Multi-Messenger Astronomy and Astrophysics with Gravitational-Wave Transients

Peter Shawhan

For the LIGO Scientific Collaboration and Virgo Collaboration

Virtual Institute of Astroparticle physics lecture May 14, 2010

Things That Go Boom

Peter Shawhan

For the LIGO Scientific Collaboration and Virgo Collaboration

Virtual Institute of Astroparticle physics lecture May 14, 2010

What Kinds of Events Emit Gravitational Waves?

→ Anything involving rapid motion of mass with a time-varying quadrupole (or higher-order) moment

Example: a compact binary system (e.g., two neutron stars)

produces a time-varying strain

Gravitational radiation causes the binary system to "inspiral"...

The final stage of this process can be heard by groundbased GW detectors

Gravitational Wave Sources...

LSC data analysis working groups

Short duration Long duration Cosmic string NS / BH Low-mass Asymmetric cusp / kink ringdown inspiral spinning NS Waveform Compact binary inspirals **Continuous** known High-mass & modeled bursts wave inspiral Binary merger Rotation-driven Unmodeled bursts Cosmological stochastic background Stellar core collapse Stochastic Waveform Astrophysical unknown stochastic ??? ??? ??? background

The Promise of Gravitational-Wave Astronomy

Gravitational waves are a unique messenger

- Direct information about an energetic event or compact object
- Not scattered or attenuated by matter
- Emission is only weakly anisotropic

(Some) Sources are known to exist

Science goals for ground-based GW detectors:

- Detect gravitational waves directly
- Test the correctness of GR vs. other theories of gravity
- Reveal the dynamical mechanisms of energetic astrophysical events
- Survey source populations
- Determine the properties of neutron stars, etc.
- Search for cosmological GW signals

The Challenge of Gravitational-Wave Astronomy

Strain amplitude is inversely proportional to distance from source

- Have to be able to search a large volume of space
- Have to be able to detect very weak signals.
- GW searches fight against "background" from instrumental noise fluctuations

What We Have Detected So Far:

Nothing.

But even non-detections are starting to get interesting...

Worldwide Network of Gravitational Wave Detectors

Science Runs—Past, Present, and Future

Advanced LIGO & Advanced Virgo: An order of magnitude more sensitive than initial detectors

⇒ Sensitive to sources in ~1000 times more volume of space!

Known Things That Go Boom

Multi-Messenger Advantages

If an event has already been detected, then GW searches:

- know <u>when</u> to look at the data
- know <u>where</u> in the sky to look
- may know <u>what kind</u> of GW signal to search for
- may know the distance to the source

As a result,

- Background is suppressed, so a weaker GW signal can be confidently detected
- The extra information from the combined observations will reveal more about the astrophysics of the source
- Non-detection of a GW signal can still provide useful information

Gamma-Ray Bursts

Multi-Messenger Bursts: Emission Mechanisms

Gamma rays

From "internal" or "external" shocks

X-ray afterglow

- "Fireball model" expands into local medium
- Typically stronger for long GRBs than for short

Optical afterglow

- Supernova or supernova-like emission
- Reprocessing of energy by local medium

Radio afterglow

High-energy neutrinos

Expected from accelerated protons in shocks

Gravitational waves

 Should be detectable <u>if</u> source is close enough, especially for short GRBs

Can indicate host galaxy!

Reveal central engine!

GRB 070201

Very bright short GRB detected by Konus-Wind, INTEGRAL, MESSENGER, and Swift

Consistent with being in M31, at a distance of ~770 kpc

Both LIGO Hanford detectors were on!

Inter-Planetary Network 3-sigma error region from Mazets et al., ApJ 680, 545

Searches for a GW Signal from GRB 070201

Searched for an inspiral signal

- Matched filtering with templates for m_1 in [1,3] M_{\odot} , m_2 in [1,40] M_{\odot}
- No GW inspiral signal found
- Hypothesis of a binary merger in M31 excluded with >99% conf.

Also searched for an arbitrary GW burst signal

- Cross-correlated data streams with time windows of 25 and 100 ms
- Compared to background estimated from off-source times
- No GW burst signal found
- Model-dependent limits on GW energy emission as low as 5×10⁻⁴ M_☉
 Both searches described in Abbott et al., ApJ 681, 1419 (2008)
- Conclusion: most likely an SGR giant flare in M31
 - Mazets et al., ApJ 680, 545; Ofek et al., ApJ 681, 1464

Searches for GWs Associated with Other GRBs

There were 137 GRBs (35 with redshifts) during the S5/VSR1 run with data from two or more LIGO+Virgo detectors

Inspiral search

- Sub-sample of 22 short GRBs
- [-5,+1] second time window around time of GRB
- Matched filtering followed by coincidence test based on time and mass parameters
- "Loudest event" analysis
 Abadie et al., ApJ 715, 1453 (2010)

Burst search

- All 137 GRBs
- [-120,+60] second time window around time of GRB
- Coherent multi-detector burst search with 2, 3, or 4 detectors
- "Loudest event" analysis
 Abbott et al., ApJ 715, 1438 (2010)

→ No significant signal found for any individual GRB, and no statistical excess for any subset

Lower Limits on Distance to Each S5/VSR1 GRB

For GW inspiral signals:

For hypothetical GW bursts:

→ We didn't get lucky with a close-enough event

Soft Gamma Repeater (SGR) Flares

SGRs are believed to be magnetars

- Neutron stars with magnetic field ~10¹⁵ G interacting with crust
- Anomalous X-ray pulsars (AXPs) are essentially the same thing

Occasionally emit flares of soft gamma rays

- Ordinary flares E_{FM} ~ 10⁴² erg
- Some SGRs have produced a giant flare with energy ~10⁴⁶ erg

Thought to be associated with cracking of the crust

- Probably excite vibrational modes of the neutron star
- Quasiperiodic oscillations seen in X-ray emission after giant flares

Some vibrational modes couple to gravitational waves!

Can probe what is going on with the star

Searches for GW Signals from SGRs

Long-lived quasiperiodic GWs after giant flare?

- December 2004 giant flare of SGR 1806–20
- Searched for GW signals associated with X-ray QPOs
- GW energy limits are comparable to total EM energy emission Abbott et al., PRD 76, 062003 (2007)

GW bursts at times of flares?

- 2004 giant flare plus 190 other flares from SGR 1806–20 and SGR 1900+14 during first calendar year of LIGO S5 run
- Excess-power search for neutron star f-modes ringing down (~1.5–3 kHz), also for arbitrary lower-frequency bursts
- For certain assumed waveforms, GW energy limits are as low as few x 10⁴⁵ erg, comparable to EM energy emitted in giant flares
 Abbott et al., PRL 101, 211102 (2008)

Searches for GW Signals from SGRs

Repeated GW bursts associated with multiple flares?

"Storm" of flares from SGR 1900+14 on 29 March 2006

- "Stack" GW signal power around each EM flare
- Gives per-burst energy limits an order of magnitude lower than the

loudest-event analysis —as low as few × 10⁴⁵ erg

Abbott et al., ApJ 701, L68 (2009)

In progress: More flares, new SGRs

- Including SGR 0501+4516 at ~1–2 kpc
- Closer source gives sensitivity to lower energies!
- Hoping for a giant flare from a nearby SGR

<u>Supernovae</u>

Several possible GW emission mechanisms

- Rotating collapse and bounce
- Rotational instabilities
- Convection
- Standing accretion shock instability
- Protoneutron star g-modes

Review: C. D. Ott, Classical & Quantum Gravity 26, 063001 (2009)

Relative strength of GW emission mechanisms depends on what drives the supernova explosion

- Leading possibilities: MHD with rotation, neutrinos, acoustic waves
- Detection or non-detection of GWs can distinguish!
 - Especially in conjunction with neutrino signal

Current detectors can probably only see SNe in our galaxy

Advanced detectors may go out to a few Mpc – non-negligible rate

Pulsar Glitches

Some pulsars exhibit "glitches" in pulse frequency

Mechanism for glitches is unclear

- Crust cracking?
- Coupling of differentially rotating crust and core?
- Rearrangement of superfluid vortices?

May excite quasinormal vibrational modes

Some modes couple to GW emission!

Searches are in progress

• e.g. Vela pulsar glitch in August 2006 : $\otimes v/v = 2.6 \times 10^{-6}$

Unknown Things That Go Boom

Single-Messenger Events?

Not all energetic events will be seen by other means, even for GRB progenitors

- Gamma-rays are strongly beamed
- X-ray flashes / "Orphan afterglows" outnumber regular GRBs by 1–2 orders of magnitude
- Limited surveys for X-rays and optical transients
- "Failed GRBs" optically thick
- Some GW sources may be totally dark e.g. binary black hole mergers

All-Sky Inspiral Search

Search for GW inspirals arriving from any direction Latest published search: first 18 months of LIGO S5 data

- Matched filtering for binaries with total mass up to 35 M_☉
- No event candidates in excess of background distribution
- Set upper limits on event rates, using a population model
 - Binary neutron star: < 0.014 per year per L₁₀
 - Black hole neutron star: < 0.0036 per year per L₁₀
 - Binary black hole: < 0.00073 per year per L₁₀

where L₁₀ is 10¹⁰ times the blue-light luminosity of the sun and black holes are assumed to have mass ~ 5 M_☉

Abbott et al., PRD 80, 047101 (2009)

Still 2–3 orders of magnitude away from likely rates
 "Realistic" rates compiled in Abadie et al., arXiv:1003.2480:
 BNS 6×10⁻⁵, BH-NS 2×10⁻⁶, BBH 2×10⁻⁷ per year per L₁₀ – but with large uncertainties

Black Hole Ringdown Search

Search for ringdown of perturbed black hole resulting from a merger

- Sensitive to mergers of intermediate mass black holes
- Characteristic
 frequency & damping
 time depending on
 mass and spin
- S4 search published:
 Abbott et al., PRD 80, 062001 (2009)

All-Sky Burst Search

Most general search for transient GW signals

- Coherent search methods using data from 2+ LIGO/Virgo detectors
- Effective observation time of 429 days during \$5 / VSR1
- Sensitive to arbitrary GW signals in the range 50–6000 Hz
- No events detected; set upper limits on burst rate vs. amplitude for representative waveforms: Abadie et al., PRD 81, 102001 (2010)

GW energy sensitivity for a 153 Hz burst:

 $\sim 2x10^{-8} M_{\odot} c^2$ at 10 kpc

 $\sim 0.05~M_{\odot}c^2$ at 16 Mpc

Further Steps Toward Multi-Messenger Astronomy

Additional Messengers

Neutrinos

- Models for emission from GRBs and "failed GRBs"
- Joint searches planned with neutrino telescopes

ANTARES

Radio transients

Electromagnetic Follow-Ups to GW Triggers

Analyze GW data promptly to identify possible event candidates and reconstruct their apparent sky positions; alert telescopes

 Try to capture an EM transient that would otherwise have been missed!

First attempts underway

Other telescopes...

Summary

Gravitational waves can provide unique information about astrophysical events

Direct probe of the central engine of the event

We are pursuing many modes of multi-messenger astronomy

- GW searches triggered by GRBs, SGR flares, supernovae, ...
- Joint searches with neutrinos, radio telescopes
- Electromagnetic follow-up observations of GW event triggers

Prepared to detect a signal – but no luck yet

Even non-detection of a GW signal can be relevant

Constraints on astrophysical event types and emission mechanisms

Building capabilities for the advanced GW detector era

- Advanced LIGO, Advanced Virgo, others?
- GW signals will be detected let's do as much as we can with them!