Dark Energy: Theories and Measurements

Houri Ziaeepour (MSSL).

Introduction to Dark Energy

Evidence for dark energy is overwhelming

Kowlski et al. 08 (Union, Super-

Hicken et al. 09 (Union + CfA)

Introduction to Dark Energy

Dark Energy Models

We are not in the shortage of models

* Quintessence

* K-essence

* Scaling models

* Coupled dark energy

* Tachyon field

* Phantom (ghost) field

* Dilaton dark energy

* Chaplygin gas

* Conformal symmetry breaking

* Effective dark energy from back-reaction of perturbations

* Varying coupling constants

* Neutrino mixing and varying mass

* Brane models/DGP

* Higher order curvature correction

* Modified gravity

* Violation of Copernican Principle

Classifying Dark Energy Models

- **★ Vacuum energy models:** String landscape.
- * Modified gravity models:
 - Quantum gravity related models: String and brane inspired models e.g. DGP.
 - Modification of Einstein general relativity.
- * Quintessence models models based on one or multiple scalar fields:
 - Scalar from gravity sector.
 - Scalar from matter sector.
- * False dark energy: Apparent observational signature of dark energy is considered to be due to the wrong theoretical assumptions:
 - Effect of super-horizon perturbations is seen as dark energy.
 - We live in a special place in the Universe where local average density is less than global average density of matter.

Model Making - Landscape

Depending on to which sector dark energy belongs - gravity or matter - various issues should be considered when we make a model:

- * Naturalness: Dark energy can not be incorporated easily in any of models we know.
- * If we are obliged to somehow extend present models or fine-tune them, we must assess how *natural* they are.
- * Ex.: In string landscape many rules for selection of vacua are suggested: anthropic Garriga, Linde, Vilenkin 03, holographic Bousso & Yang 07, tunneling Tye 06, etc.
- * How can we test which one is true or at least *more natural*?
- * As gravity is a general force, physics of black hole can locally on the landscape constrains some parameters, but not globally and not strongly Dvali & Lüst 08.
- * A global understanding of string landscape needs a nonperturbative formulation of high energy physics which does not yet exist.

 APC, May 2009

Landscape - Branes

The string models must be consistent and explain the observed low energy physics: Standard Model and Einstein gravity. Binetruy et al. 05

Constraint on Yukawa-type deviation from Einstein gravity at short distances. Smullin Liddle & Smith 03 et al. 05

Constraint on RS-type II models.

***** For universal brane models, constraint from interaction of ultra high energy cosmic rays. HZ 04 APC, May 2009

Modified Gravity - DGP

- One of the best candidate models of modified gravity is DGP model.
 Dvali, Gabadadze & Porrati 00
- * It is assumed that 5-dim gravity in the bulk induces a 4-dim mass-less graviton on the visible brane.
- * The induced gravity has a very weak Yukawa-type interaction with gravity that modifies gravity potential.
- * The characteristic distance scale of the modified potential is $r_c \equiv M_P^2/2M^3$; M is the 5-dim gravity mass scale.
- ★ To explain the acceleration of the Universe $r_c \approx 5$ Gpc.
- * DGP model has interesting and observable cosmological consequences for inflation and dark energy Sahni 05.
- * It induces an additional precession to planets orbits that can be measured Battat, Stubbs & Chandler $08 \Longrightarrow r_c > 0.13$ Gpc.

Constraints on DGP Model

Constraint on DGP-like models from SN

data. Fairbairn & Goobar 05

$$\left(H^2 + \frac{k}{a^2}\right)^{\alpha/2} = \frac{\kappa_*^2}{2\mu^2} \left(H^2 + \frac{k}{a^2}\right) - \frac{\kappa_*^2}{6} \rho_m \quad \text{for DGP} \quad \alpha = 2$$

Modified Gravity - Modified General Relativity

- * f(R)-models: Nojiri & Odintsov 06 (review) $S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + f(R) + \mathcal{L}_m \right]$
- * Gauss-Bonnet gravity: Cognola et al. 06 $S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + f(G) + \mathcal{L}_m \right]$ $G = R^2 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$
- * Additional curvature-dependent terms behave similar to a scalar field \$\iff \text{scalar-tensor models.}\$
- * Scalar-tensor gravity models: $\mathcal{S} = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} (R + g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi) V(\phi) + \mathcal{L}_m(\Psi, A^2(\phi) g_{\mu\nu}) \right]$
- * These models behave very similar to quintessence models. Faulkner et al. 06
- * Strong constraints from solar system S. Davis 07, galaxy clusters Rapetti et al. 08.

Quintessence

- ★ This is a generic name given to all the models in which dark energy is due to condensation of an scalar field ⇒ Including phantom and varying neutrino mass models
- Similar to inflation it is assumed that the scalar field roles down the potential very slowly.
- * The challenge is to find models in which at late times the potential be very small but not zero.

 Linder certain conditions for the

Under certain conditions for the potential *Tracking* solutions with necessary behaviour at late times without (or almost) fine-tuning of the initial conditions exist. Wetterich 88, Peebles & Rata 88

 $V(\phi)=e^{-\alpha\phi}$ or ϕ^{-n} (In SUGRA & string models more sophisticated $V(\phi)$ potentials with tracing solutions are possible.) Brax & Martin 99

$$w = \frac{P}{\rho} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} > -1$$

Gravity Sector - String Dilaton

In the case of a gravitational origin for dark energy:

- * As gravity is a general force, the model should not violate Equivalence Principle or keeps the violation at the level consistent with observations.
- * Dilaton is assumed an effective field originated from full loop corrected/nonperturbative high energy physics presumably string theory. Damour & Polyakov 94
- * It should have the same coupling to gravity and visible matter to preserve Equivalence Principle but can have a different coupling to for dark matter Bean & Magueijo 00.

Gravity Sector - String Dilaton

★ In string frame:

$$\mathcal{S} = \int d^4x \sqrt{-\hat{g}} \left[\hat{B}_g(\Phi)(\hat{R}/2 - 2\hat{\Lambda}) - \hat{B}_{\Phi}(\Phi) \partial_{\mu} \Phi \partial^{\mu} \Phi + \sum_i \hat{B}_i(\Phi) \mathcal{L}^{(i)} \right]$$

* When transferred to Einstein frame $-g = \hat{B}_g(\Phi)\hat{g}$ - the model has the general form of interacting scalar field:

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2} + \mathcal{L}^{visible} + \mathcal{L}^{\phi} + f(\phi) \mathcal{L}^{CDM} \right]$$

Matter Sector - Axion

The advantage of matter sector is that a nongravitational interaction with dark matter can solve the coincidence problem.

- ★ Due to their small mass and weak interaction, axions are one of the most favorite candidates for a quintessence field.
- * For both quintessence axion and dilaton, the mass of the scalar field must be very small $m_{\phi} \sim 10^{-33}$ eV.
- * Protecting such a small mass against high energy radiative corrections is very difficult.
- * The best candidate is Pseudo-Nimbau-Goldston Boson (PNGB) with a cyclic potential generated by a SU(2) gauge symmetry instantons. Choi 99, Namura, Watari & Yanagida 00, Hill & Leibovich 02, Kim & Nilles 02, 09

$$V(\phi) = \mu^4 (1 - \cos(\frac{\phi}{f_a}) \qquad f_a \gtrsim M_P$$

Matter Sector - Axion

- * Dark matter can be also related to PNGB axions, either as a QCD axion Miniani, Colombo & Bonometto 05, 07, or a heavy bosonic super-partner of PNGB axion. Takahashi & Yanagida 05
- ★ Interaction of quintessence axion with leptons can strongly constraint neutrino physics. Barberi et al. 05
- * To release the extreme condition of $f_a \gtrsim M_P$ multiple axions should be considered. Kaloper & Sorbo 05

 ϕ_0 is the present value of quintessence field.

Hall, Nomura & Oliver 05

Observations

Large variation of w with redshift is ruled out and w < -1 is yet possible.

Supernova Cosmology Project - Union compilation, Kowalski et al. 08.

Matter Sector - Interacting / Decaying dark energy

Interacting dark energy models are interesting specially because they can solve coincidence problem: Why does dark energy become dominant after galaxy formation?

- * Interaction between quintessence and other fields exists in all particle-physics motivated models.
- ★ In interacting models the interaction with other fields dominates over self-interaction.
- ★ Under certain conditions they can induce an effective $w_{eff} < -1$.

Equivalent cosmologies

Phenomenological field equation for an interacting quintessence field:
 HZ 00 & 03, Das et al. 05

$$\dot{\rho}_{dm} + 3H\rho_{dm} = -\mathcal{F}(\phi)\rho_{dm} \qquad \ddot{\phi} + 3H\dot{\phi} + V'(\phi) = \frac{\mathcal{F}_{,\phi}}{\mathcal{F}(\phi_0)}\rho_{dm}$$

$$H^2 = \frac{8\pi G}{3}(\rho_{0dm}(1+z)^3 \frac{\mathcal{F}(\phi)}{\mathcal{F}(\phi_0)} + \rho_q)$$

* Equivalent quintessence cosmology without interaction: Das et al. 05

$$H^{2}(z) = \frac{8\pi G}{3H_{0}^{2}}((1 - \Omega_{eff})(z+1)^{3} + \Omega_{eff}(z+1)^{3(w_{eff}+1)})$$

$$w_{eff}(z) = \frac{w_{q}}{1 + \frac{\rho_{dm}(z)}{\rho_{q}(z)}(\mathcal{F}(\phi) - \mathcal{F}(\phi_{0}))}$$

* If $w_q \sim -1$ and $\mathcal{F}(\phi) < \mathcal{F}(\phi_0), w_{eff}(z \neq 0) < -1$.

An Explicit Case: Decay of Dark Matter

* Assuming that dark energy is a Cosmological Constant and dark matter decays to relativistic particles: HZ 00

$$\frac{\rho(z)}{\rho_c} \approx \Omega_M (1+z)^3 \exp(\frac{\tau_0 - t}{\tau}) + \Omega_{Hot} (1+z)^4 + \Omega_M (1+z)^4 \left(1 - \exp(\frac{\tau_0 - t}{\tau})\right) + \Omega_{\Lambda}$$

If $3H_0\sqrt{\Omega_\Lambda}\tau\gg 1$, τ age of the Universe:

$$\frac{\rho(z)}{\rho_c} \approx \Omega_M (1+z)^3 + \Omega_{Hot} (1+z)^4 + \Omega_q (1+z)^{3\gamma_q}$$

$$\Omega_q (1+z)^{3\gamma_q} \equiv \Omega_{\Lambda} (1 + \frac{\Omega_M}{\alpha \tau \Omega_{\Lambda}} z (1+z)^3 \ln C)$$

$$w_{eff} \equiv \gamma_{eff} - 1 \approx \frac{\Omega_M (1+4A)(1-\sqrt{2A})}{3\alpha \tau \Omega_{\Lambda} B} - 1.$$

$$A(\Omega_{\Lambda}), B(\Omega_{\Lambda}), C(\Omega_{\Lambda}, z).$$
 If $\Omega_{\Lambda} > \frac{1}{3} \Longrightarrow w_{eff} < -1$

stant

A decaying dark matter producing quintessence field: HZ 03, 04

 \star ϕ : quintessence condensate, ϕ_x : scalar dark matter

$$\mathcal{L} = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi_x \partial_{\nu} \phi_x + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi_x, \phi, J) \right] + \mathcal{L}_J$$

$$V(\phi_x, \phi, J) = V(\phi) + V(\phi_x) + g\phi_x^2 \phi^2 + W(\phi_x, \phi, J)$$

- ★ General behavior of this model is controlled by a feedback between the density of dark matter and the production rate of quintessence condensate. ⇒ No fine-tuning of the quintessence potential or relative initial abundance which is necessary in interacting models.
- * A tracking solution exists for orders of magnitude variation in parameters.

APC, May 2009

Decaying Super Heavy Dark Matter and Quintessence

* An important issue in this model as well as other interacting quintessence model is the microphysics of condensate evolution. HZ 06

Dark Energy Measurements

 \star Definition of H(z) used for data analysing:

$$\frac{H^2(z)}{H_0^2} = \frac{\rho(z)}{\rho_0} = \Omega_m (1+z)^3 + \Omega_{hot} (1+z)^4 + \Omega_{de} (1+z)^{3\gamma(z)}$$

- * When $\gamma = cte.$, $\gamma = w + 1$, $w \equiv p/\rho$.
- ***** Cosmological constant: $\gamma = 0$.
- * Quintessence models: $\gamma > 0$.
- \star Phantom models: $\gamma < 0$.

In this definition if $\mathbf{w} < -1$, the null energy condition $\rho_{de} + p_{de} > 0$ is violated.

Most Recent Estimation of w

TI.			
Fit	$\Omega_{\mathbf{M}}$	Ω_k	w
SNe	0.287+0.029+0.039	0 (fixed)	-1 (fixed)
SNe+BAO	0.285 + 0.020 + 0.011	0 (fixed)	$-1.011^{+0.076+0.083}_{-0.082-0.087}$
SNe+CMB	0.265+0.022+0.018	0 (fixed)	-0.955+0.060+0.059
SNe+BAO+CMB	0.274+0.016+0.013	0 (fixed)	-0.969+0.059+0.063 -0.063-0.066
SNe+BAO+CMB	0.285+0.020+0.011	$-0.009^{+0.009+0.002}_{-0.010-0.003}$	-1 (fixed)
SNe+BAO+CMB	0.285+0.020+0.010	$-0.010^{+0.010+0.006}_{-0.011-0.004}$	$-1.001^{+0.069}_{-0.073}^{+0.080}_{-0.082}$

- * The sign of $\gamma \equiv w+1$ and its redshift dependence have a crucial role in discriminating between models.
- * Although strong variation of w at low redshifts is practically ruled out Riess, et al. 06, small evolution is yet possible.
- * There is a large degeneracy between cosmological parameters and data analysis depends on the parametrization of w.
- * Fitting methods probably can never achieve enough precision to discriminate a dark energy from a Cosmological Constant Krauss et al. 07.
- * We must find a direct method to measure w and its evolution.

Direct Measurement of γ

* Assuming a constant w, we define A(z): HZ 06

$$A(z) \equiv \frac{1}{3(1+z)^2 \rho_0} \frac{d\rho}{dz} - \Omega_m = \gamma \Omega_{de} (1+z)^{3(\gamma-1)}$$

Properties of A(z):

- \star It is proportional to γ .
- **★** From observations:

$$|\gamma| \ll 1 \sim 0 \Longrightarrow \{|A(z)|\}_{max} = A(z=0)$$

- * Less low redshift SN smaller volume but more precise measurements.
- * The sign of dA(z)/dz is opposite to the sign of $\gamma \Longrightarrow A(z)$ is concave or convex function of redshift, respectively for positive or negative γ .
- * Small uncertainties on the measurement of Ω_m shift A(z) but does not change its geometry

Direct Measurement of γ

* If the equation of state of the dark energy depends on redshift: HZ 07

$$\gamma(z) = \frac{1}{\ln(1+z)} \int_0^z dz' \frac{1+w(z')}{1+z'}$$

$$w(z) = \frac{p_{de}(z)}{\rho_{de}(z)}$$
 (Valid if no interaction with other fields)

* Observations show that at low redshifts w(z) is constant or varies slowly. Riess et al. 06, Serra et al. 07

$$w(z) = w_0 + w_1 z$$
 , $A(z) \approx \Omega_{de} \left(\gamma(z) + w_1(\frac{z^2}{2} + \ldots) \right) (1+z)^{3(\gamma-1)}$

* If w_1 is small, the effect of redshift dependence on the sign of A(z) would be small.

Application to Observations

* $A(z) + \Omega_m$ can be determined from Luminosity distance, itself measurable from the peak luminosity of SN Type Ia (or from LSS):

$$A(z) + \Omega_m \equiv \frac{1}{3(1+z)^2 \rho_0} \frac{d\rho}{dz} = \frac{\frac{2}{1+z} (\frac{dD_l}{dz} - \frac{D_l}{1+z}) - \frac{d^2 D_l}{dz^2}}{\frac{3}{2} (\frac{dD_l}{dz} - \frac{D_l}{1+z})^3}$$

$$D_l = (1+z)H_0 \int_0^z \frac{dz}{H(z)}$$

- \star Uncertainties in H_0 scale $A(z) + \Omega_m$, but don't change its geometry.
- ★ No switching from concave to convex or vis-versa.
- * This method is less sensitive to other uncertainties of cosmological parameters than fitting methods.
- * This method can be used for SN and LSS data. It may be possible to find similar relations for CMB. HZ, in preparation

Application to Observations

Riess et al. compilation (z < 0) only)

HZ 07 Top: SNLS data 05; Bottom: SNLS data (z < 0.45 only)

Classification of Models and their Observables

- * As the particle physics of dark energy is unknown, we can phenomenologically classify models as:
 - Dark energy is a cosmological constant and dark matter decays or has self-interaction.
 - Dark energy is a scalar field produced by the decay of dark matter.
 - Dark energy is a scalar and has interaction with dark matter of a sector of visible matter e.g. neutrinos.

Classification of dark energy models and their discriminating observables.

Distinguishing between Models

Direct observation of effects related to dark energy:

Anisotropy of dark energy.In the case of a decaying dark matter to a quintessence:

$$\partial^{i}(\delta\phi) \approx -\frac{\Gamma_{q}\bar{\rho}_{x}\delta u_{x}^{i}}{V'(\bar{\phi},\bar{\rho}_{x})}$$

- * For a metastable dark matter this quantity is very strongly suppressed except in the very early Universe. (HZ 03
- ★ It can change the transfer function or spectrum index. (Mainini & Bonometto 07)
- * If other fields/particles are involved in decay/interaction, they produce a hot dark matter and cosmic rays.
- ★ If quintessence field does not condensate at late times, it contributes to HDM.

 APC, May 2009

Outline

- * We have a long way to go to understand the nature of dark energy.
- * Present data seems to prefer $w \lesssim -1$, but uncertainties are yet too large to make a definitive conclusion.
- * What will (or will not) be found by LHC Higgs, supersymmetry, any other extension to the Standard Model is crucial as a hint to the nature of dark energy.
- * Constraints on the HDM and its evolution can be important for understanding dark energy.
- * No single observation can select a unique model. We need to investigate both cosmological and particle physics aspects of dark energy.