Ground-based gamma-ray observations

Dieter Horns University of Hamburg

May 28/29 2012, APC-Paris

Overview

Physics:

- Gamma-ray production
- Cosmic-ray origin
- Cosmic-ray propagation
- Indirect Dark Matter

Overview

Physics:

- Gamma-ray production → Antoine
- Cosmic-ray origin → Dmitri
- Cosmic-ray propagation → Günter
- Indirect Dark Matter → Joe

Observing Light From Extended Air Showers

Dieter Horns University of Hamburg

May 28/29 2012, APC-Paris

1 Scope of this lecture

 This type of picture is often shown in scientific talks:

Plots obtained from the TeVCat http://tevcat.uchicago.edu/

September 1991 (20 years ago): 1 source

Large improvement in the knowledge of the gamma-ray sky in only ~10 years

September 2001 (10 years ago): 10 sources

Large improvement in the knowledge of the gamma-ray sky in only ~10 years

September 2011 (Today) : 124 sources (27 unidentified)

Paneque, TAUP 2011

Scope of this lecture

Spectral energy distribution (SED)

Imaging (spectroscopy)

Scope of this lecture: Questions

- How does air shower detection with light work (look behind the scenes)?
- What is driving the improvement in the field of air shower observations?
- Further references:
 - Astropart. Physics 22, 109 (2004)
 - Astropart. Physics 20, 267 (2003)

Costs

Early British-Irish, and Russian Observatories, 1960-1970 Recycled military hardware ~50K\$

Whipple 10m, HEGRA 1980-2000

~1-3M\$

HESS, MAGIC, VERITAS 2000 --, ~30M\$

CTA, AGIS 2010 --, ~150 -200 M\$

Air Showers

- Hadronic cascade: driven by inelastic NN-scattering
- Electromagnetic cascade: driven by Pairproduction & Bremsstrahlung
- Electromagnetic cascade dominates
- Generic properties:
 - $N \propto E_0/E_c$
 - $X_{\rm max} \propto \log(E_0/A)$
 - $E_c \approx 80 \; \mathrm{MeV}$

Radiation from e⁺/e⁻-pairs

Optical emission

Air Cherenkov light

$$-\cos\vartheta = \frac{1}{\beta n} \quad \frac{d^2N}{dxd\lambda} = 2\pi\alpha\sin^2\vartheta\frac{1}{\lambda^2}$$

- Air fluorescence light
 - Isotropic emission
 - UV lines

Very mature and well-calibrated detection channel

Radio emission

 Geo-Synchrotron and charge separation: beamed radio emission

LOPES

 Molecular Bremsstrahlung: isotropic radio emission

Radio techniques are currently tested – huge potential towards future air shower detection

dN/dx [Phot/m] 15 E_{min} [MeV] r [m] 10 5

Atmosphere focusses light in time and space!

Light pool with $\sim 10 \text{ ph/m}^2 \text{ for } E_0 = 100 \text{ GeV}$

Measure direction (timing or imaging) and Energy (amount of light)

Air Cherenkov light

Absorption effects

Cherenkov spectrum on the ground

Hampf 2012

Night sky background

Night sky background

- Origin of NSB:
 - Stellar light (direct)
 - Scattered stellar light, moon light
 - Zodiacal light

- Air glow (time dependent)
- Human made light (direct and scattered)
- NSB at a dark site (e.g. Hampf et al. 2011), integrated between 300 and 600 nm

$$2 \times 10^{12} \frac{\text{ph}}{\text{m}^2 \text{ s sr}}$$

1. Detecting (air) Cherenkov light

- Requirements:
 - Detect short pulses (~ns)
 - Detect and count single photons

- Noise level < NSB (uncritical)

Photomultiplier tube Silicon avalanche photo diode (here a

Array of Si-APD in Gei'ger mode: Si-PMT Gain: ~10⁶

Detection of faint light pulses

Calibration of Photon counting devices

 Illuminate the device with a faint light source and determine the Single-PE-peak SiPMT

Multi-Pixel "Camera"

PMT camera (Fly's Eye)

SiPMT-Camera (FACT)

Raw air shower images

Calibrating the images

- Starting point: Raw image (2d digitized intensity)
- Calibration step:
 - (1)Subtract electronic pedestal
 - (2) Correct for electronic gain (ADC \rightarrow p.e.)
 - (3) Correct for inhomogeneities ("flat fielding")
 - (4)Correct for optics throughput (match simulations)
- Cleaning step:
 - remove noisy/broken pixels
 - Optionally: remove NSB ("tail cuts")

Zero-line: Pedestal

- Pedestal (temperature/sky position dependent)
 - Closed lid data (no NSB*: electronic pedestal)
 - FADC+/ARS#: random slices (in parallel to normal data-taking)
 - ADC: Specific "Pedestal" runs

Width can be used to "measure" NSB*

*Night Sky Background

⁺Flash ADC

*Analogue Ring Sampler

Amplification: Electronics gain

Calibration runs:

- Illuminate homogeneously the camera with a pulsed light source (Laser+diffusor ~ few Hz, pulsed LED+diffusor ~few 10 Hz)
- Record the amplitude in each pixel (self-triggering)

• 2 methods:

- Bright illumination (>>1 p.e.): use the width $\sim N_{\rm p.e.}^{1/2}$, can be used for flat-fielding (e.g. HEGRA, MAGIC)
- Faint illumination (~ 1 p.e.): Fit the single p.e. Peak, can not be used for flat-fielding (e.g. HESS)

"Flat fielding"

- Using high p.e. homogenous illumination of camera:
 - Calculate intensity averaged over pixels
 - Calculate relative variations: FF
 - <1-FF>~0.01..0.05

Non-linearity

Reasons for non-linearity:

```
(1)PMT(2)Pre-amplifier(3)Digitization (e.g. saturation)(4)Timing (FADC)
```

- Calibration:
 - Lab measurements: correction (1,2,3)
 - Pulse-shape correction (e.g. FADC: 3,4)

Most challenging: "throughput" efficiency

- Definition of "throughput":
 - Conversion of p.e. to Cherenkovphotons
- Throughput <-> energy calibration (MC simulation!)
- Contribution to the throughput:
 - Atmospheric absorption/scattering (transmissivity~0.7)
 - Light collection efficiency (Mirror: reflectivity~0.8-0.9, shadowing=0.89)
 - Light collection efficiency (Camera: transmissivity entrance window, Winston cones: 0.7-0.8, PMT q.efficiency: 0.15-0.20)
- Total throughput ~ 5-7% (1 p.e. ~ 10-20 Cherenkov-photons emitted)

Probably best calibration: Muon-rings!

- Muons are produced mainly in hadronic air showers (background)
- Cherenkov light illuminates the dish for local muons $(I\sim R/\theta_{\rm C}\sim 400~{\rm m}~{\rm mit}~R\sim 7m,\theta_{\rm C}\sim 1^{\circ})$
- Imaging preserves the "angle": focus on a ring
- Reconstruct the geometry
- Number of Cherenkov photons emitted per track length (~15 ph/m, total~15*400=6000 photons)

 $dN/d\lambda/dx = 2\pi\alpha^2 z^2/\lambda^2 (1-1/\beta^2 n^2) \sim 1/\lambda^2$

Optical throughput w/o atmospheric extinction!

Result from muon ring calibration

O. Bolz, PhD thesis (2004)

Disentangling optics and electronics contribution: Cosmic ray rate is constant

Approach to verify (instrumental and MC) calibration

 Energy calibration: Use of Fermi/LAT (beam calibrated energy scale) in overlapping energy range:

Instrument Scaling factor s_{IACI}	Stat. error Δs	$\chi^2_{\rm before}/{\rm d.o.f.}$	$\chi^2_{after}/d.o.f.$
--------------------------------------	------------------------	------------------------------------	-------------------------

			, c perore.	r anter
Fermi/LAT	1	+0.05 - 0.03	_	0.49
HEGRA	1.042	±0.005	7.652	1.046
H.E.S.S.	0.961	±0.004	11.84	6.476
MAGIC	1.03	±0.01	1.671	0.656

TABLE IV. Energy scaling factors of the IACTs for the cross calibration.

[Meyer & DH 2010]

Pointing calibration

- Systematic mispointing:
 - Sagging of the camera
 - Non-linearities/offsets in shaft encoders
 - Tilt of axes
- Calibration:
 - "Point runs"
 - "Guiding CCD"
- Events are pointing-corrected by arc min(systematic uncertainty~10")
- Cross-Check: Star positions during observations

Image cleaning

- Set bad/broken pixel to 0
- Apply "tail cut" to remove NSB affected pixel
 - Remove pixels with A<X p.e.
 - Remove pixels w/o adjacent pixel > Y > X
 p.e

Time information and image cleaning

Data selection

- Select for stable weather conditions e.g.
 - Atmospheric monitoring (e.g. lidar)
 - Variations of background rate (passing clouds)
 - Absolute (high) background rate
- Select for stable hardware performance e.g.
 - Number of broken pixels (stars, shooting stars..)
 - Homogeneity in camera
 - Fraction of dead time
 - Trigger behaviour of pixel

Data selection criteria vary:

loose criteria: Search for sources, search for pulsation strict criteria: Flux measurements, search for variability

2. Reconstruction: Imaging analysis and event selection

"Hillas" type analysis: Use of image moments, orientation of major axis [Hillas 1984]

Model-type analysis: Fit of image templates + NSB to the camera image [leBohec 1996, de Naurois & Rolland 2009]

Gamma/Hadron-Separation: Imaging

Hampf 2012

Gamma/Hadron-Separation: Imaging

- Hadronic showers are broader (p_t)
- Hadronic showers are longer

Gamma/hadron separation: Image orientation

Primary direction (shower axis) parallel to optical axis:

Alpha Plot ON-OFF

- small "alpha" parameter against isotropic

background

Sketch by Jeremy Perez © 2010 • www.beltofvenus.net Star field traced from Gnomonic Atlas Brno 2000.0 chart.

Stereoscopic imaging: Multiple views of the same shower

Unique reconstruction of the shower geometry!

- •Angular res. < 0.1°
- •Core ~15 m
- •Rel. Energy resol.: 15%
- • κ_{y} (Image)=0.5-0.9
- $\kappa_{h}(Image)=0.01-0.05$

Directional reconstruction: 3 algorithms

The same methods are used to reconstruct the core position (just in different coordinates)

Energy reconstruction: 2 approaches

- Conventional approach (most often used):
 - Image amplitude = f(r,E)
 - For a measured amplitude and r->calculate E
- Improved approach
 - E=f(shower max, Image amplitude)
 - Best results: Keep position fixed (for known source), improves core position to ~3 m

Energy reconstruction: Bias and resolution

Bias

Resolution

Example for scaling: Width

$$\langle width \rangle = f^{sim}(r, \theta, A)$$

$$mscw = \frac{1}{N} \sum_{i=1}^{N} \frac{width_i(r_i, \theta, A_i)}{\langle width \rangle_i}$$

DH, PhD thesis (2000)

Event selection

Event selection for Gamma-rays: small width & length, direction Optimization of cuts for extended (Galactic) or point-like (extra-gal.) sources

Optimization for sources with hard (e.g. Galactic) or soft (extra-gal.) spectra

Optimization for spectral studies

Optimization for (blind) source searches

Optimization for timing studies (e.g. pulsars)

• • • •

Optimization is a science on its own... Faint (discovery) sources S/B~0.1-0.3

Crucial: Background estimate

- Methods using separation in angle
 - Dedicated Off-data (same declination, shifted r.a.)
 - "Wobble" or "Nodding" background (Reflected background)
 - Ring background

"Template" Background

Rowell (2003)

Define ON & OFF
Correct radial acceptance of OFF to match ON
Correct Zenith angle gradient
->OFF map with identical acceptance to ON map

Comment on background estimate

- Future instruments: Lower threshold
- Signal ~ E^{-a} mit a~2
- Background ~ E^{-b} mit b=2.7
- S/B~E^{b-a}=E^{-0.7}
- Systematic uncertainties on Background will limit sensitivity (already with HESS II)

Imaging analysis

- Sky excess maps (DC)
 - In coordinates of Ra, Dec or I,b
 - Fill an ON-map (sliding window)
 - Fill an OFF-map (sliding window)
 - ExcessMap=ON-OFF
 - SignificanceMap: S(ON,OFF,alpha)
- Sky variability maps
 - Calculate Kolmogorov prob. Between ON and OFF
 - Calculate exp-test prob. Between ON and OFF

Spectral analysis

Observed differential rate:

$$R(E_{rec}) = \int A(E')N(E')G(E_{rec}, E')dE'$$

- Inverse problem: Reconstruct the initial spectrum N
 - Forward folding: Assuming N → compare with obs.
 - Unfolding method: Get rid of "oscillation" terms
- If G(E_{rec},E) is "well-behaved" (little dependence on E, "narrow" response in comparison to spectral features
 - Direct reconstruction of N(E)

Effective area

3. Limits of the imaging air shower technique

- Limit on the energy threshold: ~5 GeV (Pair-production and Cherenkov light production)
- Resolution on reconstructed parameters:
 - ΔE/E~5%: sampling of the light pool
 - Direction: Δθ~arcmin (Geomagnetic deflection of pairs)
- Limit at the upper end of the energy: ~10 TeV (Photon statistics → remedy: collection area ~ 10-100 km²)
- Sensitivity at E<100 GeV: Electrons and systematic uncertainty on the background
- Sensitivity at E>10 TeV: Photon starvation

Overview on sensitivity

