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2. Collision - a massive binary system; one member collapses 
into a NS, and supernova kick velocity propels it into the 
massive companion (Leonard et al. 1994)
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not agree with TŻO models
- Teff too high to fit with standard 
picture of TŻOs
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...but red supergiant spectra are difficult to model...

• spectral type (K0-M5)
• effective temperature
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...and observations did not agree with theory...


 Step 1: Blame the theorists… 
   - uncertain molecular opacities
   - high-velocity convective layers
   - highly extended atmosphere
   - treatment of mass-loss, rotation effects

Step 2: …or could it be the data?
- specifically, could it be the temperatures?

Step 3: A new approach?
- fit Teff-sensitive TiO bands that dominate
     M-type spectra
- recent MARCS stellar atmosphere models
     have improved molecular opacities and
     make this possible
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Milky Way

Z~Z!

KPNO 2.1m

CTIO 1.5m

Levesque et al. (2005)

Local Group
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Milky Way LMC

SMC
Z~Z! Z~0.47Z!

Z~0.27Z!

CTIO 4m/R-C Spec

Levesque et al. (2006)
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M31 Milky Way LMC

SMC
Z~2Z! Z~Z! Z~0.47Z!

Z~0.27Z!

MMT/Hectospec

Massey et al. (2009)
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M31 Milky Way LMC

NGC 6822 SMC WLM
Z~2Z! Z~Z! Z~0.47Z!

Z~0.4Z! Z~0.27Z! Z~0.1Z!

Magellan/IMACS

Levesque & Massey (2012)
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Levesque & Massey (2012)

Metallicity Effects



WLM: K2 I 

LMC: M1 I

SMC: K5 I 

MW: M3 I
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“...Years ago, Kip Thorne and myself ‘invented’ 
theoretical models of stars...
Please let me know if there may be some interest in 
pursuing these lines of enquiry.” - Anna Żytkow

Defining RSG samples



MW: ARCES on APO 3.5m Clouds: MIKE on Clay 6.5m

We surveyed our previously Galactic and MC RSG 
samples (Levesque et al. 2005, 2006):   

• pre-selected M spectral types (24 MW, 16 LMC, 22 SMC)
• R~20,000-40,000; ARCES at APO and MIKE at Magellan
• used Ca II triplet to determine radial velocities
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Analyses - lines of interest

Fe I, Mo I

Li I

Ni I, Rb I, Fe I

(Ca I, K I)
• “control” features

• TŻO products

• measure equivalent width 
ratios of TŻO/control
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• Kuchner et al. (2002) establish method of 
“pseudo-equivalent widths”

• definitions are based on the same features in 
each spectrum

• all spectral features used depend on Teff...

Analyses - equivalent widths
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“I don’t know what it is, but I know 
that I like it!” ~Nidia Morrell

TŻO candidate
(raw data)



TŻO candidate Balmer series
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AGB/Mira in the SMC/Milky Way?

• Mbol is too high for SMC, falling above even the “super-AGB” 
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• still would not explain element enhancements

(SAGB stars cannot 
produce Ca...

...but TŻO 
formation can!)

Tout et al. (2014)
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But couldn’t it be a...
AGB/Mira in the SMC/Milky Way?

• Mbol is too high for SMC, falling above even the “super-AGB” 
cutoff; halo giant with a serendipitous RV quite unlikely
• still would not explain element enhancements

foreground dwarf?
• radial velocity of 157 km s-1 agrees with SMC kinematics
• not a flaring M dwarf; H emission lasted over 2 nights

VV Cep/symbiotic-ish binary?
• not a binary within an ionized common envelope (lacks [NII], 
[OII], [OIII], etc.)
• OB companion strong enough to produce the Balmer 
spectrum would produce a strong blue continuum 
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SMC RSGs

This star represents the most encouraging 
detection of a TZO to date.

Properties of our TŻO Candidate

✓cool and luminous, 
lying at or beyond the 
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‣ new nucleosynthesis channels for Li and heavy elements

What’s next?
• Compute modern models of TŻO interiors
• Determine other observable signatures of TŻOs
• Identify TŻO populations in (and beyond) the Local Group

Other questions...
• what are the properties of proto-TŻOs? 

• what are the lifetimes of TŻOs?
• what is the terminal product of a TŻO?



More exciting questions...
•What are TŻO evolutionary tracks like?
•How do they contribute to the chemistry of the universe?
•How many are there?

•How do TŻOs affect models of clusters? Stellar pops? Binaries?
•Are their numbers Z-dependent? Are there more at high z?...





Why don’t the “abundances” match?
The models are dated!
  -- Biehle (1994) does not use a full rp reaction network.
  -- Cannon (1993) states that more work is required on envelope 
convecton and a more extensive reaction network is required to 
produce reliable abundances
  -- there are unresolved issues with overshooting, mixing length 
theory, and convection models.

Where is the supernova kick velocity?
Kick would only appear in the Leonard et al. (1994) model and...
  -- average runaway velocity of a Leonard TZO is 75 km/s
  -- our candidate is at 157 km/s; even in “worst-case” scenario it’s 
still either 82 km/s or 232 km/s, both still consistent with the 
range of radial velocities characteristic of SMC members 
(Neugent et al. 2010)



Past work on our TZO candidate
Known photometric and spectroscopic variable

-included in Harvard Variable catalog (Payne-Gaposchkin & Gaposchkin 1966)

-prior spectral types range from M3e to M7.5 (Wood et al. 1983, Reid & Mould 
1990)

Originally incorrectly classified as an AGB star
-Mbol lie above “AGB limit” (Wood et al. 1983, Reid & Mould 1990, Smith et al. 
1995, Paczynski et al. 1971)

-bolometric corrections for cool stars have since improved (Levesque et al. 
2006)

-for variables, contemporaneous observations are also required 
-new Mbol agrees with an RSG at SMC distance (Maeder & Meynet 2001)

Not previously ID’d as a TZO due to observational limitations
-variable spectrum led to disagreement over Li-rich status (Reid & Mould 
1990, Smith et al. 1995)

-spectra lacked sufficient resolution or wavelength coverage for 
detecting TiO-free TZO features (Wood et al. 1983, Smith et al. 1995)




