Sanford Underground Research Facility

First Result from the LUX experiment

Timothy John Sumner Imperial College London

on behalf of the LUX collaboration

Imperial College London

- Motivation
- Detection
- LUX Description
- LUX Commissioning Performance
- LUX WIMP Search
- Future plans

Evidence for Dark Matter

a)Probing gravitational potentials

Evidence for Dark Matter b)Structure and evolution of the Universe

71

70

65

London

Scientific Motivation

Dark matter detection goals are driven by three questions

Cosmology – is the dark matter that makes up ~26% of the Universe in the form of massive particles?

• Unification – are these the particles predicted by frameworks *such as* supersymmetry?

• Galaxy formation and dynamics – how do these particles behave within galaxies?

WIMP DIRECT SEARCH TECHNOLOGY ZOO

Ionisation Detectors

Targets: Ge, Si, CS₂, CdTe CoGeNT, DRIFT, DM-TPC GENIUS, HDMS, IGEX, NEWAGE WIMP elastic nuclear recoils deposit < 50keV of energy at a rate < 1 event/day/tonne

The Challenge

TWO-PHASE XENON DETECTORS

S1: LXe is an excellent scintillator

- Density: 3 g/cm³
- Light yield: ~70 ph/keV (0 field)
- Scintillation light: 178 nm (VUV)
- Nuclear recoil threshold ~5-10 keV
- S2: Even better ionisation detector
 - Sensitive to single ionisation electrons
 - Nuclear recoil threshold ~1 keV
- And a great WIMP target too
 - Scalar WIMP-nucleon scattering rate dR/dE~A²
 - Odd-neutron isotopes (¹²⁹Xe, ¹³¹Xe) enable spin-dependent sensitivity

- Excellent ionisation threshold: 'light WIMP' searches using S2 only
- No intrinsic backgrounds (⁸⁵Kr can be removed effectively)

The Large Underground Xenon (LUX) Experiment

370 kg total xenon mass250 kg active liquid xenon118 kg fiducial mass

Lix in the SURF at Homestake

$\lfloor \hat{\mathbf{u}} \rangle$ collaboration (at Homestake)

Brown

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman **David Malling James Verbus** Samuel Chung Chan **Dongqing Huang**

Case Western

Thomas Shutt Dan Akerib Karen Gibson Tomasz Biesiadzinski Wing H To Adam Bradley Patrick Phelps Chang Lee Kati Pech

Imperial College Imperial College London London

Henrique Araujo Tim Sumner Alastair Currie

Adam Bailey Lawrence Berkeley + UC Berkeley

Bob Jacobsen Murdock Gilchriese Kevin Lesko Carlos Hernandez Victor Gehman Mia Ihm

Lawrence Livermore

Adam Bernstein Dennis Carr Kareem Kazkaz Peter Sorensen John Bower

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves Claudio Silva

Pl. Professor Research Associate Postdoc Graduate Student Graduate Student Graduate Student Graduate Student

Postdoc

Postdoc

Postdoc

PI. Reader

Professor

Postdoc

Graduate Student

Graduate Student

PI. Leader of Adv.

Staff Physicist

Staff Physicist

PI, Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Engineer

Mechanical Technician

Graduate Student

PI. Professor Pl. Professor Graduate Student Graduate Student Graduate Student

Graduate Student

Matthew Szydagis **Richard Ott** PI. Professor Jeremy Mock Senior Scientist James Morad Senior Scientist Nick Walsh **Michael Woods** Postdoc Sergev Uvarov Scientist

UC Santa Barbara

	PI, Professor
	Professor
	Engineer
	Engineer
ma	Postdoc
	Graduate Student
wardt	Graduate Student

PI, Lecturer Postdoc

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc

University of Maryland

Carter Hall Attila Dobi **Richard Knoche** Jon Balajthy

University of Rochester

Frank Wolfs Wojtek Skutski Eryk Druszkiewicz Mongkol

PI, Professor Graduate Student Graduate Student Graduate Student

PI, Professor Senior Scientist Graduate Student Graduate Student

University of South Dakota

Donaming Mei Chao Zhang Angela Chiller **Chris Chiller** Dana Byram

PI, Professor Postdoc Graduate Student Graduate Student *Now at SDSTA

Daniel McKinsev Peter Parker Sidney Cahn Ethan Bernard Markus Horn Blair Edwards Scott Hertel Kevin O'Sullivan Nicole Larsen Evan Pease Brian Tennyson Ariana Hackenburg Elizabeth Boulton

PI, Professor
Professor
Lecturer/Research
Postdoc
Graduate Student

Robert Webb **Rachel Mannino** Clement Sofka UC Davis Mani Tripathi **Bob Svoboda Richard Lander** Britt Holbrook John Thomson

Texas A&M

SD School of Mines

PI. Professor

Graduate Student

Graduate Student

Project Engineer

Support Scientist

PI, Professor

Pl. Professor

PI, Professor

Senior Engineer

Senior Machinist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Electronics Engineer

Professor

Professor

Postdoc

Postdoc

Postdoc Graduate Student

Graduate Student

Graduate Student

Xinhua Bai

Doug Tiedt

David Taylor

James White 1

Ray Gerhard

Brian Lenardo

Harry Nelson

Mike Witherell

Susanne Kyre

Carmen Carmo

Curt Nehrkorn

Scott Haselac

Chamkaur Ghad

Lea Reichhart

Dean White

Aaron Manalaysay

下

Mark Hanhardt

Tyler Liebsch

SDSTA

APC, Paris 17/12/2013

Low-energy electron recoil background of 3e-3 e/keV/kg/day.

Kr/Xe ratio of 3.5 ppt.

Electron drift length >130 cm.

Light detection efficiency of 14%.

Electron recoil discrimination of 99.6%, with drift field of 181 V/cm.

Position Reconstruction

- Z from S1-S2 time delay (1.51 mm/microsecond)
- X, Y from fitting the S2 hit pattern

LUX Detector Commissioning

Recoil Band Calibration

- Dispersed tritiated methane calibration gives uniform sampling of the electron recoil band shape and width
- Low-energy β source (18 keV endpoint) populates relevant low-energy region of the S2/S1 plot with unprecedented accuracy
- Fully removed by recirculation system through the getter
- Nuclear recoil band is cross-referenced by using an external neutron source together with detector response function modelling using NEST and simulations
- [Between 2-30 S1 photoelectrons discr. is 99.6% relative to 50% nuclear recoil acceptance]

LUX Detector Calibration

Nuclear Recoil Band Calibration Notes

- NEST (Noble Element Simulation Technique) is based on extensive existing experimental data
- Artificial cut-off in light and charge yields assumed <3 keVnr
- Includes predicted electric field quenching

Height [cm]

- •April 21 August 8, 2013 110 calendar days
 - 85.3 live days of WIMP Search
 - 118.3+/-6.5 kg fiducial mass
- Calibrations
 - Frequent ^{83m}Kr calibration of any S1 or S2 gain shifts
 - AmBe&Cf calibrations + Sims to define NR band
 - Injected Tritiated Methane for relevant ER band
- •Efficiency
 - WIMP efficiency from calibration sets using multiple techniques
 APC, Paris 17/12/2013

Data Selection

Cut	Explanation	Events Remaining
All Triggers	S2 Trigger >99% for S2 _{raw} >200 phe	83,673,413
Detector Stability	Cut periods of excursion for Xe Gas Pressure, Xe Liquid Level, Grid Voltages	82,918,901
Single Scatter Events	Identification of S1 and S2. Single Scatter cut.	6,585,686
S1 energy	Accept 2-30 phe (energy ~ 0.9-5.3 keVee, ~3-18 keVnr)	26,824
S2 energy	Accept 200-3300 phe (>8 extracted electrons) Removes single electron / small S2 edge events	20,989
S2 Single Electron Quiet Cut	Cut if >100 phe outside S1+S2 identified +/-0.5 ms around trigger (0.8% drop in livetime)	19,796
Drift Time Cut away from grids	Cutting away from cathode and gate regions, 60 < drift time < 324 us	8731
Fiducial Volume radius and drift cut	Radius < 18 cm, 38 < drift time < 305 us, 118 kg fiducial	160

Efficiency in S1 phe

Efficiency in keVnr

Upper limit

LUX Next WIMP Search

- New run of 300 days in 2014/15
- x5 in sensitivity
- Still discovery potential
 WIMPs remain our favoured quarry
- LZ 20x increase in target mass

If approved plans to be deployed in Davis Lab in 2016+, Paris 17/12/2013

- LUX WIMP Search run of 86 live-days
 - Backgrounds as expected, inner fiducial ER rate <2 events/day in region of interest
 - Major advances in calibration techniques including ^{83m}Kr and Tritiated-CH₄ injected directly into Xe target
 - Very low energy threshold achieved 3 keVnr with no ambiguous/leakage events
 - ER rejection shown to be 99.6+/-0.1% in range of interest
- Intermediate and High Mass WIMPs
 - Extended sensitivity by x3 at 35 GeV and x2 at 1000 GeV
- Low Mass WIMP Favored Hypotheses ruled out
 - LUX WIMP Sensitivity 20x better
 - LUX does not observe 6-10 GeV WIMPs favoured by earlier experiments