Evolutionary predictions in the advanced LIGO/Virgo era

Chris Belczynski¹ Tomek Bulik¹ Daniel Holz Richard O'Shaughnessy

Wojciech Gladysz¹ and Grzegorz Wiktorowicz¹

¹Astronomical Observatory, Warsaw University

- BH-BH binaries: modeling (field)
- BH-BH mergers: formation (field)
- BH-BH detection: astrophysical implications of LIGO detections

BH-BH formation: broad perspective

First astro-implication of LIGO detections: outbreak of models

- Primordial BH-BH: density fluctuations after Big Bang
- PopIII BH-BH: first massive stars (~ 1% of stars in Universe)
- PopII/I BH-BH: dynamics/globular clusters (~ 0.1%)
- PopII/I BH-BH: rapid rotation (homogeneous evol.) (~ 10%)
- exotic BH-BH: single star core splitting (~ 0%)
- POPII/I BH-BH: classic field binary evolution (~ 90%)

before LIGO detections: NS-NS dominant source - a conceptual mistake

ヘロン 人間 とくほ とくほ とう

modeling: synthetic universe

Star formation history:

POP I/II: uncertain for z>2, POP III: much smaller contribution

Metallicity evolution:

Metallicity model: Madau & Dickinson 2014 with SNe and GRB calibration

BH mass spectrum: maximum BH mass

Pair instability: maximum BH mass $\sim 50 M_{\odot}$

PSN: Pair-instability SN $(M_{\rm He} \sim 65-130 {\rm ~M}_{\odot})$ no remnant: entire star disruption

PPSN: Pair-instability Pulsation SN $(M_{\rm He} \sim 45-65 {\rm ~M}_{\odot})$ black hole: and severe mass loss

NS/BH mass spectrum:

neutron stars:	$1-2~M_{\odot}$
first mass gap:	$2-5~M_{\odot}$
black holes:	$5-50~M_{\odot}$
second mass gap:	$50-130~M_{\odot}$
black holes:	$130 - ??? M_{\odot}$

(Belczynski, Heger, Gladysz, Ruiter, Woosley, Wiktorowicz, Chen, Bulik, O'Shaughnessy, Holz, Fryer, Berti: A&A 2016)

Common envelope: orbital decay at low Z

high-Z: RLOF at HG -> radiative envelope -> stable MT & no orbit decay low-Z: RLOF at CHeB -> convective envelope -> CE & orbit decay

BH-BH progenitors go through CE at low Z: rates up by 70 times! ($Z_{\odot} \rightarrow 0.1 Z_{\odot}$)

Formation of massive BH-BH merger

- low metallicity: $Z < 10\% Z_{\odot}$
- CE: during CHeB
- delay: 10 Gyr or 2 Gyr
- O1 horizon: z = 0.7 (inspiral-merger-ringdown)
- total merger mass: 20–80 M_{\odot}
- aligned BH spins: tilt= 0 deg
- BH spin: a = 0.0 -> a = 0.126 a = 0.5 -> a = 0.572 a = 0.9 -> a = 0.920

イロト イポト イヨト イヨト

э

credit: Wojciech Gladysz (Warsaw)

Chris Belczynski

The Astrophysics of BH-BH Mergers (Paris GR Workshop)

BH-BH progenitors: birth times

typical BH-BH progenitors: very old (10 Gyr) or young (2 Gyr) systems

BH-BH mergers: LIGO 44 days of O1 (70 Mpc)

LIGO BH-BH merger rate: 9–240 Gpc⁻³ yr⁻¹ GW150914: 36 + 29 M_{\odot}, LVT151012: 23 + 13 M_{\odot}, GW151226: 14 + 8 M_{\odot}

BH-BH mergers: LIGO 60 days of O2 (120 Mpc)

of BH-BH detections: 66 (M1), 64 (M10), 2 (M3) in 60 days of LIGO O2

Astro implications: from BH-BH merger detection

- massive BH-BH merger: dominant GW source (field evolution) (1000 × over NS-NS, 200 × over BH-NS)
- BH-BH merger: comparable masses, aligned (?) birth spins
- BH-BH progenitor: either very old or young and low-Z environ
- easy common envelope: (case B) excluded
- high BH kicks: most likely excluded (more detections?)
- field merger rates: 40 times higher than for dynamical BH-BH

at the moment: origin not distinguishable:

BH-BH mergers: field + homogeneous + dynamical + popIII - sci-fi channels

Birth time distribution for BH-BH progenitors

Chris Belczynski The Astrophysic

The Astrophysics of BH-BH Mergers (Paris GR Workshop)

э

Predictions: population synthesis

Evolutionary assumptions and uncertainties:

- global properties: cosmology, SFR(z), Z(z)
- initial conditions: IMF, q, a_{orbit}, e, f_{binary} (Sana et al. 2012)
- single star evolution: modified Hurley et al. 2000
- winds: Vink et al. 2001 + LBV
- binary CE evolution: Pavlovskii et al. 2016 or more optimistic
- BH formation: SN or Direct BH (Fryer et al. 2012)
- BH formation: BH natal kicks (agnostic: low to high)

major factor setting BH-BH rates/properties: metallicity ->

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

BH natal kicks: extras 1/4

EM observations: no good information

if BH kicks decrease with $M_{\rm BH}$:

- asymmetric mass ejection
- asymmetric neutrino emission both mechanisms: OK!

Belczynski et al. 2015 (arXiv:1510.04615)

< < >> < </>

Observations (Tomek Bulik): 1/3

The interesting case of IC10 X-1 and NGC300X-1

- WR stars mass ~30 solar masses
- Compact objects ~ 20-30 solar masses (but see later)
- Orbital period ~ 1.25 days
- Future evolution: mass transfer, mass loss, formation of 2nd BH
- Formation of BH-BH with the coalescence time ~a few Gyrs
- · Low metallicity host galaxies

Observations (Tomek Bulik): 2/3

Rate density estimate

- Estimate of the observability volume and object density
- · Estimate of the time to coalescence
- Just two objects low stastistic leads to high uncertainty
- Rate density very high
- Expected to be close to detection even with Initial LIGO/VIRGO
- · Expected component mass range:

~20-40 solar mass

· Expected total mass:

~60 solar masses

Bulik, Belczynski, Prestwich 2011

Observations (Tomek Bulik): 3/3

Potential problem with mass estimate

- Recent mesurement of the X-ray eclipse over the optical lightcurve (Laycock et al. 2015)
- · Offset of 0.25 in phase
- The radial velocity has a contribution from ionized wind velocity
- Imply a possibility that the companion is a low mass BH or a NS
- Model of Kerkwijk et al. (1996)

Potential problems:

Evolution: it is very difficult to form a massive WR star in a binary with a low mass compact object

Mass transfer: if wind, then the Xray luminosity (10³⁸ erg/s) is unusually high (too large by 2-3 orders of magnitude)

Mass transfer: if RLOF, then the system should not be stable.

It is still quite likely that the companions in IC10 X-1 and NGC300 X-1 are ~20 solar mass BHs

イロト イロト イヨト イヨト

Advanced LIGO/Virgo upper limits: OLD OLD OLD

Dominik et al. 2013, 2015 -> Belczynski et al. 2015 (arXiv:1510.04615)

most likely detection: BH-BH merger with total redshifted mass 25-73 M_o

Initial mass function update: 2/5

revised IMF: merger rate increase (de Mink & Belczynski 2015)

Overall updates (2010-2015):

Most important recent model updates:

- low metallicity introduced: $Z_{\odot} \rightarrow 10\% Z_{\odot} \rightarrow 1\% Z_{\odot}$ (2010)
- binary CE evolution: more physical (2012)
- NS/BH formation: updated models (2012)
- first metallicity grid: 11 grid points (150% $Z_{\odot}\text{--}0.5\%$ $Z_{\odot})$ (2013)
- BH natal kicks: low and high (2015)
- initial conditions: *a*_{orb}, *e*, *f*_{binary} (2015, now)
- global properties: IMF, SFR(z), Z(z) (now)
- metallicity grid: 32 grid points (150% Z_{\odot} -0.5% Z_{\odot}) (now)
- statistics: Monte Carlo (2 millions -> 20 millions) (now)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

BH-BH progenitors: chemical composition

typical BH-BH progenitors: low metallicity stars $Z < 10\% Z_{\odot}$