GeV, R_{μ} ~ 3.8 Hz
- Single rates from LS and PMT are 5Hz, respectively
- ➡ Good muon tracking
- ⇒ Similar muon efficiency as DYB

	Daya Bay	Daya Bay II
Mass (ton)	20	20,000
E _µ (GeV)	~57	~211
L_{μ} (m)	~1.3	~ 23
\mathbf{R}_{μ} (Hz)	~21	~3.8
R _{singles} (Hz)	~50	~10

	B/S @ DYB EH1	B/S @ DYB II	Techniques used for DYB II detector
Accidentals	~1.4%	~10%	Low PMT radioactivity; LS purification; prompt-delayed distance cut
Fast neutron	~0.1%	~0.4%	High muon detection efficiency (similar as DYB)
⁹ Li/ ⁸ He	~0.4%	~0.8%	Muon tracking; If good track, distance to muon track cut (<5m) and veto 2s; If shower muon, full volume veto 2s

Detector design: different options

Example 1: Acrylic tank

- Unistruct for PMT mounting →
 Same structure for Central
 Detector and VETO
- ♦ Oil buffer → Water buffer →
 Cheap
- Technology from construction industry

15% density difference leads to a maximum pressure of ~6m in air → A normal aquarium

Zhujiang City Building Ball conference : 39 m

Example 2: Acrylic block

Individually mounted Technically easy but may loose light

R & D Plan

- Nail down to two options at maximum
- Build prototypes to understand
 - > Design and manufacturing technologies
 - > Assembly and installation issues
 - > Background suppression capabilities
- Final decision: end of next year
- Engineering design: 2015

Other systems

- Readout & trigger:
 - ➡ FADC for PMT ?
- DAQ & slow control
- Offline software & computing
- Calibration system
 - ➡ Sub-marine
 - \Rightarrow 4 π robes
 - ➡ Others ?

New site: Kaiping county, Jiangmen city

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	running	planned	approved	Construction	construction
power/GW	17.4	17.4	17.4	17.4	18.4
Curre	nt site	entire terms of the second sec	住民 で、まやHiti たいで、 ひまいの の していていていていていていていていていていていていていていていていていていてい	revious site Huizhou a Bay	Kitier Lufeng

Kaiping: a tourist site with no industry

• Famous for its architecture: mixture of east & west

2013-4-27

Site selection

- Experimental hall selected
- Preliminary geological survey:
 - ➡ Review held on Dec. 17, 2012
 - ⇒ No show-stoppers
- Detailed geological survey started this month

Construction plans

Two options considered

- \Rightarrow Rails(40%, 1100m) + vertical shaft(600m)
- \Rightarrow Rails(40%, 1100m) + horizontal tunnel(6600m)

Conceptual design completed. Review held on Dec.17, 2012.

- ⇒ Rails+vertical shaft is chosen for cost and schedule reasons
- \Rightarrow No show-stoppers

Experimental hall

Preliminary study shows that:
 Stability of the hall is not a problem
 Total time needed for the civil construction is 3 years

Brief schedule

- Civil preparation: 2013-2014
- Civil construction: 2014-2017
- Detector R&D: 2013-2016
- Detector component production: 2016-2017
- PMT production: 2016-2019
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020

Project Status

Progress since last summer:

- ⇒ Great support from CAS: "special fund for advancement"
- → Passed a number of reviews:
 - ✓ Sep. 28
 - ✓ Oct. 9
 - ✓ Dec. 18
 - ✓ Jan. 7. (equivalent to CD1): Approved on Feb.1
- ➡ Funding(2013-2014) review:
 - ✓ Mar.19
 - ✓ Apr. 25

Collaboration:

- ⇒ First get-together meeting in Jan.
- → Next meeting in July 8-9 at IHEP
- ➡ Interests from US, Russia, Czeck, Italy, Germany, France and Japan, mainly members of DYB, Borexino, LENA, Double Chooz,...
- ⇒ Plan: establish the collaboration by the end of the year

RENO-50

5000 tons ultra-low-radioactivity Liquid Scintillation Detector

RENO-50

Physics with RENO-50

Precise measurement of
θ₁₂

 $\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} \sim 1.0\% (1\sigma) \text{ in a year } \leftarrow \text{ current accuracy : 5.4\%}$

- Determination of mass hierarchy Δm²₁₃
- Neutrino burst from a Supernova in our Galaxy : ~1500 events (@8 kpc)
- Geo-neutrinos : ~ 300 geo-neutrinos for 5 years
- Solar neutrinos : with ultra low radioacitivity
- Reactor physics : non-proliferation
- Detection of T2K beam : ~120 events/year

■ Test of non-standard physics : sterile/mass varying neutrinos 2013-4-29

<u>Summary</u>

- Reactor neutrino experiments are very successful
- "Daya Bay II" is a project with a very rich and interesting physics program
- Although challenging, initial study shows that it is not impossible
- A few R&D efforts already started, more will come
- Detector design and civil design has been started
- Good support from the local government & the Chinese funding agencies

Welcome collaborators