Koide formula: beyond charged leptons
The waterfall in the quark sector

Alejandro Rivero

Institute for Biocomputation and Physics of Complex Systems (BIFI)
Universidad de Zaragoza

October 3, 2014
By “Koide formula” we refer to a formula found by Y. Koide for charged leptons, exact enough to predict tau mass within experimental limits

\[
(m_e + m_\mu + m_\tau) = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2
\]

exp, in MeV: $1882.99 = 1882.97$

It was found in the context of composite models of quarks and leptons, but can be produced more generally.

More informally, we also call ”Koide formula” to its generalisations and look-alikes
By “Koide formula” we refer to a formula found by Y. Koide for charged leptons, exact enough to predict tau mass within experimental limits

\[
(m_e + m_\mu + m_\tau) = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2
\]

exp, in MeV: \(1882.99 = 1882.97\)

It was found in the context of composite models of quarks and leptons, but can be produced more generally.

More informally, we also call ”Koide formula” to its generalisations and look-alikes

other unexplained fine-tuning...

Compare \(1882.99/1882.97 = 1.00001\) with \(m_{top}/174.1 = .995\)
It is possible consider m_i as a composite of two entities with charge Q_0 and Q_i such that

$$m_i \propto \frac{1}{2} Q_0^2 + Q_0 Q_i + \frac{1}{2} Q_i^2$$

and asking the “matching conditions” $\sum Q_i = 0$ and $\sum Q_i^2 = \sum Q_0^2$.

- From here it is clear that \sqrt{m} can have a negative sign sometimes.
- The generalisation to more than three particles simply substitutes $3/2$ by $n/2$. Of course, with more particles in the formula, the probability of finding a random coincidence increases.
[MDS, Rosen 2007] suggested to use the notation

\[m_k = M_0 \left(1 + \sqrt{2} \cos \left(\frac{2\pi}{3} k + \delta_0 \right) \right)^2 \]

And particularly for charged leptons:

\[M_{e\mu\tau} = 313.8 \text{ MeV}, \quad \delta_{e\mu\tau} = 0.222 \]
F. Wilczek and A. Zee,
“Discrete Flavor Symmetries and a Formula for the Cabibbo Angle,”

\[\tan \theta_c = \sqrt{\frac{m_d}{m_s}} \]

H. Harari, H. Haut and J. Weyers,
“Quark Masses And Cabibbo Angles,”

\[m_u = 0; \quad \frac{m_d}{m_s} = \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \]

While trivial, this is the first example of a tuple that fulfils the formula
Y. Koide,
“A New Formula For The Cabibbo Angle And Composite Quarks And Leptons,”

“Quark And Lepton Masses Speculated From A Subquark Model,”
preprint (1981)

“A Fermion - Boson Composite Model Of Quarks And Leptons,”

“A New View Of Quark And Lepton Mass Hierarchy,”

In 1981, measured τ lepton mass was still 1783 ± 4 MeV,
Koide simplest model predicted 1776.97
Y. Koide
Should The Renewed Tau Mass Value 1777-Mev Be Taken Seriously?

R. Foot,
“A Note on Koide’s lepton mass relation,”

$$(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3}) \angle (1, 1, 1) = 45^\circ$$

S. Esposito and P. Santorelli,
“A Geometric picture for fermion masses,”

From 1995 to 2005 there is a gap
N. Li and B. Q. Ma,
“Estimate of neutrino masses from Koide’s relation,”

April 23 2005
I comment on Li and Ma paper, and older ones on Koide formula, online at sci.physics.research and www.physicsforums.com. I am not the only one who is astonished, and other papers will follow.

A. Rivero and A. Gsponer, [hep-ph/0505220]
“The Strange formula of Dr. Koide,”

Y. Koide, [hep-ph/0506247].
“Challenge to the mystery of the charged lepton mass formula,”
J.-M. Gerard, F. Goffinet and M. Herquet,
“A New look at an old mass relation,”

Sensibility to the renormalization group

Y Koide had already considered the sensibility to the running, but in early 2006 a pair of independent assessments are produced.

N. Li and B. Q. Ma,
“Energy scale independence of Koide’s relation for quark and lepton masses,”

Z. z. Xing and H. Zhang,
“On the Koide-like relations for the running masses of charged leptons, neutrinos and quarks,”
C. A. Brannen, [preprint (2006)]
“The Lepton Masses”,
Alerts of the possibility of using negative signs in the formula and applies it to neutrinos

G. Rosen,
“Heuristic development of a Dirac-Goldhaber model for lepton and quark structure,”
Promotes the use of the formula as $(313.85773 \text{MeV}) \left(1 + \sqrt{2} \cos \theta_k \right)^2$.
In this way, the question of the signs is automatically considered.
C. A. Brannen, [preprint (2006)]
“The Lepton Masses”,
Alerts of the possibility of using negative signs in the formula and applies it to neutrinos

G. Rosen,
“Heuristic development of a Dirac-Goldhaber model for lepton and quark structure,”
Promotes the use of the formula as $(313.85773 \text{MeV}) (1 + \sqrt{2} \cos \theta_k)^2$.
In this way, the question of the signs is automatically considered.

Curiously, nobody remarks that 313 MeV is the mass of a QCD quark.
As far as I know, this coincidence has not been useful for any model.
F. Goffinet,
“A Bottom-up approach to fermion masses”,
These Univ. Cath. de Louvain, (2008)
Proposes some generalisations, as well as a formula containing the solutions to the equation jointly with spurious ones, so that the square roots are not needed.

Y. Sumino,
“Family Gauge Symmetry and Koide’s Mass Formula,”

Y. Sumino,
“Family Gauge Symmetry as an Origin of Koide’s Mass Formula and Charged Lepton Spectrum,”
JHEP 0905, 075 (2009)
Y. Koide
“Charged Lepton Mass Relations in a Supersymmetric Yukawaon Model”

Notes that $\delta_{e\mu\tau} = 3\delta_{uct}$ and $\delta_{dsb} = 2\delta_{uct}$
(see also [Zenczykowski 2012], who uses $\delta_{e\mu\tau} = 3\delta_{uct}$)
“Extended Empirical Fermion Mass Relation,”

Only in the preprint version
Using PDG values, \(m_t = 172.9 \), \(m_b = 4.19 \), and \(m_c = 1.29 \) GeV,
\[\sum \sqrt{m} / \sum m \] is about 1.495

A. Kartavtsev, arXiv:1111.0480
“A remark on the Koide relation for quarks,”

F. G. Cao,
“Neutrino masses from lepton and quark mass relations...”
This is the first mention of the \(t, b, c \) tuple in the peer reviewed literature.

P. Zenczykowski,
“Remark on Koide’s Z3-symmetric parametrization of quark masses,”
Empirical waterfall

Solve for Koide and choose always the smaller solution

\[m_3 = \left((\sqrt{m_1} + \sqrt{m_2}) \left(2 - \sqrt{3 + 6 \frac{\sqrt{m_1 m_2}}{(\sqrt{m_1} + \sqrt{m_2})^2}} \right) \right)^2 \]

\[
\begin{array}{cccccccc}
& m_t & m_b & m_c & m_s & m_q & m_q' \\
(173.21 , 4.18)
\end{array}
\]
Empirical waterfall
Solve for Koide and choose always the smaller solution

Solve et Itera

\[m_3 = \left(\sqrt{m_1} + \sqrt{m_2} \right) \left(2 - \sqrt{3 + 6 \frac{\sqrt{m_1 m_2}}{(\sqrt{m_1} + \sqrt{m_2})^2}} \right)^2 \]

\[
\begin{align*}
\frac{m_t}{173.21}, \quad \frac{m_b}{4.18} \rightarrow \frac{m_c}{1.3676}, \quad \frac{m_s}{\text{ms}}, \quad \frac{m_q}{\text{mq}}, \quad \frac{m_q'}{\text{mq'}}
\end{align*}
\]
Empirical waterfall

Solve for Koide and choose always the smaller solution

Solve et Itera

\[m_3 = \left((\sqrt{m_1} + \sqrt{m_2}) \left(2 - \sqrt{3 + 6 \frac{\sqrt{m_1 m_2}}{\sqrt{m_1} + \sqrt{m_2}^2}} \right) \right)^2 \]

\[
\begin{array}{cccc}
 m_t & m_b & m_c & m_s & m_q & m_q' \\
 (173.21, 4.18) & 1.3676 & & & & \\
 (4.18, 1.3676) & & .09312 & & & \\
\end{array}
\]
Empirical waterfall
Solve for Koide and choose always the smaller solution

\[m_3 = \left(\left(\sqrt{m_1} + \sqrt{m_2} \right) \left(2 - \sqrt{3 + 6 \frac{\sqrt{m_1 m_2}}{\left(\sqrt{m_1} + \sqrt{m_2} \right)^2}} \right) \right)^2 \]

\[
\begin{align*}
 m_t &\rightarrow 1.7321, & m_b &\rightarrow 4.18, & m_c &\rightarrow 1.3676, \\
 m_t &\rightarrow 4.18, & m_b &\rightarrow 1.3676, & m_s &\rightarrow .09312, \\
 m_t &\rightarrow 1.3676, & m_b &\rightarrow .09312, & m_q &\rightarrow .00003187
\end{align*}
\]
Empirical waterfall
Solve for Koide and choose always the smaller solution

\[
m_3 = \left(\left(\sqrt{m_1} + \sqrt{m_2} \right) \left(2 - \sqrt{3 + 6 \left(\frac{\sqrt{m_1 m_2}}{\sqrt{m_1} + \sqrt{m_2}} \right)^2} \right) \right)^2
\]

\begin{align*}
 m_t &\rightarrow 173.21, \\
 m_b &\rightarrow 4.18, \\
 m_c &\rightarrow 1.3676 \\
 m_s &\rightarrow 0.09312 \\
 m_q &\rightarrow 0.00003187
\end{align*}

As expected, we get good predictions for the charm and strange quarks. We could interpret \(q \) as the up quark, \(q' \) as the down quark. But the remarkable detail is that \(m_q \approx 0 \). We will use this fact later.
Empirical waterfall

Solve for Koide and **choose always the smaller solution**

\[
m_3 = \left((\sqrt{m_1} + \sqrt{m_2}) \left(2 - \sqrt{3 + \frac{\sqrt{m_1 m_2}}{\sqrt{m_1} + \sqrt{m_2}}} \right) \right)^2
\]

\[
\begin{array}{cccccc}
&m_t &&m_b & &m_c & &m_s & &m_q & &m_q' \\
&(173.21, 4.18) &\rightarrow &1.3676 & & & &0.09312 & & & &0.0003187 &\rightarrow &0.005441 \\
&(4.18, 1.3676) &\rightarrow & & & &0.09312 & &0.0003187 &\rightarrow & & \\
&(1.3676, 0.09312) &\rightarrow & & & & & & & & & &\\
&(0.09312, 0.0003187) &\rightarrow & & & & & & & & & &\\
\end{array}
\]

\[
pdg2014 : \begin{array}{cccc}
1.275 & .095 & .0023 & .0048 \\
\pm 0.025 & \pm 0.005 & \pm 0.0006 & \pm 0.0004 \\
\end{array}
\]
Empirical waterfall
Solve for Koide and choose always the smaller solution

\[m_3 = \left(\left(\sqrt{m_1} + \sqrt{m_2} \right) \left(2 - \sqrt{3 + 6 \frac{\sqrt{m_1 m_2}}{\left(\sqrt{m_1} + \sqrt{m_2} \right)^2}} \right) \right)^2 \]

<table>
<thead>
<tr>
<th>(m_t)</th>
<th>(m_b)</th>
<th>(m_c)</th>
<th>(m_s)</th>
<th>(m_q)</th>
<th>(m_q')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1346.84</td>
<td>4.18</td>
<td>1.3676</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.31</td>
<td>4.18</td>
<td>1.3676</td>
<td>.09312</td>
<td>.00003187</td>
<td>.005441</td>
</tr>
<tr>
<td>3558.3</td>
<td>34.72</td>
<td></td>
<td>.09312</td>
<td>.00003187</td>
<td>.008156</td>
</tr>
<tr>
<td>1.996</td>
<td>1.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[pdg2014 : \begin{array}{|c|c|c|c|c|}
\hline
m_t & m_b & m_s & m_q & m_q' \\
\hline
\pm 1.275 & \pm 0.025 & \pm 0.005 & \pm 0.0006 & \pm 0.0004 \\
\hline
\end{array} \]

As expected, we get good predictions for the charm and strange quarks. We could interpret \(q \) as the up quark, \(q' \) as the down quark. But the remarkable detail is that \(m_q \approx 0 \). We will use this fact later.
Are there other tuples?

- with a 1% of tolerance: \((c, b, t)\) and \((s, c, b)\).
- within a 10% \((u, s, c)\), \((d, s, b)\) and \((d, s, c)\) can fit
- considering Renormalization Group
 - For \((s, c, b)\), the quotient LHS/RHS of Koide formula using running masses from \([XZ 2006]\) at \(M_Z\) is 0.949, at GUT scale it is 0.947.
 - For GUT-level masses within a 10% of tolerance, we have still the same triplets
\[S_4 = V_4 \rtimes S_3 \]

\begin{align*}
&bds \quad usc \quad scb \quad cbt \\
&uct \quad btd \quad tdb \quad dus
\end{align*}
\[S_4 = V_4 \times S_3 \]

\[bds \quad usc \quad scb \quad cbt \]
\[uct \quad btd \quad tdb \quad dus \]

mixed families

\[\nu_2, \quad b_{rgb}, \quad e, \quad u_{rgb} \]
\[\tau, \quad c_{rgb}, \quad \nu_3, \quad d_{rgb} \]
\[\mu, \quad s_{rgb}, \quad \nu_1, \quad t_{rgb} \]

Think \(SU(4) \) Pati-Salam with a twist.
A similar rotation of the quarks was suggested in [H HW78]
If in some limit there is a massless particle, things are more predictive. We can just fix the scale of the most massive element.

For four levels, the solution is unique. We assume that the massless particle is the up quark.

<table>
<thead>
<tr>
<th>m_b</th>
<th>$4M_{scb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{τ}</td>
<td>m_c</td>
</tr>
<tr>
<td>m_μ</td>
<td>m_s</td>
</tr>
<tr>
<td>m_e</td>
<td>m_u</td>
</tr>
</tbody>
</table>

M_{scb} is $3M_{\tau\mu e}$

$\delta_{scb} = 45$, and $\delta_{\tau\mu e} = 15$
remember $m_q = 0$?

If in some limit there is a massless particle, things are more predictive. We can just fix the scale of the most massive element.

For four levels, the solution is unique. We assume that the massless particle is the up quark.

We can add an extra level above and below and fix the scale telling that the yukawa of the top is exactly $y_t = 1$

M_{scb} is $3M_{T\mu e}$

$\delta_{scb} = 45$, and $\delta_{T\mu e} = 15$

\[
\begin{align*}
\begin{array}{c@{\quad}c@{\quad}c}
 m_b & 4M_{scb} \\
 m_\tau & m_c & \frac{2+\sqrt{3}}{2} M_{scb} \\
 m_\mu & m_s & \frac{2-\sqrt{3}}{2} M_{scb} \\
 m_e & m_u & 0 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c@{\quad}c@{\quad}c}
 m_t & 174.1 \text{ GeV} \\
 m_b & 3.64 \text{ GeV} \\
 m_\tau & m_c & 1.698 \text{ GeV} \\
 m_\mu & m_s & 121.95 \text{ MeV} \\
 m_e & m_u & 0 \text{ MeV} \\
 m_d & 8.75 \text{ MeV} \\
\end{array}
\end{align*}
\]
If in some limit there is a massless particle, things are more predictive. We can just fix the scale of the most massive element.

For four levels, the solution is unique. We assume that the massless particle is the up quark.

\[
\begin{align*}
 m_b & = 4M_{scb} \\
 m_\tau & = m_c = \frac{2+\sqrt{3}}{2} M_{scb} \\
 m_\mu & = m_s = \frac{2-\sqrt{3}}{2} M_{scb} \\
 m_e & = m_u = 0
\end{align*}
\]

\[M_{scb} \text{ is } 3M_{\tau\mu e}\]
\[\delta_{scb} = 45, \text{ and } \delta_{\tau\mu e} = 15\]

We can add an extra level above and below and fix the scale telling that the yukawa of the top is exactly \(y_t = 1\).

\[
\begin{align*}
 m_t & = 174.1 \text{ GeV} \\
 m_b & = 3.64 \text{ GeV} \\
 m_\tau & = m_c = 1.698 \text{ GeV} \\
 m_\mu & = m_s = 121.95 \text{ MeV} \\
 m_e & = m_u = 0 \text{ MeV} \\
 m_d & = 8.75 \text{ MeV}
\end{align*}
\]

In Foot’s interpretation, \(\tau\mu e\) and \(scb\) would be orthogonal vectors.

\[\delta_{scb} = 3\delta_{\tau\mu e}\]
Climbing the Cascade

We take m_e and m_τ as inputs, and the approximations detected in the previous slide:

\[M_{scb} = 3M_{\tau e} \]
\[\delta_{scb} = 3\delta_{\tau e} \]
Climbing the Cascade

We take m_e and m_τ as inputs, and the approximations detected in the previous slide:

$$M_{scb} = 3M_{\tau\mu e}$$

$$\delta_{scb} = 3\delta_{\tau\mu e}$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\exp.pdg14$</th>
<th>$pred.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>173.21 ± 0.087</td>
<td>173.26</td>
</tr>
<tr>
<td>b</td>
<td>4.18 ± 0.03</td>
<td>4.197</td>
</tr>
<tr>
<td>c</td>
<td>1.275 ± 0.025</td>
<td>1.359</td>
</tr>
<tr>
<td>τ</td>
<td>$1.77682(16)$</td>
<td>1.776968</td>
</tr>
<tr>
<td>s</td>
<td>95 ± 5</td>
<td>92.275</td>
</tr>
<tr>
<td>d</td>
<td>~ 4.8</td>
<td>5.32</td>
</tr>
<tr>
<td>u</td>
<td>~ 2.3</td>
<td>0.0356</td>
</tr>
</tbody>
</table>
tuples from heavy quark masses and the pion mass
Is QCD acting in Koide scene?

\[
\frac{(0 + \sqrt{M_{\pi_0}} + \sqrt{M_{D_0}})^2}{0 + M_{\pi_0} + M_{D_0}} = 1.5017 \quad \frac{(-\sqrt{M_{\pi_0}} + \sqrt{M_{D_0}} + \sqrt{M_{B_0}})^2}{M_{\pi_0} + M_{D_0} + M_{B_0}} = 1.4923
\]

Not bad, even if due to the coincidence (fine-tuning?) \(m_s \approx M_{\pi} \)

We could add mesons and diquarks to our three-layer arrangement.

\[
\nu_2, b_{rgb}, e, u_{rgb} \quad B^+, B_{c}^+ \quad bu, bc \quad bs, bd \quad B^0, B_s^0, \bar{B}^0, \bar{B}_s^0 \quad 5279.59\text{MeV}
\]

\[
\tau, c_{rgb}, \nu_3, d_{rgb} \quad D^+, D_s^+ \quad sc, dc \quad bb, dd \quad \eta_b, \eta_c, D^0, \bar{D}^0 \quad 1864.85\text{MeV}
\]

\[
\mu, s_{rgb}, \nu_1, t_{rgb} \quad \pi^+, K^+ \quad su, du \quad ss, sd \quad \eta_8, \pi^0, K^0, \bar{K}^0 \quad 134.9767\text{MeV}
\]

Quark-Hadron Supersymmetry?
Same number of degrees of freedom.
The Small Seesaw
Is electroweak GWS acting in Koide scene?

From D. Lackey in a comment in [MDS]:
\[M_Z \times \sin \theta_W \times \alpha = 313.66 \text{ MeV}. \]
(Using \(\cos \theta_W = 0.8819 \)) The relationship \(\mu \rightarrow e \) is well known, used in the early 70s. From \(\tau \) to the electroweak vacuum, I read it first in a comment of R. Yablon in USENET.
The Koide phase
Masses for δ_0 from 0 to $2\pi/3$, with $M_0 = 1$;

$3 + 2\sqrt{2}$

$3 - 2\sqrt{2}$

Koide Formula
References

 "The strange formula of Dr. Koide"

- arXiv:1111.7232 A. Rivero
 "A new Koide tuple: strange-charm-bottom"

- Another presentacion online, with a lot of zooms:
 http://prezi.com/e2hba7tkygvj/koide-waterfall/

contact

al.rivero@gmail.com arivero@unizar.es

Thank You!