
Make Nature Natural Again

Part 1: criticise all the rest

SUSY, you are fired;

Repeal standard naturalness;

Ban mass from theory.

Part 2: good crazy alt-phys

Dynamical generation of Mh, MPl;

Infinite Energy;

Agravity, Ghosts; Inflation.

Alessandro Strumia
Pisa U. & INFN & CERN

CosmoVia, 19/5/2017



Mass scales in nature
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The SM explains part of the mess: ΛQCD ∼MPle
−2π/7α3 and Mf = gf〈h〉. But

Mh �MPl not understood and apparently destabilized by quantum corrections:

δM2
h = ∼ g2

SMΛ2 ?→ g2
SMM

2
SUSY

Dominant theory has two scales, the string scale and the EW/SUSY scale:
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The establishment wants SUSY

2 Lepton-Photon, 24–29 June, 2013  Andreas Hoecker — Searches for Supersymmetry at Colliders  

Mr. Higgs 

Mrs. SUSY 

Fundamental scalar 
length scale 

EW scale—1 

GUT scale—1 

The  

scalar 

precipice •  Moderate the hierarchy problem 
by cancelling quadratic 
divergence of SM scalar 

 

If weak-scale SUSY existed, it could … 

•  Equalise the number of 
fermionic and bosonic degrees 
of freedom, render existence 
of scalar particles natural 

•  Realise grand unification of the 
gauge couplings 

•  Provide a suitable dark matter 
candidate 

SUSY is an entirely theoretical idea – there is no experimental evidence for it … yet → talk by Mihoko Nojiri  

? SUSY stabilizes Higgs: the weak scale

is the scale of SUSY breaking.

? SUSY extends Lorentz, allows spin 3/2.

? SUSY unifies fermions with bosons.

? SUSY unifies gauge couplings.

? SUSY gives DM aka ‘neutralino’.

? SUSY is predicted by super-strings.

? Worry: too many sparticles at LHC?



LHC inverse problem solved



News from the fronteer

No new physics at LHC. For the measured Mh, Mt the

Standardissimo Model can be extrapolated up to MPl and above.
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λ and its β-function nearly vanish around MPl



Naturalness in trouble

SUSY was the best solution to a bigger issue: most theorists believe that

“light fundamental scalars must be accompanied by new physics that

protects their lightness from quadratically divergent corrections”

But LHC observed the opposite: the Higgs and no new physics

Confirmed at Moriond 2017. So many boring SM victories that the situa-

tion is interesting. All natural extensions of the SM in trouble: SUSY, extra

diminesions, technicolor, composite Higgs...

These models no longer can be natural: δM2
h
>∼100M2

h



Reaction 1: ad hoc ideas?

Add more smarter new physics

to explain why we see nothing:

compressed SUSY, RPV SUSY,

‘neutral naturalness’... cosmologi-

cal history that selects a small Mh.

Must be tried: no stone unturned.

Looks like therapeutic obstinacy:
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2: anthropic selection in a multiverse?

The cosmological constant V ∼ 10−120M4
Pl is one more unnaturally small mys-

tery. No natural theory known. Weinberg: anthropic selection in a multiverse.

Anthropics explains Mh �MPl too?

• Needed to have systems made of many particles.

• Chemistry exists thanks to ydv ≈ αemΛQCD.

But natural solutions exist, difficult to argue that multiverse avoids them.

Even if we live in a multiverse, natural anthropic theories would be more likely:

• SM with a smaller y or MPl;

• a QED+QCD alternative without a Higgs;

• weak scale SUSY.

Keep searching alternatives to anthropic nirvana



Subtle is the Lord

What is going on? We are confused but nature is surely following some logic

The goal of this talk is presenting an alternative: a renormalizable theory valid

above MPl such that Mh is naturally smaller than MPl without new physics at

the weak scale. It naturally gives inflation and a beautiful anti-graviton ghost.



Reconsidering naturalness



Make Nature Natural Again

If nature looks unnatural, maybe we misunderstood what naturalness means.

Power divergences and regulators are suggested by QFT equations. The æther

was suggested by Maxwell equations. But power divergences are unphysical.

Maybe we are again over-interpreting, adding realism to quantum mechanics.

Maybe there are no regulators: a SM-like theory holds up to infinite energy.

[Caution: this is when rotten tomatoes start to fly]

Wilson proposed usual naturalness attributing physical meaning to momentum

shells of loop integrals, used in the ‘averaged action’. Ipse undixit:

“The claim was that it would be unnatural for such particles to have masses

small enough to be detectable soon. But this claim makes no sense”.

Kenneth G. Wilson, hep-lat/0412043

http://arxiv.org/pdf/hep-lat/0412043v2.pdf


Physical Naturalness

Demand that physical corrections only satisfy naturalness:

Mh & δMh ∼
{
gSMΛUV Usual naturalness
gextraMextra Physical naturalness

The SM satisfies Physical Naturalness, for the measured Mh ≈Mt

This would be ruined by new heavy particles too coupled to the SM.

Unlike in the other scenarios, high-scale model building is very constrained.

Imagine there is no GUT. No flavour models too. Above us only sky.

Data demand some new physics: DM, neutrino masses, maybe axions...

Can this be added compatibly with Physical Naturalness?



Physical Naturalness and new physics

Neutrino mass models add extra particles with mass M

M <∼


0.7 107 GeV × 3√∆ type I see-saw model,
200 GeV ×

√
∆ type II see-saw model,

940 GeV ×
√

∆ type III see-saw model.

Leptogenesis is compatible with PhysNat only in type I.

Axion and LHC usually are like fish and bicycle because fa>∼109 GeV. Axion

models can satisfy PN, e.g. KSVZ models employ heavy quarks with mass M

M <∼
√

∆×


0.74 TeV if Ψ = Q⊕ Q̄
4.5 TeV if Ψ = U ⊕ Ū
9.1 TeV if Ψ = D ⊕ D̄

Inflation: flatness implies small couplings.

Dark Matter: below about a TeV if weakly coupled.



DM with weak gauge interactions

Consider a Minimal Dark Matter n-plet. 2-loop quantum corrections to M2
h :

δM2
h =

cnM2

(4π)4

(
n2 − 1

4
g4

2 + Y 2g4
Y

)
×


6 ln M2

Λ2 − 1 for fermion DM
3
2 ln2 M2

Λµ2 + 2 ln M2

Λ2 + 7
2 for scalar DM

Quantum numbers DM could DM mass mDM± −mDM Physical naturalness σSI in
SU(2)L U(1)Y Spin decay into in TeV in MeV bound in TeV, Λ ∼MPl 10−46 cm2

2 1/2 0 EL 0.54 350 0.4×
√

∆ (2.3± 0.3) 10−2

2 1/2 1/2 EH 1.1 341 1.9×
√

∆ (2.5± 0.8) 10−2

3 0 0 HH∗ 2.5 166 0.22×
√

∆ 0.60± 0.04
3 0 1/2 LH 2.7 166 1.0×

√
∆ 0.60± 0.04

3 1 0 HH,LL 1.6+ 540 0.22×
√

∆ 0.06± 0.02
3 1 1/2 LH 1.9+ 526 1.0×

√
∆ 0.06± 0.02

4 1/2 0 HHH∗ 2.4+ 353 0.14×
√

∆ 1.7± 0.1
4 1/2 1/2 (LHH∗) 2.4+ 347 0.6×

√
∆ 1.7± 0.1

4 3/2 0 HHH 2.9+ 729 0.14×
√

∆ 0.08± 0.04
4 3/2 1/2 (LHH) 2.6+ 712 0.6×

√
∆ 0.08± 0.04

5 0 0 (HHH∗H∗) 9.4 166 0.10×
√

∆ 5.4± 0.4
5 0 1/2 stable 11.5 166 0.4×

√
∆ 5.4± 0.4



A new principle: nature has no scale

Physical Naturalness is phenomenologically viable, what about its theory?

A naive effective field theory suffers of the hierarchy problem:

L ∼ Λ4 + Λ2H2 + L4 +
H6

Λ2
+ · · ·

Nature is singling out L4. Why?

Principle: “Nature has no fundamental scales Λ”.

Then, the fundamental QFT is described by L4: only dimensionless couplings.

Power divergences have mass dimension. So they must vanish if there are no

masses:
∫
dE E = 0. Anything different is dimensionally wrong.



The scale anomaly

Is all this useless because quantum corrections break scale invariance?

- The chiral anomaly does not make fermions massive.

- The scale anomaly does not make scalars massive.

The one loop correction to a scalar mass2 is quadratically divergent:

Π(0) = = −4y21

i

∫
d4k

(2π)4

k2 +m2

(k2 −m2)2

The same happens for the photon:

Πµν(0) = = −4e21

i

∫
d4k

(2π)4

(
2kµkν

(k2 −m2)2
−

ηµν

k2 −m2

)

And for the graviton Πµναβ(0). A physical cut-off that respects gauge invariance
and that breaks scale invariance (such as strings) can keep Mγ = 0, while
Mh ∼ Λ. But Mγ and Mh have the same fate in a theory with no cut-off.

Can quantum corrections generate Mh,MPl?

Yes, if dynamics generates vevs or condensates. 1) Models for Mh; 2) for MPl.



1) What is the weak scale?

Mh ∼ gextraMextra where gextra can be � gSM, so Mextra can be �Mh

Physical naturalness does not imply new physics at the weak scale

• Could be generated from nothing by weak-scale dynamics.

- Another gauge group might become strong around 1 TeV.

- The quartic of another scalar might run negative around 1 TeV.

• Could be generated from nothing by heavier dynamics.

- See-saw, axions, gravity...



Weakly coupled models for the weak scale

The Coleman-Weinberg mechanism can dynamically generate the weak scale

Model :

GSM⊗SU(2)X with one extra scalar S, doublet under SU(2)X and potential

V = λH |H|4 − λHS|HS|2 + λS|S|4.

1) Dynamically generates the weak scale and weak scale DM

2) Preserves the successful automatic features of the SM: B,L...

3) Gets DM stability as one extra automatic feature.



Weakly coupled SU(2) model

1) λS runs negative at low energy:

λS ' βλS ln
s

s∗
with βλS '

9g4
X

8(4π)2

S(x) =
1√
2

(
0

w + s(x)

)
w ' s∗e−1/4

H(x) =
1√
2

(
0

v + h(x)

)
v ' w

√
λHS
2λH

2) No new Yukawas.
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3) SU(2)X vectors get mass MX = 1
2gXw and are automatically stable.

4) Bonus: threshold effect stabilises λH = λ+ λ2
HS/βλS.



Experimental implications

1) New scalar s: like another h with suppressed couplings; s→ hh if Ms > 2Mh.
2) Dark Matter coupled to s, h. Assuming that DM is a thermal relict

σvann +
1

2
σvsemi−ann =

11g2
X

1728πw2
+

g2
X

64πw2
≈ 2.2× 1026 cm3

s
fixes gX = w/2 TeV, so all is predicted in terms of one parameter e.g. gX:
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The weak scale from strong dynamics

Model:

GSM⊗ SU(N) with one extra fermion in the (0Y ,3L,1c, N ⊕ N̄). V = λH |H|4

No extra scalars, no masses: as many parameters as the SM!



The weak scale from strong dynamics

New QCD-like dynamics becomes strong at Λ ∼ few TeV inducing

m2
h =

� �

�

� �

�

=
9g4

2

4(4π)2

∫
dQ2ΠW (−Q2)

The W propagator contains strong dynamics. Dispersion relations proof m2
h < 0

∂ΠW

∂Λ2
TC

= −
q2

Λ2
TC

∂ΠW

∂q2
,

∂ΠW (q2)

∂q2
=

1

π

∫ ∞
0

ds

∼−σ<0︷ ︸︸ ︷
Im ΠW (s)

(s− q2)2
< 0



The weak scale from strong dynamics

Ignoring power divergences m2
h is UV-finite: use Operator Product Expansion

ΠW (q2)
q2�Λ2

' c1(q2)︸ ︷︷ ︸
dimensionless

+ c3(q2)︸ ︷︷ ︸
−C/q4

〈0|
αTC

4π
GA2
µν |0〉︸ ︷︷ ︸

positive

+ · · ·

Vector Meson Dominance estimates ΠW (q2) = m2
ρ/g

2
ρ(q2 −m2

ρ + iε)

m2
h ∼

� �

�

� �

ρ

∼ −
g4

2m
2
ρ

(4π)2g2
ρ

All new physics univocally predicted: mρ ∼ 20 TeV, ‘baryons’ at mB ∼ 50 TeV.

Lighter ‘pions’ in the 3⊗ 3− 1 = 3⊕ 5 of SU(2)L at mπn ≈
g2mρ

4π

√
3

4
(n2 − 1) ∼

2 TeV. π5 decays via the anomaly π5 →WW .



Dark Matter from strong dynamics

The model has two accidentally stable composite DM candidates:

• The lightest ‘baryon’, presumably

subdominant:

Ωthermal ≈ 0.1
(

mB

200 TeV

)2

Characteristic magnetic dipole

direct detection interaction.

• The ‘pion’ π3. Thermal relic abun-

dance predicted, ok for

mπ3 = 2.5 TeV

Direct detection:

σSI ≈ 0.2 10−46 cm2.
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Soft gravity

Mh & δMh ∼
{
gSMΛUV Usual naturalness
gextraMextra Physical naturalness

The Einstein gravitational coupling

grows with energy, blows up at MPl

ggrav ∼ E/MPl

and couples everybody:

δMh ∼ ggravMextra ∼M2
extra/MPl.

New physics must fix gravity when

it is natural

ggrav<∼10−8

Mextra<∼1012 GeV
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Towards infinity



Motivation

If the theory has no cut-off Λ, it cannot give δM2
h ∼ Λ2

Models of soft gravity (agravity later) give RGE above MPl.

We assume that the gravitational coupling is numerically small.

So RGE are dominated by the bigger QFT couplings: g1,2,3, yt,...

Can the theory reach infinite energy?

Obstacle: Landau poles



Asymptotically safe Higgs?

In the SM, the abelian gY runs non-perturbative at Λ ∼ 1040 GeV.

Maybe the SM dies there? Maybe gY , yt, λ, ... enter into asymptotic safety?
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Would this imply an unnatural δM2
h ∼ g2

Y Λ2? No such correction is present in

a toy SM where couplings enter into perturbative Total Asymptotic Safety.

We don’t know how to compute if the SM is TAS, so we explore TAF



Total Asymptotic Freedom?

Goal: compute if all couplings of a realistic QFT can run to 0 to E =∞.

Naive attempt:

• solve the RGE for g, y, λ numerically

• up to infinite energy

• identify m-dimensional sub-spaces.

Result:

Analytic tools needed



TAF tools

Rewrite RGE in terms of t = lnµ2/(4π)2 and of xI = {g̃i, ỹa, λ̃m} as

g2
i (t) =

g̃2
i (t)

t
, y2

a(t) =
ỹ2
a(t)

t
, λm(t) =

λ̃m(t)

t
.

Get

dxI
d ln t

= VI(x) =


g̃i/2 + βgi(g̃),
ỹa/2 + βya(g̃, ỹ),
λ̃m + βλm(g̃, ỹ, λ̃).

Fixed-points xI(t) = x∞ are determined by the algebraic equation VI(x∞) = 0.

Linearize around each fixed-point:

VI(x) '
∑
J

MIJ(xJ − xJ∞) where MIJ =
∂VI
∂xJ

∣∣∣∣∣
x=x∞

Negative eigenvalues of M are UV-attractive. Each positive eigenvalue implies

a UV-repulsive direction: to reach the FP a coupling is univocally predicted.



SM up to infinite energy if gY = 0

Predictions: 1) gY = 0; in this limit 2) y2
t ' 227/1197t i.e. Mt = 186 GeV; 3)

yτ,ν = 0; 4) λ ' (−143 ±
√

119402)/4788t i.e. Mh ≤ 163 GeV. Equality avoids
λ < 0 at large energy, and too fast vacuum decay λ < −1/12t.
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TAF extensions of the SM

Can the SM be extended into a theory valid up to infinite energy?

Avoid Landau poles by making hypercharge non abelian.

We found realistic SU(5) TAF models. But GUTs are not compatible with
finite naturalness, that demands a TAF extension at the weak scale. Making
sense of Y = T3R + (B − L)/2 needs SU(2)R. We see 2 possibilities:

SU(4)c ⊗ SU(2)L ⊗ SU(2)R and SU(3)c ⊗ SU(3)L ⊗ SU(3)R

dL

dL

dL

eL

uL

uL

uL

ΝL

dR

dR

dR

eR

uR

uR

uR

ΝR

SUH2LL

SUH2LR

SUH4LPS

uL

uL

uL

dL

dL

dL

dR



dR



dR



uR

uR

uR

dR

dR

dR

dR


dR


dR


ΝL


eL


eR

e'L
Ν'L

ΝR

eL
ΝL

Ν'

SUH3LL

SUH3LR

SUH3Lc



Generic signals of natural TAF

• A WR boson and a Z′B−L: MWR
>∼ 2.2 TeV, MZ′B−L

> 2.6333,3.8224 TeV

δM2
h = −

9g2
RM

2
WR

(4π)2
ln(

M2
WR

µ̄2
) ≈M2

h

(
MWR

2.5 TeV

)2

• The Higgs (2L, 2̄R) contains 2 doublets coupled to u and d: new flavour

violations controlled by a right-handed CKM matrix.

MH >

{
18 TeV if VR = VCKM

3 TeV if V ijR = V
ij

CKM ×min(mi,mj)/max(mi,mj) (natural texture)

• A lighter singlet that mixes with the higgs if GTAF → GSM dynamically.

• And TAF is tough: we still have to find models where y, λ obey TAF



Pati-Salam

Fields spin generations SU(2)L SU(2)R SU(4)PS

ψL =

(
νL eL
uL dL

)
1/2 3 2̄ 1 4

ψR =

(
νR uR
eR dR

)
1/2 3 1 2 4̄

φR 0 1 1 2 4̄

φ =

(
H0
U H+

D

H−U H0
D

)
0 2 2 2̄ 1

ψ 1/2 1,2,3 2 2̄ 1
QL 1/2 2 1 1 10
QR 1/2 2 1 1 10
Σ 0 1 1 1 15

No extra chiral fermions. Two ways to get acceptable fermions masses:

1) Foot: add ψ and φL: −LY = YN ψLψφR+YLψψRφL+YUψRψLφ+YD ψRψLφ
c.

Avoids `L/dL unification so MW ′ > 8.8 TeV. No TAF found for the 24 quartics.

2) Volkas: add QL,R getting dR mixing. Strong flavor bounds MW ′ > 100 TeV

because of `L/dL unification. Unnatural. TAF found adding Σ.



Trinification

Minimal weak-scale trinification model
Matter fields gen.s spin SU(3)L SU(3)R SU(3)c

QR =

(
u1
R u2

R u3
R

d1
R d2

R d3
R

d′1R d′2R d′3R

)
3 1/2 1 3 3̄

QL =

(
u1
L d1

L d̄′1R
u2
L d2

L d̄′1R
u3
L d3

L d̄′3R

)
3 1/2 3̄ 1 3

L =

(
ν̄ ′L e′L eL
ē′L ν ′L νL
eR νR ν ′

)
3 1/2 3 3̄ 1

〈H〉 =

(
vu 0 0
0 vd vL
0 VR V

)
3 0 3 3̄ 1

• Explains quantisation of Y . Needs gR = 2g2gY /
√

3g2
2 − g

2
Y ≈ 0.65g2.

• No bad vectors: V ≈ few TeV allowed.

• Extra d′, e′, ν′ fermions chiral under SU(3)3 get mass ∼ yV from Yukawas

yQ QLQRH + 1
2y
n
LLLH

∗. 3H are needed to make d′, e′, ν′ naturally heavy.

• TAF solutions found for H1, H2 (20 quartics) and for H1, H2, H3 (90 λ).



Agravity



What about gravity?

Does quantum gravity give δM2
h ∼M

2
Pl ruining Physical Naturalness?

Yes in string models, where lots of new coupled particles exists around MPl.

Maybe M−1
Pl is just a small coupling and there are no new particles around MPl.



Adimensional gravity

Applying the adimensional principle to the SM plus gravity and a scalar S gives:

S =
∫
d4x

√
|det g|L

L = LSM +
R2

3f2
0

+
R2 − 3R2

µν

3f2
2

+ |DµS|2 − ξS|S|2R− λS|S|4 + λHS|HS|2

where f0, f2 are the adimensional ‘gauge couplings’ of gravity and R ∼ ∂µ∂νgµν.

Of course the theory is renormalizable, and indeed the graviton propagator is:

−i
k4

[
2f2

2P
(spin 2)
µνρσ − f2

0P
(spin 0)
µνρσ + gauge-fixing

]
.

The Planck scale should be generated dynamically as ξS〈S〉2 = M̄2
Pl/2.

Then, the spin-0 part of gµν gets a mass M0 ∼ f0MPl and the spin 2 part splits

into the usual graviton and an anti-graviton with mass M2 = f2M̄Pl/
√

2 that

acts as a Pauli-Villars in view its negative kinetic term [Stelle, 1977].



A ghost?



A ghost?

In presence of masses, ∂4 can be decomposed as 2 fields with 2 derivatives:

1

k4
→

1

k4 −M2
2k

2
=

1

M2
2

[
1

k2
−

1

k2 −M2
2

]
Ostrogradski showed in 1850 that higher derivatives are always bad:

∂4 ⇒ unbounded negative energy⇒ the classical theory is dead.

Who cares, nature is quantum. ∂4 can be quantized as:

i) negative energy, or as ii) negative norm and positive energy.

This is the iε choice that makes agravity renormalizable.

A non-sense or just a slightly acausal unitary S matrix?

For the moment, let’s ignore the issue and compute. Anti-particles teach us

that sometimes we get the right equations before understanding their meaning.



A ghost?



Quantum Agravity...

The quantum behaviour of a renormalizable theory is encoded in its RGE.

The unusual 1/k4 makes easy to get signs wrong. Literature is contradictory.

• f2 is asymptotically free:

(4π)2 df2
2

d lnµ
= −f4

2

[
133

10
+
NV
5

+
Nf

20
+
Ns

60

]
• Gravity does not affect running of gauge couplings: these two diagrams cancel

V V

g

V

V V

g

presumably because abelian g is undefined without charged particles.

• f0 grows with energy

(4π)2 df2
0

d lnµ
=

5

3
f4

2 + 5f2
2f

2
0 +

5

6
f4

0 +
f4

0

12

∑
s

(1 + 6ξs)
2



...Quantum Agravity

• Yukawa couplings get an extra multiplicative RGE correction:

(4π)2 dyt

d lnµ
=

9

2
y3
t − yt(8g2

3−
15

8
f2

2 )

• Agravity makes quartics small at low energy:

(4π)2 dλH
d lnµ

= ξ2
H[5f4

2 + f4
0 (1 + 6ξH)2]− 6y4

t +
9

8
g4

2 + · · ·

• Agravity creates a mixed quartic:

(4π)2dλHS
d lnµ

=
ξHξS

2
[5f4

2 + f4
0 (6ξS + 1)(6ξH + 1)] + multiplicative

• RGE for ξ

(4π)2 dξH
d lnµ

= −
5

3

f4
2

f2
0
ξH + f2

0ξH(6ξH + 1)(ξH +
2

3
) + (6ξH + 1)

[
2y2
t −

3

4
g2

2 + · · ·
]

f0 at the denominator can be avoided by writing RGE in terms of ‘gravitational

quartics’ f2
0 , f2

0 (ξH + 1/6) and λH + 3
8f

2
0 (ξH + 1/6)2.



Up to infinite energy

Agravity can flow to conformal gravity at infinite energy: f0 =∞, ξ = −1/6.

f0 grows until the conformal mode σ of the agraviton, gµν = e2σηµν, gets

strongly self-coupled. Nevertheless, conformal and shift symmetries of its action∫
d4x

√
|det g|

R2

6f2
0

=
6

f2
0

∫
d4x[�σ + (∂σ)2]2

imply β(f0) ∼ 1/f2
0 at f0 � 1: no Landau pole. σ fluctuates wildly but

decouples if ξ → −1/6, becoming a Weyl gauge redundancy such that

lim
f0→∞

df2
2

d lnµ
= −

f4
2

(4π)2

[
199

15
+
NV
5

+
Nf

20
+
Ns

60

]
At multi-loop level anomalies break conformal gravity giving agravity

lim
f0→∞

d

d ln µ̄

1

f2
0

= −
665g6

2

216(4π)8
+

728g6
3

9(4π)8
+

416λ5
H

5(4π)12
+ · · ·

lim
f0→∞

d

d ln µ̄
(ξH +

1

6
) = 48

λ4
H

(4π)8
+ · · ·



Generation of MPl

Mechanisms that can generate dynamically the Planck scale:

Non-perturbative: Some coupling g runs non-perturbative at MPl
Perturbative: Some quartic λS runs negative at MPl

Non-perturbative models are easily built. Add to the SM:

• An extra gauge group GTG that becomes strong at ΛTG ∼MPl.

• No scalars and no fermions charged under both GSM and GTG.

The sign of M2
Pl seems to depend on the (uncomputable?) strong dynamics.

The cosmological constant tends to be V ∼ −M4
Pl; specific models avoid it

(e.g. adding a fermion in the adjoint of GTG).



Generation of MPl: perturbative

Add a scalar Planckion s with quantum potential V (s) ≈ 1
4λS(µ̄ ∼ s)s4.

Usually it gets a Coleman-Weinberg minimum when λS runs negative.
The gravitational coupling ξS makes the vacuum equation non-standard:

∂V

∂s
−

4V

s
= 0 i.e.

∂VE
∂s

= 0

where VE = V/(ξSs
2)2 ∼ λS(s)/ξ2

S(s) is the Einstein-frame potential. The vev

〈s〉 = M̄Pl/
√
ξS

needs a condition different from the usual Coleman-Weinberg:

βλS(µ̄ ∼ 〈S〉)
λS(µ̄ ∼ 〈S〉)

− 2
βξS(µ̄ ∼ 〈S〉)
ξS(µ̄ ∼ 〈S〉)

= 0

The cosmological constant vanishes if

λS(µ̄ ∼ 〈s〉) = 0

Then the minimum equation simplifies to

βλS(µ̄ ∼ 〈s〉) = 0

Is this fine-tuned running possible?



This is how λH runs in the SM
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RGE running of the MS quartic Higgs coupling in the SM

We do not live in the h ∼ 1017.5 GeV minimum. Another scalar needed: a SM

mirror, or something else with gauge and Yukawa interactions.



Generation of the Weak scale

RGE running from the ghost mass M0,2 to MPl:

(4π)2 dM
2
h

d ln µ̄
= −ξH

[
5f4

2 + f4
0 (1 + 6ξH)

]
M̄2

Pl + · · ·

The weak scale arises if f0,2 ∼
√
Mh/MPl ∼ 10−8 i.e. M0,2 ∼ 1011 GeV

All small parameters such as f0,2 and λHS ∼ f4
0,2 are naturally small



Non-perturbative quantum gravity

Einstein gravity becomes strongly-coupled at MPl. Black holes with mass

MBH ∼MPl can give unnaturally large non-perturbative corrections to Mh:

δM2
h ∼

∫
M2

BH e
−S, S = 4π

M2
BH

M2
Pl

∼
4π

g2
grav

.

In agravity ggrav → f0,2<∼10−8, so non-perturbative effects should be negligible.

Indeed states with MBH<∼MPl/f0,2 get modified by an healtier

VNewton = −
GM

r

[
1−

4

3
e−M2r +

1

3
e−M0r

]



Predictions for inflation



Inflation = perturbative agravity

Inflation is not a generic phenomenon: one needs to flatten potentials or justify

hilltop initial conditions or consider super-Planckian field variations, which are

forbidden in string theory where the scalar field space is compact with MPl size.

Inflation is a generic phenomenon in agravity: V is flat in Planck units if all

M and MPl come from 〈scalars〉. The slow-roll parameters are given by the

β-functions, which are small if the theory is perturbative. E.g.

ε =
1

2

ξS
1 + 6ξS

[
βλS
λS
− 2

βξS
ξS

]2

,



More technically

Consider a generic inflaton s

L =
√

det g

[
−f(s)

R

2
+

(∂µs)2

2
− V (s) + · · ·

]

Make gravity canonical via a Weyl transformation gµν = gEµν × M̄2
Pl/f :

L =
√

det gE

−M̄
2
Pl

2
RE + M̄2

Pl

(
1

f
+

3f ′2

2f2

)
(∂µs)2

2︸ ︷︷ ︸
If desired make s canonical

−VE + · · ·


where VE = M̄4

PlV/f
2 is the Einstein-frame potential. If V and f are generic

functions, VE is generic: ad hoc assumptions were invoked to make VE flat.

In quantum agravity f = ξS(µ̄ ∼ s)s2 and V = 1
4λS(µ̄ ∼ s)s4

So VE = 1
4M̄

4
PlλS(s)/ξS(s)2 is quasi-flat, even above MPl.



Inflaton candidates in agravity

In agravity all scalars can be inflatons, and there are at least 3 scalars:

s The scalar ‘Planckion’ that breaks scale invariance generating MPl.

It can be light, being the pseudo-Goldstone boson of scale invariance:

Ms ∼ g2
sMPl/(4π)2

If it is the inflation one has ns ≈ 0.967 and r ≈ 0.13.

z The scalar component of the graviton, M0 ∼ f0MPl.

If it is the inflaton one has Starobinski inflation: ns ≈ 0.967 and r ≈ 0.003.

h The Higgs.

If it is the inflation one has Higgs inflation: ns ≈ 0.967 and r ≈ 0.003?

For the moment we ignore the spin 2 ghost.



Who is the inflaton?

Predictions might depend on the initial condition. We find that, whatever is

the starting point, slow-roll converges towards a unique attractor solution,

probably because a dimensionless-potential has V ′′ ∼ λfield2.

ΞS = 1, ΞH = 1 , Ms�M0 = 0.10, ΛH = 0.01
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The Higgs is never relevant because of its large λH.



Predictions for inflation
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Predictions of agravity inflation
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68,95% C.L.



PR ∼Mh/M̄Pl

Any super-Planckian theory gives inflation, but don’t explain PR ∼ 10−9 � 1.

Agravity relates the smallness of the amplitude of inflationary perturbations PR
to the smallness of Mh/M̄Pl, up to couplings and loops and powers of N ≈ 60.

Consider ainflation in the Starobinski limit:

PR =
f2

0N
2

48π2
i.e. f0 = 1.8 10−5.

The quantum correction to the Higgs mass is dominated by the RGE:

dM2
h

d ln µ̄
= −ξH(1 + 6ξH)f4

0M̄
2
Pl + · · ·

So finite naturalness demands f0<∼10−5−8 (at tree-loop level).

In minimal models, the two values of f0 are compatible if ξ is close to 0 or −1
6.



The other side of the Quantum



Quantisation of 4-derivative systems

Quantisation was first understood for spin 1 and 0 particles with 2 derivatives.

4 derivative systems have a problem: negative (indefinite) classical H.

Spin 1/2 fields have 1 derivative. L = Ψ̄[i/∂−m]Ψ classically leads to negative

H =
∫

d3p

(2π)3
Ep[a

†
p,sap,s − bp,sb

†
p,s].

Quantisation allows positive energy. The two-state solution to {b, b†} = 1 shows
that one can redefine b into b̃† by choosing |1〉 to have lower energy than |0〉:

b =

( |0〉 |1〉
〈0| 0 1

〈1| 0 0

)
=

( |1〉 |0〉
〈1| 0 0

〈0| 1 0

)
= b̃†.

‘Ghosts’ are avoided like a plague by serious theorists and explored only by
crackpots such as Dirac, Pauli, Heisenberg, Pais and Uhlenbeck, Lee, Wick and
Cutkosky, Coleman, Feynman, Boulware and Gross, Hawking and Hertog...

[Salvio, Strumia, 1512.01237]

http://arxiv.org/abs/1512.01237


Ostrogradski no go

Gravity gµν(x, t) ≈ QFT φ(x, t) ≈
∫
p harmonic oscillators in QM... so

Let’s focus on a single mode q(t) with 4 time derivatives

L = −
1

2
q(
d2

dt2
+ ω2

1)(
d2

dt2
+ ω2

2)q − V (q)

Ostrogradski described the system in canonical form using the auxiliary coor-

dinate q2 = λq̇ with λ = 1. Keep λ generic:
q1 = q, p1 =

δS

δq̇1
= (ω2

1 + ω2
2)q̇ + ˙̈q,

q2 = λq̇, p2 =
δS

δq̇2
= −

q̈

λ

The Hamiltonian is unbounded from below

H =
2∑
i=1

piq̇i −L =
p1q2

λ
−
λ2

2
p2

2 −
ω2

1 + ω2
2

2λ2
q2

2 +
ω2

1ω
2
2

2
q2

1 + V (q1).



Classical solution

If V = 0, the classical solution has no run-aways

q(t) =
a1e
−iω1t√

2ω1(ω2
1 − ω

2
2)

+
a2e
−iω2t√

2ω2(ω2
1 − ω

2
2)

+ h.c.

Indeed the system can be decomposed into two decoupled oscillators with

frequencies ω1 > ω2 but opposite-sign energies

H = −
1

2
(p̃2

1λ̃
2 + ω2

1
q̃2

1

λ̃2
) +

1

2
(p̃2

2 + ω2
2q̃

2
2)

through the canonical transformation
q1 =

q̃2 − λ̃p̃1/ω1√
ω2

1 − ω
2
2

,
q2

λ
=
p̃2 − ω1q̃1/λ̃√

ω2
1 − ω

2
2

,

p1 = ω1
ω1p̃2 − ω2

2q̃1/λ̃√
ω2

1 − ω
2
2

, p2λ =
ω2

2q̃2 − ω1λ̃p̃1√
ω2

1 − ω
2
2

.

Adding interactions between the two oscillators gives run-away solutions.

Quantum will be done perturbatively starting from the free theory.

Keep in mind that making sense of interactions is the real issue.



Quantum

The canonical [qi, pj] = iδij implies

[a1, a
†
1] = −1, [a2, a

†
2] = 1, H = −ω1a1a

†
1 + ω2a2a

†
2

1. Positive norm, indefinite energy. Define a
†
1|0̃〉 = 0 and a2|0̃〉 = 0.

Solving the vacuum condition using p2 = −i∂/∂q2 with q2 = λq̇ gives

ψ0̃(q1, q2) = exp

(
−
q2

1ω1ω2 + q2
2/λ

2

2
(ω1 − ω2) + iq1

q2

λ
ω1ω2

)
which is normalizable for real λ. But excited states have negative energy.

2. Indefinite norm, positive energy. Define a1|0〉 = 0 and a2|0〉 = 0.

The ground-state wave function is non-normalizable for real λ:

ψ0(q1, q2) ∝ exp

(
−q2

1ω1ω2 + q2
2/λ

2

2
(ω1 + ω2)− iq1

q2

λ
ω1ω2

)
.

And imaginary λ gives an apparently bad H = p1q2/λ+ · · ·. Dead?



Negative-norm quantum mechanics

Written as matrix components, it looks unusual with extra confusing ±.

Better to consider a generic Hilbert-like space metric 〈n|m〉 = ηnm, and use an

abstract operator formulation that will look identical to usual QM. Define

• Usual bra-ket; inverse metric ηnm ≡ (η−1)nm;

• Contro-variant basis |n〉 = ηnm|m〉. So 〈n|m〉 = ηnm and 〈n|m〉 = δnm = 〈n|m〉.

• Components of a state |ψ〉: ψn ≡ 〈n|ψ〉, ψn ≡ 〈n|ψ〉. So |ψ〉 = ψn|n〉 = ψn|n〉.

• Operator A = Anm|n〉〈m| = Anm|n〉〈m| = Anm|n〉〈m| = Anm|n〉〈m|:

Anm ≡ 〈n|A|m〉, Anm ≡ 〈n|A|m〉, An
m ≡ 〈n|A|m〉, Anm ≡ 〈n|A|m〉.

• Unity operator 1 = ηnm|n〉〈m| = ηnm|n〉〈m| = |n〉〈n| = |n〉〈n|.

• Operator multiplication: (AB)nm = Ann′η
n′m′Bm′m, (AB)nm = AnkBk

m .



• The adjoint A† such that |ψ′〉 = A|ψ〉 implies 〈ψ′| = 〈ψ|A† is represented by

(A†)nm = A∗mn (A†)nm = Amn∗ (A†)nm = (Amn)∗

Mixed components are Hermitian up to an iso-spectral transformation Anm =
(ηA∗Tη−1)nm. A self-adjoint A† = A has real expectation values 〈ψ|A|ψ〉/〈ψ|ψ〉.

• Eigenvector equation H|ψ〉 = Eψ|ψ〉:

Hn
mψm = Hnm′η

m′mψm = Eψψn or Hn
mψ

m = ηnn
′
Hn′mψ

m = Eψψ
n.

• The identity 〈En|H|Em〉 = 〈En|Em〉Em = E∗n〈En|Em〉 tells that a self-adjoint
H can have three different kinds of eigenstates:

+) orthogonal eigenstates 〈En|Em〉 = 0 with real En and 〈En|En〉 = +1;

0) orthogonal eigenstates 〈En|Em〉 = 0 with real En and 〈En|En〉 = −1;

−) pairs of complex conjugated eigenvalues, En = E∗m with 〈En|Em〉 6= 0
and zero norm, 〈En|En〉 = 0. Looks bad, like tachions in positive-norm.



Time evolution

i
∂

∂t
|ψ〉 = H|ψ〉 ⇒ |ψ(t)〉 = U(t)|ψ(0)〉 with U(t) = Te−iHt

Time evolution is unitary, U †U = 1, if H is self-adjoint, H† = H

Usual proof: i
∂

∂t
〈ψ′(t)|ψ(t)〉 = 〈ψ′|H −H†|ψ〉 = 0

Unusual in components:

i
∂

∂t
ψn = Hnmη

mm′ψm′ or i
∂

∂t
ψn = ηnn

′
Hnmψ

m.

Unm is the usual naive exponentiation of Hnm, which is not a hermitian matrix.

Hnm is hermitian, but Unm is not its naive exponentiation. Rather

Unm =
[
η + η(−iHt)η +

1

2
η(−iHt)η(−iHt)η + · · ·

]
nm

Unitarity in components: usual Uk∗nUk
m = δnm and unusual U∗n′nη

n′m′Um′m = ηnm.



The indefinite-norm two-state system

Generic H (up to trivialities):

H =
1

2

( |+〉 |−〉
〈+| ER −iEI
〈−| iEI ER

)
=

1

2

( |+〉 |−〉
〈+| ER +iEI
〈−| iEI −ER

)

Eigenvalues E± = ±
√
E2
R − E

2
I /2, eigenvectors:

|E+
〉 =

√
γ + 1

2
|+〉 − i

√
γ − 1

2
|−〉, |E−〉 = i

√
γ − 1

2
|+〉+

√
γ + 1

2
|−〉

where γ = 1/
√

1− E2
I /E

2
R is the mixing angle—— boost. 3 possible cases:

+) EI < ER, |〈±|U |±〉|2 oscillates from 1 up to γ2 ≥ 1.

0) EI = ER, critical case, zero norm, non-degenerate H

U =

( |+〉 |−〉
〈+| 1− iERt/2 ERt/2

〈−| ERt/2 1 + iERt/2

)

−) EI > ER, pair of complex eigenvalues E± with runaway in U |ψ(t)〉 =
ψE+e−iE+t|E+

〉+ ψE−e−iE−t|E−〉. Constant 〈ψ(t)|H|ψ(t)〉 and 〈ψ(t)|ψ(t)〉.



Perturbation theory

H = H0 + V (t) can be solved perturbatively with the usual Interaction picture

UI(ti, tf) = T e
−i
∫ tf
ti
dt VI(t) = 1− i

∫ tf
ti
dt′ VI(t

′) + · · ·

The
∫
dt e−i(Ei−Ef)t means that the energy conserved by quantum evolution

(up to ∆t∆E ≥ ~) are the eigenvalues of H. 〈ψ|H|ψ〉 can be negative without

giving problems, just imagine going in the basis where H is diagonal.



The negative-norm harmonic oscillator

Consider arbitrary signs sH and sc:

H = sH
a†a+ aa†

2
, [a, a†] = sc.

Define a|0〉 = 0 and |n〉 = a†|n−1〉/
√
n. Implied metric: ηnm ≡ 〈m|n〉 = sncδnm.

Run-aways are avoided if the Hamiltonian eigenvalues

H|n〉 = En|n〉 En = (n+
1

2
)scsH

are positive. There are two solutions:

• The usual positive H and positive norm, sc = sH = +1.

• Negative H and indefinite norm, sc = sH = −1.

Some authors look at matrices and improperly tell that q, p are ‘anti-Hermitian’.

anm = s× (the hermitian conjugate of (a†)nm).

So q = (a + a†)/
√

2 and p = i(a† − a)/
√

2 are represented by anti-Hermitian

matrices qnm and pnm. But q and p are self-adjoint.

A small interaction leaves the negative norm system good (no complex En).



Negative-norm coordinate representation

|n〉 has norm and parity equal to (−1)n. So

〈ψ′|ψ〉 =
∫
dx [ψ′∗even(x)ψeven(x)−ψ′∗odd(x)ψodd(x)] =

∫
dxψ′∗(x)ψ(−x)

i.e. 1 =
∫
dx|x〉〈x| with |x〉 = |−x〉 i.e. 〈x′|x〉 = δ(x+x′).

A strange beast already known to Dirac-Pauli emerges:
Indefinite-norm coordinate representation

q|x〉 = ix|x〉, p|x〉 = +
d

dx
|x〉.

q and p are self-adjoint. Explicit check:

〈x′|q
†|x〉 = 〈x|q|x′〉

∗ = [ix′δ(x+ x′)]∗ = ixδ(x+ x′) = 〈x′|q|x〉

Solve 〈x|a|0〉 = 0 with a = (q + ip)/
√

2: ψ0 ∝ e−x
2/2 is normalisable.

norm 〈x|q|ψ〉 T -parity 〈x|p|ψ〉 T -parity harmonic oscillator with E > 0
positive xψ(x) even −i dψ/dx odd ψ0(q) ∝ e−q2/2 and H = +1

2
(q2 + p2)

indefinite −ixψ(x) odd dψ/dx even ψ0(q) ∝ e−q2/2 and H = −1
2
(q2 + p2)



4 derivatives want Dirac-Pauli

Classically: q1 = q and auxiliary q2 = λq̇ = q̇ as natural choice.

At quantum level |q1, q2〉. T-even q implies T-odd q̇. Equivalent quantisations:

1) Define q2 = iq̇ to make q2 T-even and use the usual representation.

(not so strange: analogous to p = i∇ rather than p =∇)

2) Use the naturally T-odd indefinite-norm coordinate representation for q̇.

(Principled)

The issue is interactions.

In approach 1) H(q1, q2, p1, p2) contains i. Unitarity???

In approach 2) all q, p are self-adjoint, so any real H gives a ‘unitary’ theory.



Path integral

Generalisation to indefinite metric is immediate

〈qf ,tf |qi,ti〉 =
∫
DqDp ei

∫
dt[pq̇−Hcl] Hcl ≡

〈p|H|q〉
〈p|q〉

Apply to 4-derivative theories. This means

1) A propagator 〈qf ,−q̇f , tf |qi, q̇i, ti〉 with an unusual − in its external state.

This is equivalent to using the indefinite norm: indeed for tf → ti one has

〈qf ,q̇f |qi,q̇i〉 = δ(qf − qi)δ(q̇f − q̇i).

Furthermore, the T-odd nature of q̇ is hardwired in the path integral

2) A classical Hamiltonian going into the complex plane

Hcl =
〈p1,p2|H|q1,q2〉
〈p1,p2|q1,q2〉

= ip1q2 +
p2

2

2
+
ω2

1 + ω2
2

2
q2

2 +
ω2

1ω
2
2

2
q2

1.



Lagrangian path integral

Formally, one can do the (divergent) Dp1, getting a (vanishing) δ(q2 + iq̇1) and

recovering the Lagrangian path integral (with run-away classical solutions).

Or, one can first do the Euclidean continuation, it = tE i.e. q̇ = iq′, getting

〈q1f ,q2f ,tEf |q1i,q2i,tEi〉 ∝
∫
Dq1Dq2Dp1Dp2 exp

[∫
dtE(ip1q

′
1 + ip2q

′
2 −Hcl)

]
.

Next the Dp1 intergal is ok, giving δ(q2 − q′1) and the well defined Lagrangian

Euclidean path-integral:

〈qf ,q
′
f ,tEf |qi,q′i,tEi〉 ∝

∫
Dq exp

[
−
∫
dtE LE(q)

]
.

Even the free theory has classical run-aways, as in any Euclidean theory:

qcl(tE) = a1e
−ω1tE + a2e

−ω2tE + b1e
ω1tE + b2e

ω2tE .

Its action gives the normalisable ground state wave function

〈q, q′, tE = 0|0,0, tE = −∞〉 ∝ exp
[
−
q2ω1ω2 + q′2

2
(ω1 + ω2) + qq′ω1ω2

]
.

which reproduces the Minkowski operator wave function ψ0(q1 = q, q2 = q′).
Hawking-Hertog get a divergent ψ because they instead continue to q̇ = iq′.



Interactions

Interactions are ok: as usual one just needs a real H(q, p) without tachyons.

For example harmonic oscillators + small interactions.

States with 〈ψ|H|ψ〉 < 0? ok. What enters in conservation is H eigenvalues.

Heisenberg formalism? Ȧ = −i[A,H] looks classical (sick), but operator 6= num-

ber. Solved by A(t) = U†(t)A(0)U(t) even for A = q̇, equivalent to Schrödinger.



Problems: QFT?

Propagator? The naive 〈0|Tq(t)q(t′)|0〉 =
∫
dE

2π

−i e−iE(t−t′)

(E2 − ω2
1 + iε)(E2 − ω2

2 + iε)
.

QFT could be problematical. Continuum implies that a massive ghost X is

degenerate with particles: decay X → γγ, so tachyons could develop. Π =

−(p2 −m2
1)(p2 −m2

2) gets positive imaginary part. Acausal decay???

G

G

iΕ

iΕ

iΕ

iΕ

causal

causal

acausal

acausal

Re E

Im E



Problems: probability interpretation?

Meaning of quantum states that entangle positive-norm with negative norm?

QM is deterministic + the probabilitistic (!??) Copenhagen interpretation.

Lee-Wick: all asymptotic stable states can have positive norm.

Any self-adjoint H gives unitary evolution with respect to many different norms:

each energy eigenstate picks a phase. Redefine to positive norm defining

ghost parity ≡ G ≡ ηmn in the special basis of energy eigenstates

and |ψ〉 = G−1|ψ〉 and

Pn = 〈ψ|Πn|ψ〉 where Πn = |n〉〈n|.

Upward oscillations become downward; real 〈ψ|A|ψ〉 is not probabilistic; complex

〈ψ|A|ψ〉 has a probabilistic interpretation.



Ghost summary

A pair of canonical coordinates (q, p) admits two coordinate representations:

q̂ T p̂ T norm harmonic oscillator

visibile face q even −i∂/∂q odd + ψ0 ∝ e−q
2/2 if H = +a†a

hidden face iq odd −∂/∂q even ± ψ0 ∝ e−q
2/2 if H = −a†a

In both cases, q, p, H are self-adjoint and the eigenvalues of H are positive.

4-derivative q(t) can be rewritten as two 2-derivative canonical q1 = q and q2 =

q̇, which is naturally T odd, and must follow the negative norm quantisation.

With negative norm, self-adjoint means hermitian up to a self-similar transfor-

mation, and gives ‘unitary’ evolution. Interactions ok. QFT? Probability??



Conclusions

The standard view of mass scales in nature is in trouble with Mh and Λ:

�(�) ��(�)��(�) ���� ��(�)���(�)��(�)
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New collider needed to fully clarify. Possible alternative for Mh:
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Quantisation of ∂4 ⇒ physical naturalness + quantum gravity + inflation.

Remaining problems: give an interpretation to ‘ghosts’.


