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Introduction to Dark Energy
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We are in the embarrassing stan
point in which we only know the
nature of abou§% of the Universe
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Dark Energy Models

* Quintessence

« Scaling models

« Tachyon field

« Dilaton dark energy

« Conformal symmetry breaking

« Varying coupling constants
« Brane models/DGP

« Modified gravity

+ K-essence

« Coupled dark energy
+x Phantom (ghost) field
« Chaplygin gas

+ Effective dark energy from back-reactic
of perturbations

+ Neutrino mixing and varying mass
« Higher order curvature correction

+ Violation of Copernican Principle

APC, May 2009



Classifying Dark Energy Models

String landscape.

e Quantum gravity related modelString and brane inspired models
e.g. DGP.

e Modification of Einstein general relativity.

-models based on one or multiple scalar fields:
e Scalar from gravity sector.
e Scalar from matter sector.
Apparent observational signature of dark energy is
considered to be due to the wrong theoretical assumptions:
e Effect of super-horizon perturbations is seen as dark gnerg

e \We live in a special place in the Universe where local average
density is less than global average density of matter.
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Model Making - Landscape

Naturalness: Dark energy can not be incorporated easilgyro&
models we know.

If we are obliged to somehow extend present models or fine-tinem,
we must assess hawatural they are.

EX.: In string landscape many rules for selection of vacea ar
suggested: anthrop&arriga, Linde, Vilenkin 03holographiousso & Yang
07, tunnelingTye 06 etc.

How can we test which one is true or at leastre natural ?

As gravity is a general force, physics of black hole can llgcabn the
landscape - constrains some parameters, but not globallnain
stronglyDvali & Liist 08.

A global understanding of string landscape needs a nonpeitue
formulation of high energy physics which does not yet exist. APc May2009



Landscape - Branes

* The string models must be consistent and explain the olsdérve
energy physicsStandard Model and Einstein graviBinetruy et al. 05
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Constraint on Yukawa-type deviation from Constraint on RS-type Il models.
Einstein gravity at short distanceSmullin  Liddle & Smith 03
etal. 05

* For universal brane models, constraint from interactioalof high
energy cosmic raysiz 04 APC, May 2009



Modified Gravity - DGP

One of the best candidate models of modified gravity is DGPehod
Dvali, Gabadadze & Porrati 00

It is assumed that 5-dim gravity in the bulk induces a 4-dinssAass
graviton on the visible brane.

The induced gravity has a very weak Yukawa-type interactdn
gravity that modifies gravity potential.

The characteristic distance scale of the modified poteistial
r. = M#%/2M?; M is the 5-dim gravity mass scale.

To explain the acceleration of the Univernsex 5 Gpc.

DGP model has interesting and observable cosmologicakcesnces
for inflation and dark energganni 05

It induces an additional precession to planets orbits thate
measure@attat, Stubbs & Chandler 68= r. > 0.13 GpcC.
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Constraint on DGP-like models from SN
data.Fairbairn & Goobar 05
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Modified Gravity - Modified General Relativity

f(R)-models:Nojiri & Odintsov 06 (review)
S=[dz/—g|sR+ f(R)+ L)
Gauss-Bonnet gravitycognola et al. 06

S=[dz/—g R+ [(G) + L)
G = R? — 4Ry, R* + Ry p0 RH¥?°

Additional curvature-dependent terms behave similar tcades field
— scalar-tensor models.

Scalar-tensor gravity models:

S = [ d*2v/=g [15eg (R+9" 0,08,8) = V() + L (¥, A*($)gp))]
These models behave very similar to quintessence maoeelgner et al.
06

Strong constraints from solar systenDavis 07 galaxy clusterKapetti et
al. 08
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Quintessence

* This Is a generic name given to all the models in which darkgnis
due to condensation of an scalar fiele> Including phantom and
varying neutrino mass models

*  Similar to inflation it is assumed that the scalar field roles/d the
potential very slowly.

* The challenge is to find models in which at late times the gakbe
very small but not zero.

V() Tracking

A

Wetterich 88, Peebles & Rata 88
V(p) = e 0 ¢~™ (In SUGRA & string
/ models more sophisticatdd(¢) potentials with trac-
ing solutions are possibleBrax & Martin 99
- P _ 34°-V(¢)

¢ p %¢2—|—V(¢) APC, May 2009




Gravity Sector - String Dilaton

* As gravity is a general force, the model should not violateiZalence
Principle or keeps the violation at the level consistenhwibservations.

* Dilaton is assumed an effective field originated from fubpo

corrected/nonperturbative high energy physics - presiyrstbng
theory. Damour & Polyakov 94

* It should have the same coupling to gravity and visible nnatte

preserve Equivalence Principléut can have a different coupling to for
dark mattemBean & Magueijo 00
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Gravity Sector - String Dilaton

* In string frame:

S = / d*2\/—§ [By(®)(R/2—2R)— By ()0, q>auq>+23 )LO]

* When transferred to Einstein frame = B, (®)g - the model has the
general form of interacting scalar field:

:/d4$\/—_g [§+£visible+£q§+f(¢)£CDM]

APC, May 2009




Matter Sector - Axion

Due to their small mass and weak interaction, axions are btieo
most favorite candidates for a quintessence field.

For both quintessence axion and dilaton, the mass of thardezld
must be very smalln, ~ 10733 eV.

Protecting such a small mass against high energy radiativeations
IS very difficult.

The best candidate is Pseudo-Nimbau-Goldston Boson (PMGB a
cyclic potential generated by& (2) gauge symmetry instantonshoi
99, Namura, Watari & Yanagida 00, Hill & Leibovich 02, Kim & MNas 02, 09

V(e) = uh(l — cos(%) f. > Mp

APC, May 2009



Matter Sector - Axion

* Dark matter can be also related to PNGB axions, either as a <in
Miniani, Colombo & Bonometto 05, Q70r a heavy bosonic super-partner of
PNGB axion.Takahashi & Yanagida 05

* Interaction of quintessence axion with leptons can stpnghstraint
neutrino physicsBarberi et al. 05

* To release the extreme condition f =~ Mp multiple axions should
be consideredkaloper & Sorbo 05

w<—0.95

¢o Is the present value of quintessence field. Hall, Nomura & Oliver 05
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Observations

———— SN-CMB ™ %
~ SN+BAG ™ ! Sh + BAO + CMB
SN + BAG + GMB s BN Wi ys + BAQ - CMB
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Large variation ofw with
redshift is ruled out and
w < —1is yet possible.

Supernova Cosmology Project -

Union compilation, Kowalski et al.

08.
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Matter Sector - Interacting / Decaying dark energy

Why does dark energy become dominant after
galaxy formation ?

* Interaction between quintessence and other fields exist$ in
particle-physics motivated models.

* In Interacting models the interaction with other fields doates over
self-interaction.

* Under certain conditions they can induce an effective, < —1.

APC, May 2009



Equivalent cosmologies

* Phenomenological field equation for an interacting quseese field:
HZ 00 & 03, Das et al. 05

25 87TG 5 F(9)

* Equivalent quintessence cosmology without interactim#:et al. 05

G

e — 3—]{3((1

— Qepp)(z+1)° + Qepp(z + 1)3Wers 1)y

Wq

weff(z) = i pd’”’ZS) (f(qb) o ]:(QbO))
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An Explicit Case: Decay of Dark Matter

* Assuming that dark energy is a Cosmological Constant aridrdatter
decays to relativistic particlestz 00

z Tt
p(2) ~ Q1+ 2)% exp(=
Pc 7

Qar(1+ 2)* (1 — exp(

el o

T()—t

)) + Q2

T

If 3Hyv/ Qa7 > 1, T age of the Universe:

f’;z) ~ Q1+ 2)? + Qaor(1 4 2)* + Qg1 + 2)37s
Qn
Q(1+2)° = Q1+ OzTQAZ(l +2)°InC)
p Qar (L4 44)(1 — v24)
Weff = fyeff—lz BaTQAB — 1.

A(QA), B(QA), C(QA,Z). APC, May 2009



Stant

HZ03, 04

*  ¢: quintessence condensate, scalar dark matter

1

1
_g'uyau(bacﬁuqu = _gwj@,uqbﬁugb &

o 4 v
£—/dx\/gz 5

V(gbxa ¢7 J) =+ £J

V(ga, d,J) = V(9) + V(¢e) + 962°¢* + W (e, ¢, J)

* General behavior of this model is controlled by a feedbadiwben the
density of dark matter and the production rate of quintessen
condensate—> No fine-tuning of the quintessence potential or relative
Initial abundance which is necessary in interacting madels

APC, May 2009
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Dark Energy Measurements

* Definition of H (z) used for data analysing:

H2
) PE) Q1+ 2 + (14 2) + Qo1+ 257
Hy Po

* Wheny =cte.,y=w+1,w = p/p.

* Cosmological constant; = 0.

* Quintessence models: > 0.

* Phantom modelsy < 0.

w < —1 pde+pde>0

APC, May 2009



Most Recent Estimation ofw
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* The sign ofy = w + 1 and its redshift dependence have a crucial role
In discriminating between models.

* Although strong variation ofv at low redshifts is practically ruled out
Riess, et al. 0gsmall evolution is yet possible.

* There Is a large degeneracy between cosmological parasraatdrdata
analysis depends on the parametrizatiomof

* Fitting methods probably can never achieve enough prectisio
discriminate a dark energy from a Cosmological Constaiss et al. 07

* We must find a direct method to measure&nd its evolution.

APC, May 2009



Direct Measurement of~

Assuming a constant, we defineA(z): Hz 06

1 d,O 3(~—
A(z) = — Q. =~vQ,4.(1 ()
(2) 3(14 2)%pg dz Ve (1 + 2)

It is proportional toy.
From observations:
V] <1 ~0= {|A(2)|}maz = A(z = 0)

Less low redshift SN - smaller volume - but more precise
measurements.

The sign ofd A(z) /dz is opposite to the sign of — A(z) IS concave
or convex function of redshift, respectively for positivereegativey.

0] A(z)

APC, May 2009



Direct Measurement of~

* |If the equation of state of theark energydepends on redshiftiz 07

I /Zd,1+w(z’)
2
In(1+2) J, 1+ 2

pde<z)

(Valid if no interaction with other fields)
Pde(2)

* Observations show that at low redshift$z) is constant or varies
slowly. Riess et al. 06, Serra et al. 07

2

W) = wntuns L AR) % (9w () | 1420

* If wy is small, the effect of redshift dependence on the sigA (@f)
would be small.

APC, May 2009



Application to Observations

A(z) + €2, can be determined frouminosity distanceitself
measurable from the peak luminosity of SN Type la (or from LSS

2 dD; 4 D 7 dQDl
A(Z)+Q — 1 d,O = 1-|—Z( dz 1—|—z> d22
SRk T TY R (T s
“ dz
D, = (1 H,
[ ( +Z> 0 ’ H(Z>

Uncertainties in{, scaleA(z) + €1,,, but don’t change its geometry.

This method can be used for SN and LSS data. It may be possible t
find similar relations for CMBHZ, in preparation

APC, May 2009
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Classification of Models and their Observables

* As the particle physics of dark energy is unknown, we can
phenomenologically classify models as:

e Dark energy is a cosmological constant and dark matter demay
has self-interaction.

e Dark energy iIs a scalar field produced by the decay of darkamatt

e Dark energy Is a scalar and has interaction with dark maftar o
sector of visible matter e.g. neutrinos.

;No DE anisotropy

| . UHECR

|/ 55 Com. Classification of dark energy mod-

J— ~1 1
cr +DD[’-‘T._._.-"'IF DE anisotropy

els and their discriminating observ-
ables.

) __ Hot dark matter

. N, UHECR ?
Q+IDM ™, T
e ko Colr

% Hot dark matter

DE anisotropy
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Distinguishing between Models

Anisotropy of dark energy.
In the case of a decaying dark matter to a quintessence:

7 Fqﬁx&uxi
V'(¢, px)

5'(5) ~

For a metastable dark matter this quantity is very strongppsessed
except in the very early Universgiz 03

It can change the transfer function or spectrum indéiainini &
Bonometto 07)

If other fields/particles are involved in decay/interantithey produce a
hot dark matter and cosmic rays.

If quintessence field does not condensate at late timesjiitibotes to
HDM. APC, May 2009



Outline

We have a long way to go to understand the nature of dark energy

Present data seems to prefer< —1, but uncertainties are yet too
large to make a definitive conclusion.

What will (or will not) be found by LHC - Higgs, supersymmetry
any other extension to the Standard Model - is crucial as etditine
nature of dark energy.

Constraints on the HDM and its evolution can be important for
understanding dark energy.

No single observation can select a unigue model. We need to

Investigate both cosmological and particle physics aspeaiark
energy.

APC, May 2009
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