Is this the end of dark energy?

Edésio M. Barboza Jr.

Departamento de Física
Universidade do Estado do Rio Grande do Norte

27 de fevereiro de 2015
1. Theoretical basis

2. Observational evidence of cosmic acceleration

3. Main candidates to explain the cosmic acceleration

4. Probing the dark energy hypothesis

5. Thermodynamics of the cosmic fluids

6. Constraints on dark fluid

7. Conclusions
Theoretical basis

Space-Time geometry

Cosmological Principle

The Universe homogeneous and isotropic at large scales.

\[ds^2 = dt^2 - a(t)^2 \left[\frac{dr^2}{1 - Kr^2} + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \right] \]

- \(a(t) \): scale factor;
- \(K \): spatial curvature (\(k = -1, 0, 1 \)).

Matter contents

Weyl’s postulate

Galaxies are the fundamental particles of the substract.

Perfect fluid

\[T_{\mu\nu} = (\rho + p)u_\mu u_\nu - pg_{\mu\nu}, \]

- \(\rho \): energy density of the fluid;
- \(p \): pressure of the fluid;
- \(u^\mu = dx^\mu/d\tau \): 4-velocity

Dynamics of the Universe

General relativity

\[G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R = 8\pi GT_{\mu\nu} \]

- geometry
- matter

PC+PW+RG

\[H^2 \equiv \left(\frac{\dot{a}}{a} \right)^2 + \frac{K}{a^2} = \frac{8\pi G}{3} \rho; \quad \text{(Friedmann’s eq.)} \]

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) \quad \text{(acceleration eq.)} \]
Theoretical basis

Conservation laws

\[\nabla_\mu G^{\mu \nu} = 0 \Rightarrow \nabla_\mu T^{\mu \nu} = 0 \]

\[\Delta \]

Bianchi identity \quad \text{E-M conservation}

\[\dot{\rho} + 3 \frac{\dot{a}}{a} (\rho + p) = 0. \]

\[\Delta \]

EoS

\[p = w \rho \]

\[\Delta \]

\[\rho = \rho_0 \left(\frac{a_0}{a} \right)^3 \exp \left[-3 \int_{a_0}^a \frac{w(a')}{a'} da' \right] \]

Universe’ contents

\[\text{Ordinary matter: } w=0 \]

\[\rho_m = \rho_{m,0} \left(\frac{a_0}{a} \right)^3 \]

\[\text{Radiation: } w=1/3 \]

\[\rho_\gamma = \rho_{\gamma,0} \left(\frac{a_0}{a} \right)^4 \]

\[\text{Quantum vacuum: } w=-1 \]

\[\rho_\Lambda = \rho_{\Lambda,0} = \text{cte} \]

\[w = \text{cte dark energy?} \]

\[\rho = \rho_0 \left(\frac{a_0}{a} \right)^{3(1+w)} \]

\[H^2 = H_0^2 \left[\Omega_{r,0}(1+z)^4 + \Omega_{m,0}(1+z)^3 + \Omega_{de,0} f(z) \right], \]

\[f(z) = (1 + z)^3 \exp \left[3 \int_0^z \frac{w(z')dz'}{1 + z'} \right], \quad \frac{a_0}{a} = 1 + z \]
Type Ia supernovae

Physical mechanisms

\((M_{AB} > M_{Ch} \approx 1, 4M_\odot)\)
\[\implies\]
SN Ia explodes
\[\implies\]
standard candles
\(M = \text{cte.}\) for any SN Ia
\[\implies\]
measurements of \(m\) provides \(d_L\)

SNs Ia distances

Apparent magnitude

\(m \equiv -2, 5 \log(f/f_x), \ f_x = 2, 58 \times 10^{-8} \ W \cdot m^{-2}\)

Absolute magnitude

\(M \equiv -2, 5 \log(L/L_x), \ L_x = 78, 7L_\odot\)

Luminosity distance

\(d_L \equiv \sqrt{\frac{L}{4\pi f}} = (1 + z) \int_0^z \frac{dz'}{H(z')}\)

Evidence of cosmic acceleration

Distance modulus

\(\mu \equiv m - M = 5 \log \left(\frac{d_L}{1 \text{Mpc}}\right) + 25\)
\[= 25 - 5 \log \left(\frac{H_0}{\text{km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}}\right) +
+ 5 \log \left(\frac{cz}{\text{km} \cdot \text{s}^{-1}}\right) + 1.086(1 - q_0)z + \cdots\)

\(q = -\frac{\ddot{a}}{H^2 a}\): deceleration parameter

SNe Ia \(\Rightarrow q_0 < 0\). The Universe’s expansion rate is speed up.

SCP: Amanullah et al. APJ 716 (2010)

![Graph showing distance modulus vs. redshift with different cosmological models]
Main candidates to explain the cosmic acceleration

ΛCDM model

\[\nabla_\nu G^\nu_\mu = \nabla_\nu T^\nu_\mu = 0; \quad \nabla_\nu \delta^\nu_\mu = 0 \]

\[\nabla_\nu G^\nu_\mu + \Lambda \delta^\nu_\mu = 8\pi G T^\nu_\mu + \Lambda \delta^\nu_\mu \]

\(\Lambda \): fundamental constant

\(\Lambda = 8\pi G \rho_{\text{vac}} \): vacuum energy

\[w = \rho_{\text{vac}} / \rho_{\text{vac}} = -1 \]

\[\rho^{\text{teo}}_{\text{vac}} = (10^{43} - 10^{121}) \rho^{\text{obs}}_{\text{de}} \]

\[\Lambda_{\text{ef}} = \Lambda + 8\pi G \rho_{\text{vac}}, \]

\[\rho^{\text{obs}}_{\text{de}} = \rho_{\Lambda_{\text{ef}}} \]

φCDM model

\[\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] \]

\[T^{\phi}_{\mu\nu} = \partial_\mu \phi \partial_\nu \phi - g_{\mu\nu} \left[\frac{1}{2} g^{\kappa\lambda} \partial_\kappa \phi \partial_\lambda \phi - V(\phi) \right] \]

\[\rho_\phi = \frac{\dot{\phi}^2}{2} + V(\phi) \quad \text{e} \quad p_\phi = \frac{\dot{\phi}^2}{2} - V(\phi) \]

\[w_\phi = \frac{\dot{\phi}^2 - 2V(\phi)}{\dot{\phi}^2 + 2V(\phi)} \]

Others theories of gravitation

\[\mathcal{L}_{\text{EH}} = \sqrt{-g} R \rightarrow \mathcal{L} = \sqrt{-g} f(R) \]
Basic assumptions

1. General relativity is the right theory of gravitation;
2. The contents of the universe (matter, radiation, etc.) can be described by perfect fluids

Consequence

The universe is homogeneously pervaded by a fluid with pressure negative enough to ensure that \(\rho + 3p < 0 \) (\(q < 0 \)). This fluid is called dark energy (DE) and characterized by its EoS parameter \(w = p/\rho \);

Question

Homogenous fluids tends to reach thermodynamical stabilities conditions, so can thermodynamical stabilities requirements \(C_V, C_P, \kappa_T, \kappa_S > 0 \) constrain or even rule out DE models?
Thermodynamics of the cosmic fluids

Internal energy and temperature law

Internal energy of the i-th fluid component

\[U_i = \rho_i c^2 V, \quad V = a^3(t)V_0 \]

First law of thermodynamics

\[T_i dS_i = dU_i + p_i dV \]

\[\downarrow \]

\[d\ln \rho_i + 3(1 + w_i)d\ln a = 0 \]

\[\downarrow \]

\[\frac{T_i}{T_{i,0}} = \frac{\rho_i}{\rho_{i,0}}a^3 \left(\frac{1}{w_i} \frac{p_i V}{T_i} = \frac{1}{w_{i,0}} \frac{p_{i,0} V_0}{T_{i,0}} \right) \]

\[\downarrow \]

\[U_i = U_{i,0} \frac{T_i}{T_{i,0}} \]

Enthalpy

\[h_i = U_i + p_i V = h_i = (1 + w_i)U_i \]

The Universe’s heat capacity

Heat capacity at constant volume

\[C_{iV} = \left(\frac{\partial U_i}{\partial T_i} \right)_V = \frac{U_{i,0}}{T_{i,0}} = \text{constant} \]

Heat capacity at constant pressure

\[C_{p_i} = \left(\frac{\partial h_i}{\partial T_i} \right)_{p_i} = \left(1 + w_i - \frac{1}{3} \frac{d \ln |w_i|}{d \ln a} \right) C_{iV} \]

Compressibility

Isothermal compressibility

\[\kappa_{T_i} = -\frac{1}{V} \left(\frac{\partial V}{\partial p_i} \right)_{T_i} = \frac{1}{w_i p_i} \left(w_i - \frac{1}{3} \frac{d \ln |w_i|}{d \ln a} \right) \]

Adiabatic compressibility

\[\kappa_{S_i} = -\frac{1}{V} \left(\frac{\partial V}{\partial p_i} \right)_{S_i} = \frac{C_{iV}}{w_i p_i C_{p_i}} \left(w_i - \frac{1}{3} \frac{d \ln |w_i|}{d \ln a} \right) \]
Constraints on dark fluid

Stability conditions

Thermal stability

\[C_{iV}, C_{p_i} \geq 0 \]

\[\kappa_{S_i}, \kappa_{T_i} \geq 0 \]

\[+ \]

\[C_{p_i} \geq C_{iV} \quad \text{and} \quad \kappa_{T_i} \geq \kappa_{S_i} \]

\[\Downarrow \]

\[w_i - \frac{1}{3} \frac{d \ln |w_i|}{d \ln a} \geq 0 \]

\[w_i = \text{cte.} \Rightarrow w_i \geq 0 \]

\[\Downarrow \]

Vacuum energy can not be described by a fluid with a negative constant pressure!

Stability conditions

| \(w \) | \(w - \frac{1}{3} \frac{d \ln |w|}{d \ln a} \geq 0 \) |
|--|--|
| \(w_0 \) | No |
| \(w_f + \frac{\Delta w a_t^{1/\tau}}{a_t^{1/\tau} + a_t^{1/\tau}} \) | No |
| \(w_f w_i \frac{a_i^{1/\tau} + a_t^{1/\tau}}{w_i a_t^{1/\tau} + w_f a_t^{1/\tau}} \) | No |
| \(w_0 + w_0'(a - a^2) \) | No |
| \(w_0 + w_0'\frac{a-1}{1-2a+2a^2} \) | No |
| \(w_0 + w_0'\frac{a^\beta - 1}{\beta} \) | No |
Constraints on dark fluid

Probing the EoS time-dependence

Present time constraints

\[w_i - \frac{1}{3} \frac{d \ln |w_i|}{d \ln a} \geq 0 \Rightarrow w'_0 \geq 3w_0^2 \]

Hypothesis : \(\rho_{de}(z) \) admits a Taylor expansion in the range \((\tilde{a} - \epsilon_-, \tilde{a} + \epsilon_+)\)

\[
\rho_{DE}(a) = \rho_{DE}(\tilde{a}) + \frac{d \rho_{DE}}{da} \bigg|_{a=\tilde{a}} (a - \tilde{a}) + \\
+ \frac{1}{2} \frac{d^2 \rho_{DE}}{da^2} \bigg|_{a=\tilde{a}} (a - \tilde{a})^2 + \cdots.
\]

\[
\frac{d \rho_{DE}}{da} = -\frac{3}{a} (1 + w) \rho_{DE} \text{ (recurrence)}
\]

\[
\frac{d^2 \rho_{DE}}{da^2} = \left[\frac{3}{a^2} (1+w) + \frac{9}{a^2} (1+w)^2 - \frac{3}{a} \frac{dw}{da} \right] \rho_{DE}
\]

\[
\vdots
\]

Thermodynamically Forbidden Region

\[
a = a_0 = 1
\]

\[
\Downarrow
\]

\[
\rho_{DE}(a) = \rho_{DE,0} \left\{ 1 + 3(1 + w_0)(1 - a) \\
+ \frac{1}{2} \left[3(1 + w_0) - 3w'_0 + 9(1 + w_0)^2 \right] \times (1 - a)^2 \right\}.
\]
Conclusions

- The Universe's specific heat is greater than $10^{13} \text{cal} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$ (relativistic matter estimate);
- A negative pressure fluid with a constant EoS parameter which including the vacuum energy cannot meet the thermal and mechanical stability conditions;
- Time-dependent EoS parameter also are in conflict with the thermodynamic stability conditions;
- If stability conditions are a nature requirement the dark energy hypothesis is fail.
- Relaxing the mechanical stability condition can save dark energy quintessential models $-1 \leq w \leq 0$ and relaxing both, thermal and mechanical stability conditions, will save the phantom dark energy hypothesis $w < -1$.

Is the stability conditions a nature requirement for all homogeneous systems?

If so, dark energy is not the answer to the cosmic acceleration problem.

If no, dark energy remains in the game.