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Introduction

• The distance duality relation (Etherington 1933) connects
luminosity distance, redshift and angular diameter distance:
DL = (1 + z)2DA.

• This is a purely kinematical result, and depends only on (i)
conservation of light rays and (ii) metric spacetime geometry.

• Observational tests of the Etherington relation can thus be
used to test the kinematical structure of spacetime.
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Distance definitions: a short primer

• Given a standard candle of known luminosity L, and observed
flux F , DL is given by,

F =
L

4πD2
L

,

e.g. Supernovae of Type Ia (SNe Ia) act as standardizable
candles.

• Given a standard ruler (of known physical length d), and
observed angular size θ, DA is given by,

θ =
d

DA
,

e.g. the baryon acoustic feature (BAF) in the clustering of
galaxies acts as a standard ruler.
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Observational probes: SN of Type Ia

• SNeIa are thermonuclear explosions of a white dwarf
approaching the Chandrasekhar mass limit.

• SNeIa can be used as a standard candle, by correcting for
observed variations in the luminosity and time scales of the
SN light curves.



Observational measurements: SNeIa

• Joint Light-curve Analysis sample of SNeIa (Betoule et al.
2014)

• Distance modulus µ = 5 log[DL/Mpc]



Observational probes: Baryon acoustic feature

Seo, Eisenstein and White (2005)

• Consider an overdensity in the initial density field in the early
Universe.

• Baryons and photons are tightly coupled due to Thomson
scattering.
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• The baryon photon plasma moves outward together due to
high pressure.



Observational probes: Baryon acoustic feature

Seo, Eisenstein and White (2005)

• At recombination, the photon free stream, and the baryon
peak stalls.

• The scale can be measured in the cosmic microwave
background radiation and is imprinted in the galaxy
distribution.



Observational probes: Baryon acoustic feature

• The clustering of galaxies (two point correlation function)
shows a distinct peak at the 100 h−1 Mpc scale.

• Large completed and ongoing surveys aim to detect and map
out the BAF as a function of redshift.



Observational measurements: BAF

• Baryon acoustic feature measurements from SDSS-III BOSS
(Alam et al. 2016), the middle redshift bin has overlapping
volume with the bins on either end.

• The comoving angular diameter distance is defined as
DM = DA(1 + z)



Model independent test

• Measurements of luminosity distances and angular diameter
distances to two different redshifts can be used to test

DL,1

DA,1

DA,2

DL,2
=

[
(1 + z1)

(1 + z2)

]2

• Removes uncertainties in the standard scales and luminosities
used to derive the distances (no assumptions about the
cosmological model)

• The BAF measurements determine the redshifts to carry out
the test

• Deviations parameterized as the optical depth τ between the
two redshifts (e.g. due to absorption of light)



Observational complication

• How to get the luminosity distance measurement at the same
redshift as the BAF measurement, zBAF?

• Common choices: Binning, or picking up the nearest
supernova – neither is satisfactory.

• Our solution: Use SNeIa in the same volume as the galaxies
used to measure the BAF.

• Subtract out the distance modulus from a fiducial cosmology
– similar to the methodology adopted to analyze BAF.



Observational complication

• µ(z)− µfid(z) has reduced non-linearities, model these
differences parametrically to obtain ∆µ(zBAF,1, zBAF,2), and
compare it to the ratio of angular diameter distances.



Observational status

• Using the SDSS BOSS for the BAF and JLA sample for the
SNe Ia: [More, Niikura, Schneider, Schuller & Werner (2016)]

τ(0.61)− τ(0.38) = −0.006± 0.046.

• Consistent with the Etherington distance duality relation.
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Etherington: theoretical aspects

• Although observational data are so far consistent with the
Etherington relation, what could we learn from deviations?

• Etherington’s relation is a kinematical relationship for any
(convex normal neighbourhood of a) Lorentzian spacetime.

• Lorentzian spacetime kinematics stems from Maxwell theory
in vacuum. Hence, consider generalized electromagnetism.
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Vacuum electromagnetism

The Lagrangian of standard vacuum electromagnetism is

L0 = −1

4
F abFab = −1

8
(ηacηbd − ηbcηad)FabFcd

= −1

8
χāb̄

0 FāFb̄,

introducing Petrov pair notation for the field strength tensor
Fab = 2∂[aAb] = Fā with ā ∈ {[01], [02], [03], [23], [31], [12]},

and the corresponding constitutive tensor density in vacuum,

χāb̄
0 =

[
−I 0
0 I

]āb̄
,

where I is the 3× 3 identity.
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Generalized electromagnetism

The most general linear electromagnetism has the Lagrangian
[e.g. Post (1962)]

L = −1

8
χabcdFabFcd = −1

8
χāb̄FāFb̄,

whose (real) constitutive tensor density has symmetries,

χabcd = −χbacd , χabcd = −χabdc , χabcd = χcdab i.e. χāb̄ = χb̄ā.

χāb̄ =

[
−ε ϕ

ϕT µ−1

]āb̄
,

with 3× 3 matrix blocks, where ε denotes electrical permittivity, µ
magnetic permeability and ϕ contains the Fresnel-Fizeau effect
(tracefree part) and the axion (trace part).
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Generalized electromagnetism

One may regard the constitutive tensor density χ e.g. as

• material property of a dielectric medium;

• effective description of fundamental high energy physics;

• fundamental non-metrical spacetime geometry.

Null cones are governed by the principal polynomial,

P(x , p) = G(x)abcdpapbpcpd = 0, p ∈ T ∗M,

with the Fresnel tensor

Gabcd ∝ εmnpqεstuvχ
mn(aχb|pt|cχd)quv .
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Light propagation

Null cones in cotangent space can be mapped to null cones in
tangent space for hyperbolic equations of motion → light rays.

Since P is a quartic, light rays are not governed by Lorentzian
metric geometry for general χ but are subject to birefringence.

So far, there is no observational evidence for birefringence of the
vacuum (10−38 from GRB polarization observations [cf. Ni (2015)]).
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Absence of birefringence

Exclusion of birefringence yields the most general constitutive

χabcd =
√
− det g

(
gacgbd − gadgbc

)
ψ + φεabcd ,

where gab is a Lorentzian metric, φ the axion and ψ the dilaton.
[e.g. Lämmerzahl & Hehl (2004)]

In this case, light ray geometry is metric since the Fresnel tensor

Gabcd ∝ g (abg cd),

so that ray-geometrical quantities like DA are as in standard theory.
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Optical scalar transport

Using the equations of motion i.e. modified Maxwell’s equations

∂c

(
χabcdFab

)
= 0, ∂[aFbc] = 0,

we apply a WKB ansatz with eikonal phase function S,

Fab = Re

[
2k[aAb] exp

(
i
S

ε

)]
, ka = −∂aS.

Then the transport of the scalar amplitude A along a light ray,
where Aa = AVa with polarization gabVaV

∗
b = −1, satisfies

A(t) = A(0)

√
ψ(t)

ψ(0)
exp

(
−
∫ t

0
θ dt

)
, with θ =

1

2
ka;a.
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Energy-momentum

Consider a general action S[A,G ] for some tensorial matter A and
geometry G ab... of arbitrary rank.

Then the energy-momentum tensor density T i
j follows from

Noether while the source tensor density is

Tab... =
δS

δG ab...
.

In general, the two are related according to Gotay-Marsden,

T i
j = C i ab...

j Tab...,

where (LξG )ab... = ξnG ab...
,n + ξn,mC

m ab...
n .
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Poynting vector

Hence, taking g in our χ as geometrical background,

T i
j = C i ab

j

δS
δgab

= −2g iaδbjTab

⇒ 〈T 〉i j =
1

2

√
−gψA2k ikj =:

√
−gN ikj

photon number
current density
← N i

so the Poynting vector Sµ = 〈T 〉µ0 ∝ ψ2. Since for blackbody
radiation S ∝ T 4, the CMB with T = 2.7255± 0.0006 K implies

δS

S
= 4

δT

T
= 2

δψ

ψ
⇒ |δψ|

ψ
≤ 2

0.0006

2.7255
' 4 · 10−4,

improving earlier estimates [Ni (2014)].
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Etherington relation

Consider a ray bundle in a spacetime domain D with 3-boundaries
∂DS at source, ∂DO at the observer. The excess photon number is

∆ · N =

∫
∂DO

d3x
√
h N ini −

∫
∂DS

d3x
√
h N i (−ni )

=

∫
∂D

d3x
√
h N ini =

∫
D

d4x
√
−g N i

;i

using Stokes’ theorem, where h is the induced 3-metric and ni the
normal covector field.

Then the Etherington relation becomes

DL =
(1 + z)2DA√

1 + ∆
.
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The conservation law

Applying Gotay-Marsden to a general S[A,G ], diffeomorphism
invariance implies covariant energy-momentum conservation,

T i
j ,i − Tab...G

ab...
,j = 0.

Thus, for our energy-momentum, this yields

T i
j ,i − Tabg

ab
,j = 0 ⇒ T i

j ;i = 0,

whence the photon current and excess obey

N i
;i = 0 ⇒ ∆ = 0.



The conservation law

Applying Gotay-Marsden to a general S[A,G ], diffeomorphism
invariance implies covariant energy-momentum conservation,

T i
j ,i − Tab...G

ab...
,j = 0.

Thus, for our energy-momentum, this yields

T i
j ,i − Tabg

ab
,j = 0 ⇒ T i

j ;i = 0,

whence the photon current and excess obey

N i
;i = 0 ⇒ ∆ = 0.



The conservation law

Applying Gotay-Marsden to a general S[A,G ], diffeomorphism
invariance implies covariant energy-momentum conservation,

T i
j ,i − Tab...G

ab...
,j = 0.

Thus, for our energy-momentum, this yields

T i
j ,i − Tabg

ab
,j = 0 ⇒ T i

j ;i = 0,

whence the photon current and excess obey

N i
;i = 0 ⇒ ∆ = 0.



Conclusions

Hence, if one assumes generalized electromagnetism with χ
excluding birefringence and g as background, then Etherington
remains unchanged.

Other kinematical setups are possible, too: separating dilatonic
and electromagnetic matter, T i

j = ψTEMi
j , then TEMi

j is not
conserved and Etherington is modified.
[E.g. Brax et al. (2013), cf. Minazzoli & Hees (2014), Holanda & Pereira (2016)]
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Conclusions

Hence, the detailed choice of kinematics determines modifications
of Etherington. Our general formalism using Gotay-Marsden can
even handle non-metric kinematics.
[Cf. Schuller & Werner (2017), forthcoming].

Etherington relation as a test of spacetime kinematics:
potentially interesting (∆τ < 0) observational trends,
but so far no evidence of deviations. We find

τ(0.61)− τ(0.38) = −0.006± 0.046.

[More, Niikura, Schneider, Schuller & Werner (2016)]
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