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through the gradient of the acceleration of gravity. 

Detectors: the bigger the better!

In Einstein’s GR:

Speed = c

Metric = gαβ + hαβ, | hαβ | << 1, essentially small perturbation of Newtonian φ/c2

Two transverse polarization modes, amplitude h, tidal stretching δL/L ~  h

Tidal = gradient of acceleration = double gradient of φ = curvature tensor Rαβµν
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2

�
− ∂2

∂t2
+∇2

�
hαβ = 0

Gauge: hµ
µ = 0, ∂αhαβ = 0

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

And anyway, are we really sure about GR? Was Einstein (really) Right?

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

And anyway, are we really sure about GR? Was Einstein (really) Right?

9. How are EM waves and GW different?

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

And anyway, are we really sure about GR? Was Einstein (really) Right?

9. How are EM waves and GW different?

Source: charge (particles) v mass (entire bodies)

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.

3

5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

And anyway, are we really sure about GR? Was Einstein (really) Right?

9. How are EM waves and GW different?

Source: charge (particles) v mass (entire bodies)

Interaction: EM (relatively strong) v gravitational (decidedly weak!)

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

GW FAQs
1. How close is the analogy between GWs and EM waves?

In vacuum, very close: geometrical optics, lensing, redshift. But interaction 
with matter very different: little scattering, absorption.

2. How can black holes emit gravitational waves? Doesn’t this 
violate causality?

GWs come from the changing exterior geometry, not from inside. Accelerated 
electrons emit radio waves in a similar way: they don’t come from inside the 
electron.

3. Why are GW frequencies so low compared to EM waves?

GWs are emitted by the whole mass. For self-gravitating systems Ωgw ~ (πGρ)1/2

4. How are GW observables related to what the source is doing?

Polarization follows source motions; amplitude ~ 1/r; waveform tracks source 
dynamics.
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5. Why is h so small: 10-21 or smaller??

For a BH of 10 M๏ at 100 Mpc, GM/rc2 ~ 10-18. A GW is a perturbation of this!

6. If a GW is the stretching of space, doesn’t everything stretch, so 
that you can’t sense or measure it?

GWs carry tidal forces, compete with other forces. Free particles change proper 
distances, measurable.

7. In an interferometer, doesn’t the wavelength of the light stretch 
too, so there is no change in the interference?

Interferometers don’t count wavelengths; they measure time-of-flight differences. 
Proper length variations lead to travel-time variations.

8. We all believe GR is correct, we have the Binary Pulsar, so why 
bother with GW detection?

It’s the astronomy, stupid! (W J Clinton, 1992) 

And anyway, are we really sure about GR? Was Einstein (really) Right?

9. How are EM waves and GW different?

Source: charge (particles) v mass (entire bodies)

Interaction: EM (relatively strong) v gravitational (decidedly weak!)

10.How is our experience of GWs different from EM waves?
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Global interferometer network

LIGO
4 km

LIGO
4 km & 2 km

VIRGO
3 km TAMA

300m
 

GEO
600m

•  Detection confidence
•  Source polarization
•  Sky location
• Duty cycle
• Waveform extraction

AIGO-
R&D facility

LSC
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LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

L-V: LSC-Virgo Collaboration

Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

L-V: LSC-Virgo Collaboration

Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

LCGT: Newly funded Japanese detector

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

L-V: LSC-Virgo Collaboration

Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

LCGT: Newly funded Japanese detector

LISA: Space-based detector project, cooperation between NASA and ESA. The project is 
steered scientifically by the LIST (LISA International Science Team)

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

L-V: LSC-Virgo Collaboration

Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

LCGT: Newly funded Japanese detector

LISA: Space-based detector project, cooperation between NASA and ESA. The project is 
steered scientifically by the LIST (LISA International Science Team)

LPF: LISA Pathfinder will launch 2012. “Risk reduction” for LISA measurement system.

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.

L-V: LSC-Virgo Collaboration

Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

LCGT: Newly funded Japanese detector

LISA: Space-based detector project, cooperation between NASA and ESA. The project is 
steered scientifically by the LIST (LISA International Science Team)

LPF: LISA Pathfinder will launch 2012. “Risk reduction” for LISA measurement system.

GWIC: Gravitational Waves International Committee

Membership through projects, coordinates developments

Recently issued Roadmap

5

Tuesday, 2 November 2010



B F Schutz
Albert Einstein Institute

Listening to the Universe with Gravitational Waves                        02.11.2010

The Alphabet Soup
LSC: LIGO Scientific Collaboration

Includes two data producers, LIGO (Hanford & Louisiana) and GEO600 (Germany)

Open to any group who can make a contribution, through MOU. Currently > 700 members from > 60 
institutions in 11 countries.

Data analysis distributed, also includes Einstein@Home.
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Sharing data of all three producers, joint data analysis, joint publication of observational results

Virgo’s umbrella organization is called EGO.

LCGT: Newly funded Japanese detector

LISA: Space-based detector project, cooperation between NASA and ESA. The project is 
steered scientifically by the LIST (LISA International Science Team)

LPF: LISA Pathfinder will launch 2012. “Risk reduction” for LISA measurement system.

GWIC: Gravitational Waves International Committee

Membership through projects, coordinates developments

Recently issued Roadmap

Projects for future detectors:

AIGO (Australia), INDIGO (India), Einstein Telescope ET (European design study for 10x improvement 
over Advanced LIGO)
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During S5 observing run (2005-7) LIGO reached 
and exceeded its design sensitivity. No 
detections.
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and exceeded its design sensitivity. No 
detections.

July 2009 - present: LIGO and VIRGO observing 
(S6), with partial upgrade. GEO begins GEO-HF 
upgrade. Detections possible.
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During S5 observing run (2005-7) LIGO reached 
and exceeded its design sensitivity. No 
detections.

July 2009 - present: LIGO and VIRGO observing 
(S6), with partial upgrade. GEO begins GEO-HF 
upgrade. Detections possible.

L-V signing MOUs with other projects for data 
exchange, triggers, follow-ups: RXTE, Jodrell 
Bank, Antares, IceCube, Tarot, QUEST signed; Pi 
of the Sky, ROTSE, Skymapper coming soon. 
Others being negotiated.
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Advanced LIGO, factor 10 better than initial; 
VIRGO follows in 2011. Also in 2011 GEO-HF 
begins high-frequency observing. Detections 
possible.
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possible.

2015-16: LIGO and VIRGO resume observing 
(S7), start depends on difficulty of 
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NS-NS merger

With Advanced detectors, 
expect 40 per year,

rising to ~300 with enlarged
networks. Science: gamma 

bursts, NS physics, H0
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BH-BH merger

Expect ~20/yr, rising to 
~150. Range beyond z =1.

Science: BH population
statistics, stellar evolution,

tests of GR, (H0, w).
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Pulsar timing
arrays (2006-)
SKA (2020?)

Cosmic
microwave
polarisation
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5

2020)

Pulsar timing
arrays (2006-)
SKA (2020?)

Cosmic
microwave
polarisation

The Earth is 
gravitationally too noisy 

to allow observations 
below ~ 1 Hz
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5 Gm
In principle, with no 
planetary 
perturbations and 
perfect orbit 
injection, the 
equilateral triangle is 
rigid with no need for 
station-keeping 
thrusters.
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so its interferometry 
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rates. It does this 
using UHS oscillators 
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Space is ideal for GW detection: quiet and empty.

LISA takes advantage of the emptiness: arm-length 5×106 km.

Long arms increase the signal: LISA needs only pm accuracy

Space is quiet but not quiet enough:

Solar radiation pressure fluctuations 
could mask signals

LISA S/C contain proof masses as 
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Diffraction widens the laser beam 
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0.7 W sent, 70 pW received

laser transponders rather than reflections

3 Michelson interferometers
+ Sagnac

Can distinguish both
polarizations of a GW

Orbital motion
provides directional 
information
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pattern information.

LISA’s observation of the phase evolution provides
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Distance to the source (when radiation-reaction effects observable)

LISA’s high SNR leads to high accuracies for SMBH binaries at z = 1

Binary masses to better than 0.1%

Angular positions to 10 arc minutes

Distances to 5%, limited by weak lensing, which distorts intrinsic amplitude
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frequency band in the Galaxy. 

Simple signal: constant or slowly changing f, Doppler modulation

Estimated to be ~6×107 binaries, most will blend together 
into a stochastic noise larger than instrumental noise.

Many thousands individually detectable, either nearby 
systems or systems with f > 1 mHz.  

Synergy with GAIA: LISA provides orbital inclination, 
masses, and (if period is short enough) distance.

Massive population study of WD binaries, WD masses

Possible detection of shortest period BH-BH binary.
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Helioseismology has revolutionized our understanding of the Sun.

Rotation, meridional circulation, magnetic field structures, neutrino problem, ...

Problems still remain, e.g. opacities

Observed modes are p-modes, whose amplitudes decay inside 
convection layer. 

Surface doppler studies have still not revealed g-modes, which live 
inside the convection layer and probe the core.

g-mode spectrum runs from f = 0 to few tenths mHz. Significant 
density and gravity perturbations.

Signature in LISA would be distinct from GWs: no doppler 
modulation.

Not a guaranteed source, since nobody can predict amplitude: 
depends on unknown excitation mechanisms. (Polnarov et al 2009)
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Most galaxies have single 106 M๏ BH in core, surrounded by a cluster of 
stars. Stellar-mass black holes preferentially sink to the center.

Occasionally a stellar black hole is deflected onto an orbit that plunges close 
enough to the central hole to be captured into a bound orbit, which decays.

If the mass ratio is ε (~ 10-5) then the number of orbits in the LISA band is ~ 

1/ε. SNR ~ ε1/2  of the SNR of an equal-mass merger. But rate per unit 

volume much higher.

LISA estimated to observe 100’s per year with SNR > 10. SNR may be limited 
by unresolved events at larger distances, much like X-ray background.

Strong tests of GR: probes of strong-field geometry, test uniqueness of Kerr, 
etc.

Distances are measurable from observed orbital decay, which leads to 
determination of local Hubble constant (to z ~ 0.1) to better than 1%. (Hogan 
and McCleod 2008)
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Astrophysical stochastic backgrounds are expected:

Galactic compact binaries form confusion background below 1 mHz.

Binaries in external galaxies create background probably just below 
LISA instrumental noise above 1 mHz.

Distant EMRIs create a background that may be the dominant noise 
against which nearby EMRIs are detected.

Cosmological background (from Big Bang) is speculative but 
hugely important

LISA can see down to Ω ~ 10-10. 

Standard inflation predictions are around 10-15

EW transition
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are visible at very large 
redshifts.

Event rates of 1 per year at 
z = 1 (estimate) but likely 
many more at high z, 
especially with lower 
masses.

Population studies, onset of 
galaxy formation, early 
history of growth of SMBHs.

Cosmology: determination 
of Hubble constant, dark 
energy parameter w, even 
perhaps dw/dt at z = 1.
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for a differential Fabry-Perot 
interferometer (reflecting, not 
transponding)

Arm length 1000 km

Laser: green (0.532 μm)

Laser power: 10 W

Finesse: 10

Sensitivity band: between LISA 
and ground-based detectors, ie 
0.1- 10 Hz.

Ambitious constellation!
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Drag-free S/C with microthruster control
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Summary

Technologies converging: study GWs, the gravity of the Sun, 
or the gravity of the Earth

Laser ranging

Drag-free S/C with microthruster control

The driver is GW Astronomy:

Black holes back to the beginning of galaxy formation

Populations of massive black holes in galaxies

Populations of compact white-dwarf binaries

Possible observations of backgrounds, cosmic strings, other exotica

Strong tests of GR

23

Tuesday, 2 November 2010


