Neutrinos as Probes of New Physics

Manfred Lindner

The Birth of the Neutrino

New Physics: Neutrino Sources

Fermion Mass Terms in SM

SM: Fermion masses via Yukawa Couplings

Mass terms: $m\Psi\Psi = m(Lr + rL)$ L=2, r=1 \rightarrow no singlet mass terms

 $\Phi=2 \rightarrow m (L \Phi r + r \Phi L) \rightarrow singlet mass via < \Phi > = v$

New Physics: Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters -> SM+

2) Maybe 3+N right handed neutrino fields

- \rightarrow (6+N) x (6+N) mass matrix
- → how many of the 6+N eigenvalues are light (also for N=0)

4) Both v_R and new singlets / triplets: **•** see-saw type II, III $m_v = M_L - m_D M_R^{-1} m_D^T$

6) Radiative neutrino mass generation

7-N) SUSY, extra dimensions, ...

Other effective Operators Beyond the SM

→ effects beyond 3 flavours → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(\bar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(\bar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \rightarrow M_W$)

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow +Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli+Romanino, Bueno et al., Barranco+Miranda+Rashba, Kopp+ML+Ota, ...

3 Light Neutrinos (...assumed)

Mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Suggestive Seesaw Features

QFT: natural value of mass operators **←→** scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim L$ violation scale \leftarrow ? \rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ $\Rightarrow \text{smallness of } m_v \Leftarrow \Rightarrow \text{ high scale of I/, symmetries of } m_D, M_R$

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

» less hierarchy in m_D or corr. hierarchy in M_R? → theoretically not connected!
» other version of see-saw? → type II, III, ...?
» Dirac masses?

Neutrino Mass Determinations Subtitle: What do we actually measure?

Status of Neutrino Oscillations

M. Lindner, MPIK

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Kinematical Mass Determination 1.2 100 a) Relativistic kinematics: b) 80 [.n. 0.8 count rate [a.u.] $E^{2} = p^{2} + m^{2}; \ \sum p_{i}^{\mu} = \sum p_{f}^{\mu}$ 60 count rate $m_v = 0 eV$ 40 **Endpoint of decays:** 2 x 10⁻¹³ 20 Tritium $\rightarrow He^3 + e^- + \overline{\nu}_e$ 0.2 $m_v = 1 e^{1}$ 0 0 15 10 $^{-2}$ Ω eneray E [keV] E-E_c [eV] (Mainz, Troitsk) "Elektron-Neutrino": m < 2.2 eV**Bounds:** "Muon-Neutrino": m < 170 keV"Tau-Neutrino": m < 15.5 MeV

Other Options?

Other new physics which modifies kinematics of the endpoint? → ...

M. Lindner, MPIK

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Double Beta Decay: Mass Parabolas

Double Beta Decay

2 neutrinos plus 2 electrons

0νββ Decay Kinematics

Majorana ν **→** 0νββ decay

warning:

other lepton number violating processes...

2νββ decay of ⁷⁶Ge observed: $\tau = 1.5 \times 10^{21}$ y

- signal at known Q-value
- 2vββ background (resulution)
- nuclear backgrounds
 - ➔ use different nuclei

New Experiments

- GERDA (Ge76)
- EXO (Xe136)

•

• KamLAND-zen (Xe)

Construction:

- CUORE (Te-130)
- Majorana (Ge76)
- Super-NEMO (mult)

→ filled, commissioning with non-enriched Ge → Start of phase I: Nov. 1, 2011(enriched)

M. Lindner, MPIK

Decay Rates

$$\frac{2\sqrt{2\beta}}{\left[T_{\frac{1}{2}}^{2\nu}\left(0^{+}\rightarrow0^{+}\right)\right]^{-1}} = G^{2\nu}(E_{0},Z) \left[M_{GT}^{2\nu} - \frac{g_{V}^{2}}{g_{A}^{2}}M_{F}^{2\nu}\right]^{2}}$$

$$\frac{0\sqrt{2\beta}}{\left[M_{BS}^{2}\right]^{2}}$$

$$\frac{0\sqrt{2\beta}}{\left[M_{BS}^{2}\right]^{2}}$$

$$\frac{1}{\left[M_{BS}^{2}\right]^{2}}$$

$$\frac{1}{\left[M_{BS}^{$$

Relating Rates / Lifetimes to Neutrino Masses

Fäßler et al., ...

nuclear matrix elements:

→ virtual excitations of intermediate states

$$T = \sum_{k} \frac{\langle f | H_W | k \rangle \langle k | H_W | i \rangle}{E_i - E_k}$$

progress in TH errors → reduced uncertainties

Nuclear Matrix Elements

 $0v2\beta$ half-lives in units of 10^{26} years for $<m_v>=50$ meV for nuclear matrix for different methods and authors

Figure 1: Expected $\beta\beta(0\nu)$ half lives for 50 meV effective neutrino mass and different NME calculations: IBM2 [17], YI09 [18], TU08 [19] and SM08 [20].

Effective Majorana Mass

Comments:

- cosmology: limitation by systematical errors → ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation

 \rightarrow 0v $\beta\beta$ signal not guaranteed, but cancelation appears unlikely

0νββ from Alternative \Delta L=2 Operators

→ but how big is the mass?

SUSY Example

Direct, TeV scale short range mediation w/o intermediate light ν , e.g.

ΔL=2 Operators and TeV Scale Physics

L-R symmetry: heavy N's

Relative strength of 'light' and 'heavy' $0\nu\beta\beta$ amplitudes:

SV-induced Neutrino Masses

General Lorentz-invariant Lagrangian for $0\nu\beta\beta$ (point operator) $\mathcal{L} = \frac{G_F^2}{2} m_p^{-1} \left(\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu}\right)$

$$J = \overline{u} \left(1 \pm \gamma_5
ight) d, \; J^{\mu} = \overline{u} \gamma^{\mu} \left(1 \pm \gamma_5
ight) d \; ext{etc.}$$

Outcome:

M. Dürr, ML, A. Merle, arXiv:1105.0901

If other $\Delta L=2$ physics drives $0\nu\beta\beta \rightarrow SV$ gives $\delta m_{\nu} = 10^{-24} \text{ eV}$

mass correction too small to explain observed masses and splittings
 explicit neutrino mass operators required

Dirac: $\mathbf{0}_{\nabla\beta\beta}$ essentially unrelated to neutrino masses $\boldsymbol{\leftarrow}$ other BSM Majorana: dominates over SV contribution

0 ν ββ may be a mixture of Majorana mass and other ΔL=2 physics **→** mimics higher Majorana neutrino mass

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Two Neutrino Oscillations

2 Neutrinos: v_e, v_μ

 $egin{aligned} |
u_e(0)
angle &= &\cos heta\,|
u_1
angle+\sin heta\,|
u_2
angle\ |
u_\mu(0)
angle &= &-\sin heta\,|
u_1
angle+\cos heta\,|
u_2
angle \end{aligned}$

$$|\nu_{\mu}(t)
angle = -\sin\theta \exp[-\frac{iE_{1}t}{\hbar}] |\nu_{1}
angle + \cos\theta \exp[-\frac{iE_{2}t}{\hbar}] |\nu_{2}
angle$$

$$E_i = \sqrt{p_i^2 + m_i^2} \xrightarrow{p_i = p \gg m_i} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$
$$L = c \cdot t \qquad \Delta m^2 = m_2^2 - m_1^2 \Rightarrow \quad E_2 - E_1 = \frac{\Delta m^2}{2E}$$

2v-transitionprobability:

$$P(\nu_{\mu} \to \nu_{e}) = |\langle \nu_{\mu}(t) | \nu_{e}(0) \rangle|^{2} = \sin^{2} 2\theta \cdot \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$v_e, v_\mu, v_\tau \rightarrow 9$$
 oscillation channels for neutrinos
 $\overline{v_e}, \overline{v_\mu}, \overline{v_\tau} \rightarrow 9$ channels for anti-neutrinos (assuming $3v$!)

Atmospheric Oscillations @SuperK

- 8σ signal for ν_{μ} disappearance
- NOT $\nu_{\mu} \rightarrow \nu_{e}$ (consistent with Chooz)
- \Rightarrow $\nu_{\mu} \rightarrow \nu_{\tau}$ (some $\tau's$ seen)
- NOT $\nu_{\mu} \rightarrow \nu_{s}$ from NC/CC comparison
- L/E confirmed by K2K ($\simeq 2\sigma$)
- sensitivity for L/E-dependence of oscillations

Status of Neutrino Oscillations

Nuclear Reactors as Antineutrino Source

- Reactors like Chooz A+B → 8.5 GW_{th}
- Few percent of the released energy → escapes with anti-neutrinos

measured e⁻ spectrum of U²³⁵, Pu²³⁹, Pu²⁴¹ \rightarrow calculate \overline{v}_{e} – spectrum \rightarrow precisions?

example: fission of U^{235} $^{235}_{92}U + n \rightarrow X_1 + X_2 + 2n$

- 6 neutrons β-decay to 6 protons to reach stable matter
- 1.5 v_{e} emitted with E > 1.8 MeV

Anti-Neutrino Detection

Oscillations:

- affect rate & shape

Precision with Reactor Experiments

Double Chooz

M. Lindner, MPIK

Neutrino Candidates n-Vertex Distribution

- Neutrino + Backgound selection
 - Prompt Energy Deposition
 - Delayed Energy Deposition
 - Time Correlation
 - No Muons

Delayed vertex YZ position

Measured Neutrino Rate & Reactors

Both reactors off for about 24 hours **>** pure background measurment

First Results

Mid April - mid September 2011

- > 4121 neutrino candidates
- > 328 background events
- 4041 neutrinos expected without oscillations
- ➤ 3793 neutrinos seen (94 %)
- sin²(2θ₁₃) = 0.085 ± 0.051
 >90% probability for θ₁₃ > 0
- → More data until next spring (5 months → 1 year)
- → Further improved precision with 2 detectors

H.de Kerret, Seoul, 9.November '11

Implications of sizable sin²($2\theta_{13}$)

... in the standard 3 neutrino picture:

• Experiment:

- good chances to measure $\theta^{}_{13}$ soon with good precision
- leptonic CP violation (Dirac phase δ) accessible

$$\mathbf{U}_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix}$$

- standard neutrino factory out matter uncertainties to big
- low energy NF or beta beam or conventional beams
- Theory:
 - no apparent necessity for a special θ_{13} suppression (symmetry, ...)
 - TBM ruled out → sizable corrections, other starting points, ...
- ...maybe not the complete story

Potential Neutrinos Oscillation Surprises

- ... various assumptions: Majorana, 3 v's, $\Delta L=2$ ops mass mechanism
- → examples:
 - extra light sterile neutrinos **>** C. Rubbia's lectures
 - how NSI's can fool precision experiments

Source \otimes	Oscillation \otimes	Detector
 neutrino energy E flux and spectrum flavour composition contamination symmetric ν/ν operation 	 oscillation channels realistic baselines MSW matter profile degeneracies correlations 	 effective mass, material threshold, resolution particle ID (flavour, cha event reconstruction,) backgrounds x-sections (at low E)

GLoBES simulation:

new effects beyond oscillations?!

NSI Operators

Good reasons for physics beyond the SM+ (with v's)
 → expect effects beyond 3 flavours in many models
 → effective 4f interactions

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(\bar{\nu}_{Leta} \ \gamma^{
ho} \ \nu_{Llpha})(\bar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli +Romanino, Bueno et al., Kopp+ML+Ota, ...

NSIs interfere with Oscillations

<u>note:</u> interference in oscillations $\sim \epsilon \quad \overleftarrow{\leftarrow} \rightarrow \quad FCNC \quad effects \sim \epsilon^2$

NSI: Offset and Mismatch in θ_{13}

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Neutrinos & Cosmology

- Dark Matter ~ 25% & Dark Energy 70%
- mass of all neutrinos: $0.001 \le \Omega_v \le 0.02$
- baryonic matter $\Omega_{\rm B} \sim 0.04$

Neutrino mass contribution possibly as big as all baryonic matter >> visible matter much more COLD dark matter & dark energy neutrinos are an important hot dark matter component

Comological impact of neutrinos:

- hot component in structure formation: 330v/cm³ x mass -

- Big Bang Nuklueosynthesis \rightarrow
- Baryon asymmetry \rightarrow Leptogenesis \rightarrow ?

Source: Robert Kinshner

Present Day Acceleration

M. Lindner, MPIK

Neutrinos and Dark Matter

Dynamical Evidence for Dark Matter

F. Zwicky 1933
→ proplem with galaxy clusters
→ galaxies →

→ galaxies have a large DM halo

comparison of simulated and real structures
→ cosmological DM dynamics

Many consistent Evidences for Dark Matter

- + Galactic rotation curves
- + Galaxy clusters & GR lensing
- + Bullet Cluster
- + Velocity dispersions of galaxies
- + Cosmic microwave background
- + Sky Surveys and Baryon Acoustic Oscillations
- + Type la supernovae distance measurements
- + Big Bang Nucleosynthesis (BBN)
- + Lyman-alpha forest
- + Structure formation

0.02

-

38

Sterile Neutrino Spectrum

0

solar~5x

atmospheric

 $\sim 3 \times 10^{-3} eV^2$

Evidences for Light Sterile Neutrinos ?

Particle Physics:

Reactor anomaly, LSND, MiniBooNE, MINOS, Gallex...

- → New and better data / experiments are needed to clarify the situation
- maybe something exciting around the corner?
- → but eV scale and sizable mixings

<u>CMB</u>: extra eV-ish neutrinos J. Hamann et al., ...

<u>BBN</u>: extra v's possible: N_v \simeq 3.7 \pm 1 E. Aver, K. Olive, E. Skillman (2010), Y. Izotov, T. Thuan(2010)

Astrophysics:

e.g. effects of keV-ish sterile neutrinos on pulsar kicks

Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, ...

Most likely not all of them are correct!

→ consequences! → assume first only 3 active neutrinos

Could Neutrinos be Dark Matter?

• Active neutrinos would be perfect Hot Dark Matter → ruled out:

- destroys small scale structures in cosmological evolution
- measured neutrino masses too small → maybe HDM component

• <u>keV sterile neutrinos: Warm Dark Matter</u> → workes very well:

- \rightarrow relativistic at decoupling
- \rightarrow non-relativistic at radiation to matter dominance transition
- OK for $M_X \simeq$ few keV with very tiny mixing
- reduced small scale structure **>** smoother profile, less dwarf satellites
- → scenario where one sterile neutrino is keV-ish, the others heavy
- \rightarrow tiny active sterile mixings $O(m_v/M_R)$
- ←→ observational hints from astronomy
- hints that a keV sterile particle may exist **→** right-handed neutrino?

Note: Right-handed neutrinos exist probably anyway – just make one light!

keV Neutrinos as WDM

The vMSM

Asaka, Blanchet, Shaposhnikov, 2005 Asaka, Shaposhnikov, 2005 **Particle content:**

• Gauge fields of SU(3)_c x SU(2)_W x U(1)_Y: γ , W_±, Z, g

• Higgs doublet: Φ=(1,2,1)

• Matter

	SU(3)c	$\text{SU}(\boldsymbol{2})_W$	$U(\boldsymbol{1})_Y$	U(1) _{em}
$\begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix}_{\mathbf{I}}$	3	2	+1/3	$\binom{+2/3}{-1/3}$
u _R	3	1	+4/3	+2/3
d _R	3	1	-2/3	-1/3
$\binom{\mathbf{v}_{e}}{e}_{I}$	1	2	-1	
e _R	1	1	-2	-1
Ν	1	1	0	0

x3 generations

 \rightarrow lepton sector more symmetric to the quark sector

→ Majorana masses for N

→ choose for one sterile v ~keV mass → exceeds lifetime of Universe

Virtue and Problem of the vMSM

vMSM: Scenario with sterile v and tiny mixing → never enters thermal equilibrium
 → requires non-thermal production from other particles (avoid over-closure)
 → new physics before the beginning of the thermal evolution sets abundance

Alternative Scenario with Thermal Abundance

An alternative scenario: Bezrukov, Hettmannsperger, ML

- Three right-handed neutrinos N₁, N₂, N₃
- Dirac and Majorana mass terms
- N Charged under some (BSM) gauge group **→** scale M (~sterile)
- Specific example: LR-symmetry $SU(3)_c \ge SU(2)_L \ge SU(2)_R \le SU(2)_R \le SU(2)_R \ge SU(2)$

Roles played by the sterile (~right-handed) neutrinos:

*N*₁ − Warm Dark Matter
Mass
$$M_1 \sim \text{keV}$$

Lifetime $\tau_1 > \tau_{\text{Universe}} \sim 10^{17} \text{ s}$
*N*_{2,3} − dilute entropy after DM decoupling
Mass $M_{2,3} > \text{GeV}$
Lifetime $\tau_{2,3} \lesssim 0.1 \text{ s}$

Obtaining the correct Abundance

Allowed Parameter Range

APC, April 3, 2012

Observing keV-ish Neutrino DM

- LHC
 - sterile neutrino DM is not observable
 - WIMP-like particles still possible but not DM
- direct searches
 - sterile v DM extremely difficult; maybe in β -decay (MARE)
- astrophysics/cosmology → at some level: keV X-rays

sterile neutrino DM is decaying into active neutrinos

- decay $N_1 \rightarrow \nu \overline{\nu} \nu$, $N_1 \rightarrow \nu \overline{\nu} \overline{\nu}$
- not very constraining since $\tau >> \tau_{Universe}$

• - radiative decays $N_1 \rightarrow v\gamma$

- so far: observational limit on active-sterile mixing angle

$$\begin{split} &\Gamma_{N_1 \to v\gamma} \simeq 5.5 \times 10^{-22} \theta_1^2 \left(\frac{M_1}{1 \text{ keV}}\right)^5 \text{s}^{-1} \\ &\theta_1^2 \lesssim 1.8 \times 10^{-5} \left(\frac{1 \text{ keV}}{M_1}\right)^5 \end{split}$$

- mixing tiny, but naturally expected to be tiny: O(scale ratio)

Explaining keV-ish Sterile Neutrinos

Possible scenario: See-saw + a reason why 1 sterile v is light

Conclusions

- Dark Matter exists
- But we cannot be sure if Dark Matter is
 - made of particles (> smarter modified gravity ?)
 - particles → prefer scenarios with a 'miracle' (abundance)
 - → WIMPs (SUSY, ...) are very well motivated
 - → GIMPs example: a keV-ish sterile neutrino very well motivated and good working Warm Dark Matter related to v-masses
- → WIMP detection/limits down to 10⁻⁴⁷cm² will be reached
 - either find a WIMP or very strong constraint!
 - combined with LHC searches
 - → excellent discovery potential!

Summary & Conclusions

- neutrinos provide unique information & insight into new physics
- three active neutrinos are still the paradigm

→ Possibility to measure leptonic CP-violation ← → BAU...

• But maybe more...

> sterile neutrinos theoretically conceivable & quite natural

- various hints which may point towards new surprises
 - ➔ requires clarification
 - → very interesting consequences
 - neutrino mass generation
 - neutrinos as Dark Matter

Neutrinos have always been surprising
→ very interesting v-times ahead!

BARTICLEZOO

