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e The distance duality relation (Etherington 1933) connects
luminosity distance, redshift and angular diameter distance:
D, = (1 + Z)2DA.

e This is a purely kinematical result, and depends only on (i)
conservation of light rays and (ii) metric spacetime geometry.

e Observational tests of the Etherington relation can thus be
used to test the kinematical structure of spacetime.
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e Given a standard candle of known luminosity L, and observed
flux F, Dy is given by,

F = 7L ,
47TDE

e.g. Supernovae of Type la (SNe la) act as standardizable
candles.

e Given a standard ruler (of known physical length d), and
observed angular size 0, D4 is given by,

e.g. the baryon acoustic feature (BAF) in the clustering of
galaxies acts as a standard ruler.



Observational probes: SN of Type la

e SNela are thermonuclear explosions of a white dwarf
approaching the Chandrasekhar mass limit.

e SNela can be used as a standard candle, by correcting for
observed variations in the luminosity and time scales of the
SN light curves.



Observational measurements: SNela
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e Joint Light-curve Analysis sample of SNela (Betoule et al.
2014)

e Distance modulus p = 5log[Dr,/Mpc]
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Seo, Eisenstein and White (2005)

Baryons Photons

e Consider an overdensity in the initial density field in the early
Universe.

e Baryons and photons are tightly coupled due to Thomson
scattering.
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e The baryon photon plasma moves outward together due to
high pressure.



Observational probes: Baryon acoustic feature

Seo, Eisenstein and White (2005)

e At recombination, the photon free stream, and the baryon
peak stalls.

e The scale can be measured in the cosmic microwave
background radiation and is imprinted in the galaxy
distribution.



Observational probes: Baryon acoustic feature
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e The clustering of galaxies (two point correlation function)
shows a distinct peak at the 100 h™1 Mpc scale.

e Large completed and ongoing surveys aim to detect and map
out the BAF as a function of redshift.



Observational measurements: BAF
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e Baryon acoustic feature measurements from SDSS-111 BOSS
(Alam et al. 2016), the middle redshift bin has overlapping
volume with the bins on either end.

e The comoving angular diameter distance is defined as

Dy = Da(1+ 2)



Model independent test

e Measurements of luminosity distances and angular diameter
distances to two different redshifts can be used to test

DriDara [(1 +21)]2
D Dro (1+ 2)
e Removes uncertainties in the standard scales and luminosities

used to derive the distances (no assumptions about the
cosmological model)

e The BAF measurements determine the redshifts to carry out
the test

e Deviations parameterized as the optical depth 7 between the
two redshifts (e.g. due to absorption of light)



Observational complication

e How to get the luminosity distance measurement at the same
redshift as the BAF measurement, zgap?

e Common choices: Binning, or picking up the nearest
supernova — neither is satisfactory.

e Our solution: Use SNela in the same volume as the galaxies
used to measure the BAF.

e Subtract out the distance modulus from a fiducial cosmology
— similar to the methodology adopted to analyze BAF.



Observational complication
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o 1u(z) — pfi9(z) has reduced non-linearities, model these
differences parametrically to obtain Ayu(zgar,1,2zBAF 2), and
compare it to the ratio of angular diameter distances.



Observational status

e Using the SDSS BOSS for the BAF and JLA sample for the

SNe la: [More, Niikura, Schneider, Schuller & Werner (2016)]

7(0.61) — 7(0.38) = —0.006 - 0.046.



Observational status

e Using the SDSS BOSS for the BAF and JLA sample for the

SNe la: [More, Niikura, Schneider, Schuller & Werner (2016)]

7(0.61) — 7(0.38) = —0.006 - 0.046.

e Consistent with the Etherington distance duality relation.
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Etherington: theoretical aspects

e Although observational data are so far consistent with the
Etherington relation, what could we learn from deviations?

e Etherington's relation is a kinematical relationship for any
(convex normal neighbourhood of a) Lorentzian spacetime.

e Lorentzian spacetime kinematics stems from Maxwell theory
in vacuum. Hence, consider generalized electromagnetism.
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Vacuum electromagnetism

The Lagrangian of standard vacuum electromagnetism is

1 1
EO — _ZFabFab:_g(nacnbd_nbcnad)Fachd
1 -7
= —gXo FsFp

introducing Petrov pair notation for the field strength tensor
Fab = 20},Ap = F5 with 3 € {[01],[02], [03], [23], [31], [12]},

and the corresponding constitutive tensor density in vacuum,

b
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where I is the 3 x 3 identity.
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Generalized electromagnetism

The most general linear electromagnetism has the Lagrangian

[e.g. Post (1962)] 1 1
L= =X FapFeg = =X F5Fp,

whose (real) constitutive tensor density has symmetries,

abed _ _ | bacd abed _ _ | abdc abed __ | cdab ; ba

X NG ey X ie xP =y

with 3 x 3 matrix blocks, where € denotes electrical permittivity, p
magnetic permeability and ¢ contains the Fresnel-Fizeau effect
(tracefree part) and the axion (trace part).
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e material property of a dielectric medium;
o effective description of fundamental high energy physics;

e fundamental non-metrical spacetime geometry.



Generalized electromagnetism

One may regard the constitutive tensor density x e.g. as
e material property of a dielectric medium;
o effective description of fundamental high energy physics;

e fundamental non-metrical spacetime geometry.

Null cones are governed by the principal polynomial,
P(x,p) = G(x)™*“ppppcpg =0, pe T*M,

with the Fresnel tensor

gabcd n(aXb|pt|ch)quv‘

m
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Light propagation

Null cones in cotangent space can be mapped to null cones in
tangent space for hyperbolic equations of motion — light rays.

Since P is a quartic, light rays are not governed by Lorentzian
metric geometry for general x but are subject to birefringence.

So far, there is no observational evidence for birefringence of the
vacuum (10738 from GRB polarization observations . i (201s);).
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Exclusion of birefringence yields the most general constitutive

Xabcd — \/Tetg (gacgbd o gadgbc> v+ ¢eabcd7

where g, is a Lorentzian metric, ¢ the axion and ¥ the dilaton.

[e.g. Lammerzahl & Hehl (2004)]

In this case, light ray geometry is metric since the Fresnel tensor

gabcd x g(abgcd)’

so that ray-geometrical quantities like Dp are as in standard theory.



Optical scalar transport

Using the equations of motion i.e. modified Maxwell’s equations
Oc (XPFsb) =0, OpuFig =0,

we apply a WKB ansatz with eikonal phase function S,

Fab = Re [Qk[aAb] exp (12)] 5 ka = —838.



Optical scalar transport

Using the equations of motion i.e. modified Maxwell’s equations
O (X" Fob) = 0, OppFig =0,
we apply a WKB ansatz with eikonal phase function S,
F.» = Re [2k[aAb] exp (12)] , ka = —0,S.

Then the transport of the scalar amplitude A along a light ray,
where A, = AV, with polarization g2V, V) = —1, satisfies

A(t) = A(0) ZES; exp <— /Ote dt> . with 6 = %k";a.
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Energy-momentum

Consider a general action S[A, G] for some tensorial matter A and
geometry G2 of arbitrary rank.

Then the energy-momentum tensor density Tij follows from
Noether while the source tensor density is

0S8

Tab... = 5Gab...’

In general, the two are related according to Gotay-Marsden,
Ti_ _ Ci ab...T
=% ab...»

where (L¢G)?b = €nGab- €0, Cm 2b-,



Poynting vector

Hence, taking g in our x as geometrical background,
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Poynting vector

Hence, taking g in our x as geometrical background,

. . oS
b b
T, = C'}? 5gab = —2g"5% Ty photon number
current density

i 1 i i i
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so the Poynting vector S* = (T)#y o 2. Since for blackbody
radiation S oc T#, the CMB with T = 2.7255 £ 0.0006 K implies

05 _ 0T _,0¢ _ [ow] _,0.0006

~4.107%
S T P ¥ T 2.7255 ’

improving earlier estimates i (2014)].



Etherington relation

Consider a ray bundle in a spacetime domain D with 3-boundaries
0Ds at source, 0Dg at the observer. The excess photon number is
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using Stokes’ theorem, where h is the induced 3-metric and n; the
normal covector field.



Etherington relation

Consider a ray bundle in a spacetime domain D with 3-boundaries
0Ds at source, 0Dg at the observer. The excess photon number is

A-N :/ d3xx/EN"n,-—/ d3xv'h N'(—n;)
Do

0Ds
= / d3xv'h Nin; = / d*xv/—g N';
oD D

using Stokes’ theorem, where h is the induced 3-metric and n; the
normal covector field. Then the Etherington relation becomes

(14 2)?Da

D =
LT IEA
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The conservation law

Applying Gotay-Marsden to a general S[A, G], diffeomorphism
invariance implies covariant energy-momentum conservation,

T'i— Tap. G j =0,
Thus, for our energy-momentum, this yields
T'ji— Tapg™j=0 = T =0,
whence the photon current and excess obey

N.;,=0 = A=0.
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Hence, if one assumes generalized electromagnetism with x
excluding birefringence and g as background, then Etherington
remains unchanged.

Other kinematical setups are possible, too: separating dilatonic
and electromagnetic matter, T'; = ¢y TEM/, then TEM/; is not
conserved and Etherington is modified.

[E.g. Brax et al. (2013), cf. Minazzoli & Hees (2014), Holanda & Pereira (2016)]
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even handle non-metric kinematics.
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Conclusions

Hence, the detailed choice of kinematics determines modifications
of Etherington. Our general formalism using Gotay-Marsden can
even handle non-metric kinematics.

[Cf. Schuller & Werner (2017), forthcoming].

Etherington relation as a test of spacetime kinematics:
potentially interesting (A7 < 0) observational trends,
but so far no evidence of deviations. We find

7(0.61) — 7(0.38) = —0.006 - 0.046.

[More, Niikura, Schneider, Schuller & Werner (2016)]



