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There has never been a confirmed observation of a TZO.
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Formation of TZOs

1. Engulfing - an OB + NS HMXB, the OB companion leaves the
main sequence, evolves into an RSG, expands, and engulfs the
NS companion (Taam et al. 1978)

2. Collision - a massive binary system; one member collapses
into a NS, and supernova Kick velocity propels it into the
massive companion (Leonard et al. 1994)
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TZOs are...almost indistinguishable from RSGs...

[] cool and luminous, -
lying at or beyond the Mo Ru Zr LI
Hayashi limit for massive

stars (Thorne & Ztykow 1977) T'ZO surface

Y 'Sr 'Rb

1Irp-process
Wallace &
P 4 Woosley (1981)

Cannon (1993)

[] strongly mass—losing as
a result (van Paradijs et al.

1995)

Be+e — & Y Cameron (1955)
71 Podsiadlowski
[ potentially more Li+v M (1995)
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al. 2010)
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TZOs are...almost indistinguishable from RSGs...
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Rb 1 7947.63 0.00
Rb1 7800.23 0.00
Sr1 4607.34 0.00
Sr 11 4077.72 0.00
Sr 11 3215.54 0.00
Sr 11 10036.66 1.80
Sr 11 10327.31 1.83
Sr 11 10914.88 1.80
Y1 4883.69 1.08
Zr1 617248 0.15
Zr1 6134.18 0.07
Mo 1 5570.40 1.33
Ru1 5309.27 0.92
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Past searches for TZOs
Vanture et al. (1999)

- examined R Coronae Borealis
star U Aqr with odd abundances

- enhancements could be
explained by s-process and did

not agree with TZO models

- Tefr too high to fit with standard
picture of TZOs




Past searches for TZOs

Kuchner et al. (2002)
- surveyed 59 Galactic RSGs

- compared observed Rb I
abundances to models of
synthetic spectra

- detect one RSG with enhanced
Rb I, but can be explained by s-

Process

Vanture et al. (1999)

- examined R Coronae Borealis
star U Aqr with odd abundances

- enhancements could be
explained by s-process and did

not agree with TZO models
- Tefr too high to fit with standard
picture of TZOs

KN Cas (M1 Ib)

normalized F,

7798 7800 7802
A (Angstroms)



An effective large-scale search requires RSG
samples with well-defined physical properties...
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..but red supergiant spectra are difficult to model...
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An effective large-scale search requires RSG
samples with well-defined physical properties...

..but red supergiant spectra are difficult to model...
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..and observations did not agree with theory...
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..and observations did not agree with theory...
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..and observations did not agree with theory...

Step 1: Blame the theorists. ..
- uncertain molecular opacities
- high-velocity convective layers
- highly extended atmosphere
- treatment of mass-loss, rotation effects
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Step 1: Blame the theorists. ..

- uncertain molecular opacities

- high-velocity convective layers

- highly extended atmosphere

- treatment of mass-loss, rotation effects
Step 2: ...or could it be the datar

- specifically, could it be the temperatures?
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..and observations did not agree with theory...
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..and observations did not agree with theory...

Step 1: Blame the theorists. ..
- uncertain molecular opacities
- high-velocity convective layers
- highly extended atmosphere
- treatment of mass-loss, rotation effects
Step 2: ...or could it be the datar
- specifically, could it be the temperatures?
Step 3: A new approach?
- fit Tesr-sensitive TiO bands that dominate
M-type spectra
- recent MARGS stellar atmosphere models
have improved molecular opacities and
make this possible



Detining RSG samples
Fitting Red Supergiant Spectra:
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Detining RSG samples
Fitting Red Supergiant Spectra:
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Detining RSG samples
Fitting Red Supergiant Spectra:
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Detining RSG samples
Fitting Red Supergiant Spectra:
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Detining RSG samples

Fitting Red Supergiant Spectra:
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Detining RSG samples
Fitting Red Supergiant Spectra:
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Detining RSG samples

Fitting Red Supergiant Spectra:
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Detining RSG samples

Fitting Red Supergiant Spectra:
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Defining RSG samples
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Local Group

KPNO 2.1m

Levesque et al. (2005)
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Defining RSG samples

...and beyond!
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Detining RSG samples
Metallicity Effects

LMC, Z = 0.472,

NGC 6822, Z = 0.4Z,
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Levesque & Massey (2012) Spectral Type
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Detining RSG samples
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Detining RSG samples
Metallicity Effects
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Detining RSG samples
Metallicity Effects

NGC 6822, Z = 0.4
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Detining RSG samples

Local Group ...and beyond!
1C | Sextans A |
ﬂs i Se)_ctans B

<. Yearsago Klp Thorne and myself mvented’
| theoretlcal models of stars...
i Please let me know if there may be some interest in

| pursulng these hnes of enqulry” Anna ZytkOW
_ —=r - [Keck/ERIS




We surveyed our previously Galactic and MC RSG
samples (Levesque et al. 2005, 2006):

» pre-selected M spectral types (24 MW, 16 LMC, 22 SMC)
e R~20,000-40,000; ARCES at APO and MIKE at Magellan

» used Ca II triplet to determine radial velocities
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Analyses - equivalent widths
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mzjer et al. (2002) establish method of

“pseudo-equivalent widths”
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o Kuchner et al. (2002) establish method of
“pseudo-equivalent widths”
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o Kuchner et al. (2002) establish method of
“pseudo-equivalent widths”

e definitions are based on the same features in
each spectrum

e all spectral features used depend on Tetr...
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HV 2112;
TZ0 candidate!
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that I like it!” ~Nidia Morrell f v
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But couldn’t it be a...
AGB/Mira in the SMC/Milky Way?

* Mbo1 1s too high for SMC, falling above even the “super-AGB”
cutoff; halo giant with a serendipitous RV quite unlikely
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But couldn’t it be a...
AGB/Mira in the SMC/Milky Way?

* Mbo1 1s too high for SMC, falling above even the “super-AGB”
cutoff; halo giant with a serendipitous RV quite unlikely

* still would not explain element enhancements

(SAGB stars cannot |
produce Ca...

.but TZO
formation can!)

Tout et al. (2014)

3600 3800 4000 4200
Effective Temperature (K)




But couldn’t it be a...
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* still would not explain element enhancements

foreground dwart?
* radial velocity of 157 km s agrees with SMC kinematics
* not a flaring M dwarf; H emission lasted over 2 nights



But couldn’t it be a...
AGB/Mira in the SMC/Milky Way?

* Mbo1 1s too high for SMC, falling above even the “super-AGB”
cutoff; halo giant with a serendipitous RV quite unlikely

* still would not explain element enhancements

foreground dwart?
* radial velocity of 157 km s agrees with SMC kinematics
* not a flaring M dwarf; H emission lasted over 2 nights

VV Cep/symbiotic-ish binary?

* not a binary within an ionized common envelope (lacks [NII],
|OI1], [OIII], etc.)

* OB companion strong enough to produce the Balmer
spectrum would produce a strong blue continuum



Properties of our TZO Candidate

[] cool and luminous,
lying at or beyond the
Hayashi limit for massive

stars (Thorne & Ztykow 1977)

[ strongly mass-losing as
a result (van Paradijs et al.
1995)

[ potentially more

common at low Z (Linden et
al. 2010)

[1 unique chemical profile P R TR R TR
(Blehle 1994) log Teff




Properties of our TZO Candidate

M cool and luminous,
lying at or beyond the
Hayashi limit for massive

stars (Thorne & Ztykow 1977)

Mstrongly mass—losing as
a result (van Paradijs et al.

1995)

M potentially more

common at low Z (Linden et
al. 2010)

M unique chemical profile E— P T T E T
(Blehle 1994) log Teff




Properties of our TZO Candidate

M cool and luminous,
lying at or beyond the
Hayashi limit for massive

stars (Thorne & Ztykow 1977)

Mstrongly mass—losing as
a result (van Paradijs et al.

1995)

M potentially more

common at low Z (Linden et
al. 2010)

[ SMC RSGs

M unique chemical profile
(Biehle 1994)

This star represents the most encouraging
detection of a TZO to date.
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The existence of TZOs would have profound
implications for stellar astronomy.

» completely new model of stable stellar interiors
» a new fate of massive binaries
» New nucleosynthesis channels for Li and heavy elements

What’s next?

* Compute modern models of TZO interiors
* Determine other observable signatures of TZOs

* Identify TZO populations in (and beyond) the Local Group

Other questions...
* what are the properties of proto-TZOs?
* what are the lifetimes of TZOs?
* what is the terminal product of a TZO?



More exciting questions...

*What are TZO evolutionary tracks liker

*How do they contribute to the éhemistry of the universe’
How many are therer

*How do TZOs affect models of clusters? Stellar pops? Binaries?
* Are their numbers Z-dependent? Are there more at high zv...







Why don’t the “abundances” match?

The models are dated!
—- does not use a tull rp reaction network.

- states that more work is required on envelope
convecton and a more extensive reaction network is required to
produce reliable abundances

- there are unresolved issues with overshooting, mixing length
theory, and convection models.

Where i1s the supernova kick velocity?

Kick would only appear in the model and...
- average runaway velocity of a Leonard TZO i1s 75 km/s

- our candidate is at 157 km/s; even in “worst-case” scenario it’s
still either 82 km/s or 232 km/s, both still consistent with the
range of radial velocities characteristic of SMC members



Past work on our TZO candidate

Known photometric and spectroscopic variable

-included in Harvard Variable catalog (Payne-Gaposchkin & Gaposchkin 1966)

-prior spectral types range from M3e to M7.5 (Wood et al. 1983, Reid & Mould
1990)

Originally incorrectly classified as an AGB star

-Myo1 lie above “AGB limit” (Wood et al. 1983, Reid & Mould 1990, Smith et al.
1995, Paczynski et al. 1971)

-bolometric corrections for cool stars have since improved (Levesque et al.
2000)

-for variables, contemporaneous observations are also required
-new Mpo1 agrees with an RSG at SMC distance (Maeder & Meynet 2001)

Not previously ID’d as a TZO due to observational limitations

-variable spectrum led to disagreement over Lirich status (Reid & Mould
1990, Smith et al. 1995)

-spectra lacked sufficient resolution or wavelength coverage for
detecting TiO-free TZO features (Wood et al. 1983, Smith et al. 1995)






