Modifications to the Etherington Distance Duality Relation and Observational Limits

Surhud More ¹ & Marcus C. Werner ²

¹Kavli IPMU, University of Tokyo

²YITP, Kyoto University

Virtual Institute for Astroparticle Physics, 17th February 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The distance duality relation (Etherington 1933) connects luminosity distance, redshift and angular diameter distance: $D_L = (1 + z)^2 D_A.$

- The distance duality relation (Etherington 1933) connects luminosity distance, redshift and angular diameter distance: $D_L = (1 + z)^2 D_A.$
- This is a purely kinematical result, and depends only on (i) conservation of light rays and (ii) metric spacetime geometry.

- The distance duality relation (Etherington 1933) connects luminosity distance, redshift and angular diameter distance: $D_L = (1 + z)^2 D_A$.
- This is a purely kinematical result, and depends only on (i) conservation of light rays and (ii) metric spacetime geometry.
- Observational tests of the Etherington relation can thus be used to test the kinematical structure of spacetime.

Distance definitions: a short primer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Given a standard candle of known luminosity *L*, and observed flux *F*, *D*_L is given by,

$$F=\frac{L}{4\pi D_L^2},$$

e.g. Supernovae of Type Ia (SNe Ia) act as standardizable candles.

• Given a standard candle of known luminosity L, and observed flux F, D_L is given by,

$$F=\frac{L}{4\pi D_L^2},$$

e.g. Supernovae of Type Ia (SNe Ia) act as standardizable candles.

• Given a standard ruler (of known physical length d), and observed angular size θ , D_A is given by,

$$\theta = \frac{d}{D_A},$$

e.g. the baryon acoustic feature (BAF) in the clustering of galaxies acts as a standard ruler.

Observational probes: SN of Type Ia

- SNela are thermonuclear explosions of a white dwarf approaching the Chandrasekhar mass limit.
- SNela can be used as a standard candle, by correcting for observed variations in the luminosity and time scales of the SN light curves.

Observational measurements: SNela

・ロト ・回ト ・ヨト

< ∃→

э

- Joint Light-curve Analysis sample of SNela (Betoule et al. 2014)
- Distance modulus $\mu = 5 \log[D_{\rm L}/{
 m Mpc}]$

Seo, Eisenstein and White (2005)

• Consider an overdensity in the initial density field in the early Universe.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Baryons and photons are tightly coupled due to Thomson scattering.

Seo, Eisenstein and White (2005)

• The baryon photon plasma moves outward together due to high pressure.

Seo, Eisenstein and White (2005)

- At recombination, the photon free stream, and the baryon peak stalls.
- The scale can be measured in the cosmic microwave background radiation and is imprinted in the galaxy distribution.

- The clustering of galaxies (two point correlation function) shows a distinct peak at the 100 h⁻¹ Mpc scale.
- Large completed and ongoing surveys aim to detect and map out the BAF as a function of redshift.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Observational measurements: BAF

- Baryon acoustic feature measurements from SDSS-III BOSS (Alam et al. 2016), the middle redshift bin has overlapping volume with the bins on either end.
- The comoving angular diameter distance is defined as $D_{\rm M} = D_{\rm A}(1+z)$

• Measurements of luminosity distances and angular diameter distances to two different redshifts can be used to test

$$rac{D_{\mathrm{L},1}}{D_{\mathrm{A},1}} rac{D_{\mathrm{A},2}}{D_{\mathrm{L},2}} = \left[rac{(1+z_1)}{(1+z_2)}
ight]^2$$

- Removes uncertainties in the standard scales and luminosities used to derive the distances (no assumptions about the cosmological model)
- The BAF measurements determine the redshifts to carry out the test
- Deviations parameterized as the optical depth τ between the two redshifts (e.g. due to absorption of light)

- How to get the luminosity distance measurement at the same redshift as the BAF measurement, $z_{\rm BAF}$?
- Common choices: Binning, or picking up the nearest supernova neither is satisfactory.
- Our solution: Use SNela in the same volume as the galaxies used to measure the BAF.
- Subtract out the distance modulus from a fiducial cosmology - similar to the methodology adopted to analyze BAF.

Observational complication

• $\mu(z) - \mu^{\rm fid}(z)$ has reduced non-linearities, model these differences parametrically to obtain $\Delta \mu(z_{\rm BAF,1}, z_{\rm BAF,2})$, and compare it to the ratio of angular diameter distances.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Using the SDSS BOSS for the BAF and JLA sample for the SNe Ia: [More, Niikura, Schuller & Werner (2016)]

$$\tau(0.61) - \tau(0.38) = -0.006 \pm 0.046.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Using the SDSS BOSS for the BAF and JLA sample for the SNe Ia: [More, Niikura, Schneider, Schuller & Werner (2016)]

$$\tau(0.61) - \tau(0.38) = -0.006 \pm 0.046.$$

• Consistent with the Etherington distance duality relation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Although observational data are so far consistent with the Etherington relation, what could we learn from deviations?

- Although observational data are so far consistent with the Etherington relation, what could we learn from deviations?
- Etherington's relation is a kinematical relationship for any (convex normal neighbourhood of a) Lorentzian spacetime.

- Although observational data are so far consistent with the Etherington relation, what could we learn from deviations?
- Etherington's relation is a kinematical relationship for any (convex normal neighbourhood of a) Lorentzian spacetime.
- Lorentzian spacetime kinematics stems from Maxwell theory in vacuum. Hence, consider generalized electromagnetism.

Vacuum electromagnetism

(ロ)、(型)、(E)、(E)、 E) の(の)

The Lagrangian of standard vacuum electromagnetism is

$$\mathcal{L}_0 = -\frac{1}{4} F^{ab} F_{ab} = -\frac{1}{8} (\eta^{ac} \eta^{bd} - \eta^{bc} \eta^{ad}) F_{ab} F_{cd}$$

The Lagrangian of standard vacuum electromagnetism is

$$\mathcal{L}_0 = -\frac{1}{4} F^{ab} F_{ab} = -\frac{1}{8} (\eta^{ac} \eta^{bd} - \eta^{bc} \eta^{ad}) F_{ab} F_{cd}$$

$$= -\frac{1}{8} \chi_0^{\bar{a}\bar{b}} F_{\bar{a}} F_{\bar{b}},$$

introducing Petrov pair notation for the field strength tensor $F_{ab} = 2\partial_{[a}A_{b]} = F_{\bar{a}}$ with $\bar{a} \in \{[01], [02], [03], [23], [31], [12]\}$,

The Lagrangian of standard vacuum electromagnetism is

$$\mathcal{L}_0 = -\frac{1}{4} F^{ab} F_{ab} = -\frac{1}{8} (\eta^{ac} \eta^{bd} - \eta^{bc} \eta^{ad}) F_{ab} F_{cd}$$

$$= -\frac{1}{8} \chi_0^{\bar{a}\bar{b}} F_{\bar{a}} F_{\bar{b}},$$

introducing Petrov pair notation for the field strength tensor $F_{ab} = 2\partial_{[a}A_{b]} = F_{\bar{a}}$ with $\bar{a} \in \{[01], [02], [03], [23], [31], [12]\}$,

and the corresponding constitutive tensor density in vacuum,

$$\chi_0^{\bar{a}\bar{b}} = \left[\begin{array}{c|c} -I & \mathbf{0} \\ \hline \mathbf{0} & I \end{array} \right]^{\bar{a}\bar{b}},$$

where I is the 3×3 identity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The most general linear electromagnetism has the Lagrangian [e.g. Post (1962)]

$$\mathcal{L}=-rac{1}{8}\chi^{abcd}\mathsf{F}_{ab}\mathsf{F}_{cd}=-rac{1}{8}\chi^{ar{a}ar{b}}\mathsf{F}_{ar{a}}\mathsf{F}_{ar{b}},$$

The most general linear electromagnetism has the Lagrangian [e.g. Post (1962)]

$$\mathcal{L} = -\frac{1}{8}\chi^{abcd}F_{ab}F_{cd} = -\frac{1}{8}\chi^{\bar{a}\bar{b}}F_{\bar{a}}F_{\bar{b}},$$

whose (real) constitutive tensor density has symmetries,

$$\chi^{abcd} = -\chi^{bacd}, \quad \chi^{abcd} = -\chi^{abdc}, \quad \chi^{abcd} = \chi^{cdab} \text{ i.e. } \chi^{\bar{a}\bar{b}} = \chi^{\bar{b}\bar{a}}.$$

The most general linear electromagnetism has the Lagrangian [e.g. Post (1962)]

$$\mathcal{L} = -rac{1}{8}\chi^{abcd} F_{ab} F_{cd} = -rac{1}{8}\chi^{ar{a}ar{b}} F_{ar{a}} F_{ar{b}},$$

whose (real) constitutive tensor density has symmetries,

$$\chi^{abcd} = -\chi^{bacd}, \quad \chi^{abcd} = -\chi^{abdc}, \quad \chi^{abcd} = \chi^{cdab} \text{ i.e. } \chi^{\bar{a}\bar{b}} = \chi^{\bar{b}\bar{a}}.$$

$$\chi^{\bar{a}\bar{b}} = \left[\begin{array}{c|c} -\varepsilon & \varphi \\ \hline \varphi^T & \mu^{-1} \end{array} \right]^{\bar{a}\bar{b}},$$

with 3×3 matrix blocks, where ε denotes electrical permittivity, μ magnetic permeability and φ contains the Fresnel-Fizeau effect (tracefree part) and the axion (trace part).

One may regard the constitutive tensor density χ e.g. as

- material property of a dielectric medium;
- effective description of fundamental high energy physics;
- fundamental non-metrical spacetime geometry.

One may regard the constitutive tensor density χ e.g. as

- material property of a dielectric medium;
- effective description of fundamental high energy physics;
- fundamental non-metrical spacetime geometry.

Null cones are governed by the principal polynomial,

$$P(x,p) = \mathcal{G}(x)^{abcd} p_a p_b p_c p_d = 0, \quad p \in T^*M,$$

with the Fresnel tensor

$$\mathcal{G}^{abcd} \propto \epsilon_{mnpq} \epsilon_{stuv} \chi^{mn(a} \chi^{b|pt|c} \chi^{d)quv}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Null cones in cotangent space can be mapped to null cones in tangent space for hyperbolic equations of motion \rightarrow light rays.

Null cones in cotangent space can be mapped to null cones in tangent space for hyperbolic equations of motion \rightarrow light rays.

Since P is a quartic, light rays are not governed by Lorentzian metric geometry for general χ but are subject to birefringence.

Null cones in cotangent space can be mapped to null cones in tangent space for hyperbolic equations of motion \rightarrow light rays.

Since P is a quartic, light rays are not governed by Lorentzian metric geometry for general χ but are subject to birefringence.

So far, there is no observational evidence for birefringence of the vacuum (10^{-38} from GRB polarization observations [cf. Ni (2015)]).

Exclusion of birefringence yields the most general constitutive

$$\chi^{\textit{abcd}} = \sqrt{-\det g} \left(g^{\textit{ac}} g^{\textit{bd}} - g^{\textit{ad}} g^{\textit{bc}} \right) \psi + \phi \epsilon^{\textit{abcd}},$$

where g_{ab} is a Lorentzian metric, ϕ the axion and ψ the dilaton. [e.g. Lämmerzahl & Hehl (2004)]

Exclusion of birefringence yields the most general constitutive

$$\chi^{abcd} = \sqrt{-\det g} \left(g^{ac} g^{bd} - g^{ad} g^{bc} \right) \psi + \phi \epsilon^{abcd},$$

where g_{ab} is a Lorentzian metric, ϕ the axion and ψ the dilaton. [e.g. Lämmerzahl & Hehl (2004)]

In this case, light ray geometry is metric since the Fresnel tensor

$$\mathcal{G}^{abcd} \propto g^{(ab}g^{cd)},$$

so that ray-geometrical quantities like D_A are as in standard theory.

Using the equations of motion i.e. modified Maxwell's equations

$$\partial_{c}\left(\chi^{abcd}F_{ab}
ight)=0, \ \ \partial_{[a}F_{bc]}=0,$$

we apply a WKB ansatz with eikonal phase function S,

$$F_{ab} = \operatorname{Re}\left[2k_{[a}A_{b]}\exp\left(\mathrm{i}\frac{\mathrm{S}}{\epsilon}\right)\right], \quad k_{a} = -\partial_{a}\mathrm{S}.$$

Using the equations of motion i.e. modified Maxwell's equations

$$\partial_{c}\left(\chi^{abcd}F_{ab}
ight)=0, \ \ \partial_{[a}F_{bc]}=0,$$

we apply a WKB ansatz with eikonal phase function S,

$$F_{ab} = \operatorname{Re}\left[2k_{[a}A_{b]}\exp\left(\mathrm{i}\frac{\mathrm{S}}{\epsilon}\right)\right], \ k_{a} = -\partial_{a}\mathrm{S}.$$

Then the transport of the scalar amplitude A along a light ray, where $A_a = AV_a$ with polarization $g^{ab}V_aV_b^* = -1$, satisfies

$$A(t) = A(0) \sqrt{rac{\psi(t)}{\psi(0)}} \exp\left(-\int_0^t heta \ \mathrm{d}t
ight), ext{ with } heta = rac{1}{2} k^a_{;a}.$$

Consider a general action S[A, G] for some tensorial matter A and geometry $G^{ab...}$ of arbitrary rank.

Consider a general action S[A, G] for some tensorial matter A and geometry $G^{ab...}$ of arbitrary rank.

Then the energy-momentum tensor density T^{i}_{j} follows from Noether while the source tensor density is

$$T_{ab...} = \frac{\delta S}{\delta G^{ab...}}.$$

Consider a general action S[A, G] for some tensorial matter A and geometry $G^{ab...}$ of arbitrary rank.

Then the energy-momentum tensor density T^{i}_{j} follows from Noether while the source tensor density is

$$T_{ab...} = \frac{\delta S}{\delta G^{ab...}}.$$

In general, the two are related according to Gotay-Marsden,

$$T^{i}{}_{j}=C^{i}{}_{j}{}^{ab\dots}T_{ab\dots},$$

where $(\mathcal{L}_{\xi}G)^{ab...} = \xi^n G^{ab...}{}_{,n} + \xi^n{}_{,m}C^m{}_n{}^{ab...}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hence, taking g in our χ as geometrical background,

$$T^{i}{}_{j} = C^{i}{}_{j}{}^{ab} \frac{\delta S}{\delta g^{ab}} = -2g^{ia}\delta^{b}{}_{j}T_{ab}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hence, taking g in our χ as geometrical background,

$$T^{i}{}_{j} = C^{i}{}_{j}{}^{ab}\frac{\delta S}{\delta g^{ab}} = -2g^{ia}\delta^{b}{}_{j}T_{ab} \qquad \text{photon number}$$

$$\Rightarrow \langle T \rangle^{i}{}_{j} = \frac{1}{2}\sqrt{-g}\psi A^{2}k^{i}k_{j} =: \sqrt{-g}N^{i}k_{j} \qquad \leftarrow N^{i}$$

Hence, taking g in our χ as geometrical background,

$$T^{i}{}_{j} = C^{i}{}_{j}{}^{ab}\frac{\delta S}{\delta g^{ab}} = -2g^{ia}\delta^{b}{}_{j}T_{ab}$$
$$\Rightarrow \langle T \rangle^{i}{}_{j} = \frac{1}{2}\sqrt{-g}\psi A^{2}k^{i}k_{j} =: \sqrt{-g}N^{i}k_{j}$$

photon number current density $\leftarrow N^i$

so the Poynting vector $S^{\mu} = \langle T \rangle^{\mu}{}_0 \propto \psi^2.$

Hence, taking g in our χ as geometrical background,

$$T^{i}{}_{j} = C^{i}{}_{j}{}^{ab}\frac{\delta S}{\delta g^{ab}} = -2g^{ia}\delta^{b}{}_{j}T_{ab} \qquad \text{photon number}$$

$$\Rightarrow \langle T \rangle^{i}{}_{j} = \frac{1}{2}\sqrt{-g}\psi A^{2}k^{i}k_{j} =: \sqrt{-g}N^{i}k_{j} \qquad \leftarrow N^{i}$$

so the Poynting vector $S^{\mu} = \langle T \rangle^{\mu}_0 \propto \psi^2$. Since for blackbody radiation $S \propto T^4$, the CMB with $T = 2.7255 \pm 0.0006$ K implies

$$\frac{\delta S}{S} = 4 \frac{\delta T}{T} = 2 \frac{\delta \psi}{\psi} \Rightarrow \frac{|\delta \psi|}{\psi} \le 2 \frac{0.0006}{2.7255} \simeq 4 \cdot 10^{-4}$$

improving earlier estimates [Ni (2014)].

Consider a ray bundle in a spacetime domain \mathcal{D} with 3-boundaries $\partial \mathcal{D}_S$ at source, $\partial \mathcal{D}_O$ at the observer. The excess photon number is

$$\begin{aligned} \Delta \cdot N &= \int_{\partial \mathcal{D}_O} \mathrm{d}^3 x \sqrt{h} \; N^i n_i - \int_{\partial \mathcal{D}_S} \mathrm{d}^3 x \sqrt{h} \; N^i (-n_i) \\ &= \int_{\partial \mathcal{D}} \mathrm{d}^3 x \sqrt{h} \; N^i n_i = \int_{\mathcal{D}} \mathrm{d}^4 x \sqrt{-g} \; N^i_{;i} \end{aligned}$$

using Stokes' theorem, where h is the induced 3-metric and n_i the normal covector field.

Consider a ray bundle in a spacetime domain \mathcal{D} with 3-boundaries $\partial \mathcal{D}_S$ at source, $\partial \mathcal{D}_O$ at the observer. The excess photon number is

$$\begin{aligned} \Delta \cdot N &= \int_{\partial \mathcal{D}_O} \mathrm{d}^3 x \sqrt{h} \; N^i n_i - \int_{\partial \mathcal{D}_S} \mathrm{d}^3 x \sqrt{h} \; N^i (-n_i) \\ &= \int_{\partial \mathcal{D}} \mathrm{d}^3 x \sqrt{h} \; N^i n_i = \int_{\mathcal{D}} \mathrm{d}^4 x \sqrt{-g} \; N^i_{;i} \end{aligned}$$

using Stokes' theorem, where h is the induced 3-metric and n_i the normal covector field. Then the Etherington relation becomes

$$D_L = \frac{(1+z)^2 D_A}{\sqrt{1+\Delta}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applying Gotay-Marsden to a general S[A, G], diffeomorphism invariance implies covariant energy-momentum conservation,

$$T^{i}_{j,i} - T_{ab...}G^{ab...}_{,j} = 0.$$

Applying Gotay-Marsden to a general S[A, G], diffeomorphism invariance implies covariant energy-momentum conservation,

$$T^{i}_{j,i} - T_{ab...}G^{ab...}_{,j} = 0.$$

Thus, for our energy-momentum, this yields

$$T^{i}_{j,i} - T_{ab}g^{ab}_{,j} = 0 \Rightarrow T^{i}_{j;i} = 0,$$

Applying Gotay-Marsden to a general S[A, G], diffeomorphism invariance implies covariant energy-momentum conservation,

$$T^{i}_{j,i} - T_{ab...}G^{ab...}_{,j} = 0.$$

Thus, for our energy-momentum, this yields

$$T^{i}{}_{j,i} - T_{ab}g^{ab}{}_{,j} = 0 \Rightarrow T^{i}{}_{j;i} = 0,$$

whence the photon current and excess obey

$$N^i_{;i}=0 \Rightarrow \Delta=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence, if one assumes generalized electromagnetism with χ excluding birefringence and g as background, then Etherington remains unchanged.

Hence, if one assumes generalized electromagnetism with χ excluding birefringence and g as background, then Etherington remains unchanged.

Other kinematical setups are possible, too: separating dilatonic and electromagnetic matter, $T^{i}_{j} = \psi T^{\text{EM}i}_{j}$, then $T^{\text{EM}i}_{j}$ is not conserved and Etherington is modified.

[E.g. Brax et al. (2013), cf. Minazzoli & Hees (2014), Holanda & Pereira (2016)]

Hence, the detailed choice of kinematics determines modifications of Etherington. Our general formalism using Gotay-Marsden can even handle non-metric kinematics.

[Cf. Schuller & Werner (2017), forthcoming].

Hence, the detailed choice of kinematics determines modifications of Etherington. Our general formalism using Gotay-Marsden can even handle non-metric kinematics.

[Cf. Schuller & Werner (2017), forthcoming].

Etherington relation as a test of spacetime kinematics: potentially interesting ($\Delta \tau < 0$) observational trends, but so far no evidence of deviations. We find

$$\tau(0.61) - \tau(0.38) = -0.006 \pm 0.046.$$

[More, Niikura, Schneider, Schuller & Werner (2016)]