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Overview

● Physics:
– Gamma-ray production   

– Cosmic-ray origin 

– Cosmic-ray propagation 

– Indirect Dark Matter 
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1 Scope of this lecture
● This type of picture is often shown in 

scientific talks:

Paneque, TAUP 2011



  

Scope of this lecture

● Spectral energy distribution (SED)

● Imaging (spectroscopy)
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Scope of this lecture: Questions 
● How does air shower detection with light work 

(look behind the scenes)?
● What is driving the improvement in the field of 

air shower observations?
● Further references: 

– Astropart. Physics 22, 109 (2004)
– Astropart. Physics 20, 267 (2003) 

 



  



  

 Air Showers

● Hadronic cascade: driven by 
inelastic NN-scattering

● Electromagnetic cascade: driven 
by Pairproduction & 
Bremsstrahlung

● Electromagnetic cascade 
dominates

● Generic properties:

–

–

–

E
0
, A



  

Radiation from e+/e--pairs



  

Optical emission

● Air Cherenkov light 
–

● Air fluorescence light
– Isotropic emission
– UV lines

Very mature and well-calibrated 
detection channel



  

Radio emission
● Geo-Synchrotron and charge separation: 

beamed radio emission

● Molecular Bremsstrahlung: isotropic radio 
emission

LOPES

Radio techniques are currently tested – huge 
potential towards future air shower detection



  400 m

Atmosphere focusses light in time and 
space!

Light pool with
~10 ph/m2 for E

0
=100 GeV

Measure direction (timing or imaging) and
Energy (amount of light) 

Air Cherenkov light



  

Absorption effects



  

Cherenkov spectrum on the ground

Hampf 2012



  

 Night sky background



  

 Night sky background

● Origin of NSB:
– Stellar light (direct)
– Scattered stellar light, moon light
– Zodiacal light 
– Air glow (time dependent)
– Human made light (direct and scattered)

● NSB at a dark site (e.g. Hampf et al. 2011), 
integrated between 300 and 600 nm



  

1. Detecting (air) Cherenkov light 

● Requirements: 
– Detect short pulses (~ns)
– Detect and count single photons
– Noise level < NSB (uncritical)

Source: ET enterprises

Photomultiplier tube 
(PMT)

Silicon avalanche photo diode (here a 
NIR type device)

Array of Si-APD in Geiger mode: Si-PMT
Gain: ~106



  

Detection of faint light pulses



  

Calibration of Photon counting 
devices

● Illuminate the device with a faint light source

and determine the Single-PE-peak

Noise

PMT

Aharonian et al. 2004

1 p.e.

2 p.e.

SiPMT

Hamamatsu



  

Multi-Pixel “Camera”

SiPMT-Camera (FACT)

PMT camera (Fly's Eye) 

MAGIC I

H.E.S.S. II



  

Raw air shower images 



  

Calibrating the images
● Starting point: Raw image (2d digitized intensity)
● Calibration step:

(1)Subtract electronic pedestal

(2)Correct for electronic gain (ADC  p.e.) →

(3)Correct for inhomogeneities (“flat fielding”)

(4)Correct for optics throughput (match 
simulations)

● Cleaning step:  
– remove noisy/broken pixels
– Optionally: remove NSB (“tail cuts”)



  

Zero-line: Pedestal

● Pedestal (temperature/sky position dependent)

– Closed lid data (no NSB*: electronic pedestal)

– FADC+/ARS#: random slices (in parallel to normal data-taking)

– ADC: Specific “Pedestal” runs

Width can be used to 
“measure” NSB*

*Night Sky Background
+Flash ADC
#Analogue Ring Sampler



  

Amplification: Electronics gain

● Calibration runs:
– Illuminate homogeneously the camera with a pulsed light source 

(Laser+diffusor ~ few Hz, pulsed LED+diffusor ~few 10 Hz)

– Record the amplitude in each pixel (self-triggering)

● 2 methods:
– Bright illumination (>>1 p.e.): use the width~Np.e.

1/2, can be used for 
flat-fielding (e.g. HEGRA, MAGIC)

– Faint illumination (~ 1 p.e.): Fit the single p.e. Peak, can not be used for 
flat-fielding (e.g. HESS)



  

“Flat fielding”

● Using high p.e. homogenous illumination of 
camera:
– Calculate intensity averaged over pixels
– Calculate relative variations: FF
– <1-FF>~0.01..0.05



  

Non-linearity

● Reasons for non-linearity:

(1)PMT

(2)Pre-amplifier

(3)Digitization (e.g. saturation)

(4)Timing (FADC)
● Calibration:

– Lab measurements: correction (1,2,3)
– Pulse-shape correction (e.g. FADC: 3,4)
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Most challenging: 
“throughput” efficiency

● Definition of “throughput”:

– Conversion of p.e. to Cherenkovphotons
● Throughput <-> energy calibration (MC simulation!)

● Contribution to the throughput:
– Atmospheric absorption/scattering 

(transmissivity~0.7)

– Light collection efficiency (Mirror: reflectivity~0.8-0.9, 
shadowing=0.89)

– Light collection efficiency (Camera: transmissivity entrance 
window, Winston cones: 0.7-0.8, PMT q.efficiency: 0.15-0.20)

● Total throughput ~ 5-7% (1 p.e. ~ 10-20 
Cherenkov-photons emitted)



  

Probably best calibration:
Muon-rings!

● Muons are produced mainly in hadronic air showers 
(background)

● Cherenkov light illuminates the dish for local muons 
(l~R/θC~400 m mit R~7m,θC~1o )

● Imaging preserves the “angle”: focus on a ring

● Reconstruct the geometry

● Number of Cherenkov photons emitted per track 
length (~15 ph/m, total~15*400=6000 photons)

dN/d/dx = 22z2/2  (1-1/2n2)~1/2

Optical throughput w/o atmospheric extinction!



  

Result from muon ring calibration

O. Bolz, PhD thesis (2004)



  

Disentangling optics and electronics contribution: 
Cosmic ray rate is constant

Puehlhofer et al. (2004) for HEGRA



  

Approach to verify
 (instrumental and MC) calibration
● Energy calibration: Use of Fermi/LAT (beam calibrated energy 

scale) in overlapping energy range:

[Meyer & DH 2010]



  

Pointing calibration
● Systematic mispointing:

– Sagging of the camera

– Non-linearities/offsets in shaft 
encoders

– Tilt of axes

● Calibration:

–  “Point runs”

– “Guiding CCD”

● Events are pointing-corrected by  arc 
min(systematic uncertainty~10”)

● Cross-Check: Star positions during 
observations

Before

After 
correction

S. G
ill essen  (P

hD
 2004)



  

Image cleaning
● Set bad/broken pixel to 0
● Apply “tail cut” to remove NSB affected pixel 

– Remove pixels with A<X p.e.
– Remove pixels w/o adjacent pixel > Y > X 

p.e
– Typical tail cut thresholds: (X,Y)=(4,7);

(5,10) p.e.

X/Y= 
3/6 p.e.



  

Time information and image 
cleaning



  

Data selection
● Select for stable weather conditions e.g. 

– Atmospheric monitoring (e.g. lidar)

– Variations of background rate (passing clouds)

– Absolute (high) background rate

● Select for stable hardware performance e.g.
– Number of broken pixels (stars, shooting stars..)

– Homogeneity in camera

– Fraction of dead time

– Trigger behaviour of pixel 

Data selection criteria vary:
loose criteria: Search for sources, search for pulsation
strict criteria: Flux measurements, search for variability



  

2. Reconstruction: Imaging analysis and 
event selection

“Hillas” type analysis:
Use of image moments, 
orientation of major axis
[Hillas 1984]

Model-type analysis:
Fit of image 
templates + NSB to 
the camera image
[leBohec 1996, de 
Naurois & Rolland 
2009] 



  

Gamma/Hadron-Separation: 
Imaging

Photonen

Hadronen

Photonen

Hadronen

Hampf 2012



  

Gamma/Hadron-Separation: 
Imaging

● Hadronic showers are broader (p
t
)

● Hadronic showers are longer 

Photonen

Hadronen

Photonen

Hadronen



  

Gamma/hadron separation: Image 
orientation

● Primary direction (shower axis) parallel to 
optical axis:
– small “alpha” parameter against isotropic 

background



  



  

Stereoscopic imaging: Multiple views 
of the same shower

●Angular res. < 0.1°
●Core ~15 m
●Rel. Energy resol.: 15%
●


(Image)=0.5-0.9

●h(Image)=0.01-0.05 

Unique reconstruction of the 
shower geometry!



  

Directional reconstruction: 3 
algorithms

The same methods are used to reconstruct
the core position (just in different coordinates)



  

Energy reconstruction: 2 
approaches

● Conventional approach (most often used):
– Image amplitude = f(r,E)
– For a measured amplitude and r-

>calculate E
● Improved approach 

– E=f(shower max, Image amplitude)
– Best results: Keep position fixed (for 

known source), improves core position to 
~3 m



  

Energy reconstruction: Bias and 
resolution

Bias Resolution

Benbow (2005)



  

Example for scaling: Width

Similar approach: mscl

mscw is 
Gauss (1,0.1) distributed

DH, PhD thesis (2000)



  

Event selection

Event selection for Gamma-rays: small width & length, direction
Optimization of cuts for extended (Galactic) or point-like (extra-gal.) sources
Optimization for sources with hard (e.g. Galactic) or soft (extra-gal.) spectra
Optimization for spectral studies
Optimization for (blind) source searches
Optimization for timing studies (e.g. pulsars)
....

Optimization is a science on its own...
Faint (discovery) sources S/B~0.1-0.3



  

Crucial: Background estimate
● Methods using separation in angle

– Dedicated Off-data (same declination, shifted r.a.)

– “Wobble” or “Nodding” background (Reflected background)

– Ring background
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“Template” Background

Define ON & OFF 
Correct radial acceptance of OFF to match ON
Correct Zenith angle gradient
->OFF map with identical acceptance to ON map

Rowell (2003)



  

Comment on background estimate

● Future instruments: Lower threshold

● Signal ~ E-a
 
 mit a~2

● Background ~ E-b mit b=2.7
● S/B~Eb-a=E-0.7 
● Systematic uncertainties on Background will 

limit sensitivity (already with HESS II)



  

Imaging analysis
● Sky excess maps (DC)

– In coordinates of Ra, Dec or l,b
– Fill an ON-map (sliding window)
– Fill an OFF-map (sliding window)
– ExcessMap=ON-OFF
– SignificanceMap: S(ON,OFF,alpha) 

● Sky variability maps
– Calculate Kolmogorov prob. Between ON 

and OFF
– Calculate exp-test prob. Between ON and 

OFF



  

Spectral analysis
● Observed differential rate:

R( E rec)=∫ A( E ') N ( E ' )G( E rec , E ' )dE '

● Inverse problem: Reconstruct the initial spectrum N

– Forward folding: Assuming N  compare with obs.→

– Unfolding method: Get rid of “oscillation” terms

● If G(E
rec

,E) is “well-behaved” (little dependence on 
E, “narrow” response in comparison to spectral 
features

– Direct reconstruction of N(E) 



  

Effective area



  

3. Limits of the imaging air shower 
technique

● Limit on the energy threshold: ~5 GeV (Pair-production 
and Cherenkov light production)

● Resolution on reconstructed parameters:

– ΔE/E~5%: sampling of the light pool
– Direction: Δθ~arcmin (Geomagnetic 

deflection of pairs)
● Limit at the upper end of the energy: ~10 TeV (Photon 

statistics → remedy: collection area ~ 10-100 km2)

● Sensitivity at E<100 GeV: Electrons and systematic 
uncertainty on the background

● Sensitivity at E>10 TeV: Photon starvation

 



  

Overview on sensitivity
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