Current Status of Cosmological Inflation

BICEP2 B-mode signal

Will KinneyVirtual Institute of Astroparticle PhysicsUniversity at Buffalo The State University of New York23 January 2015

The CMB Angular Power Spectrum (1998)

The CMB is Polarized!

Map is 5 degrees square

Even- and Odd-parity Polarization

CMB Polarization Angular Power Spectra

E-mode Polarization

(Komatsu, et al., arXiv:0912.0522)

Anisotropy and the E-mode

(Image: Wayne Hu)

Anisotropy and the E-mode

(Image: Wayne Hu)

Anisotropy and the E-mode

(Image: Wayne Hu)

2002: DASI Detects E-mode Polarization

Map is 5 degrees square

Primordial Gravity Waves

Gravity Waves Generate B-mode Polarization

(Image: bicepkeck.org)

BICEP: Pretty Swirly Things

BICEP2 B-mode signal

Is It Dust?

BICEP: Dust Model "DDM1" (One of Five)

Polarization Fraction

Apparent polarization fraction (p) at 353 GHz, 1° resolution Not CIB subtracted $\sqrt{Q^2 + U^2}$

 $p = \frac{\sqrt{Q}}{\sqrt{Q}}$ 0% 0.20 p ranges from 0 to $\sim 20\%$ Low p values in inner MW plane. Consistent with unpolarized CIB Large p values in outer plane and intermediate latitudes

FIG. 4: Comparison of several predictions for the 150 GHz signal versus the reported BICEP2 \times BICEP2 and the preliminary BICEP2 \times Keck measurements. The predictions are a combination of the dust polarization signal and the predicted lensing

Flauger, et al. arXiv:1405.7351:

"To understand the noise introduced by digitization, we have developed a pipeline that takes HEALPix maps, converts them to GIF files, and inserts them into a presentation which is then saved as a PDF file. We then apply our digitization procedure to convert the PDF files back to GIFs and then to HEALPix data files. At 353 GHz, the polarized emission is dominated by dust. We thus apply this pipeline to ten simulations of dust maps. This has allowed us to characterize the effects introduced by the digitization procedure in the form of a transfer function."

Frequency Dependence of CMB Foregrounds

BICEP 100 GHz / BICEP2 150 GHz Spectrum

(Image: bicepkeck.org)

The Planck Satellite

Planck all-sky foreground maps

(Image: Planck Collaboration)

September 2014: Planck Dust Maps

Planck Collaboration: Dust polarization at high latitudes

Planck Collaboration, arXiv:1409.5738

September 2014: Planck Dust Maps

Planck Collaboration: Dust polarization at high latitudes

Planck: Frequency Extrapolation

Planck Collaboration, arXiv:1409.5738

Planck: Frequency Extrapolation

Planck: Dust Angular Power Spectrum

Planck Collaboration, arXiv:1409.5738

BICEP2 In Light of Planck Dust Maps

What next?

- Planck / BICEP2 joint analysis
- Planck polarization data

(WHK, Kolb, Moradinezhad, Riotto)

Keck Array

- $5 \times BICEP2$
- 150 GHz / 100 GHz

Keck Array

SPIDER Balloon Experiment

- 20-day circumpolar flight
- 90 / 150 / 280 GHz
- Delayed by govt shutdown!

SPIDER Balloon Experiment

Simple Inflation Models

Order parameter: homogeneous scalar field ϕ

Energy density:
$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$

Pressure: $p = \frac{1}{2}\dot{\phi}^2 - V(\phi)$

Simple Inflation Models

Order parameter: homogeneous scalar field ϕ

Energy density: $\rho = \frac{1}{2}\phi^2 + V(\phi)$ Pressure: $p = \frac{1}{2}\phi^2 - V(\phi)$ slow roll

$$p\simeq -
ho$$

Spectra of Primordial Perturbations

Tensor (gravity wave) perturbations: $P_{\rm T} \sim H \propto k^{n_{\rm T}}$ Scalar (density) fluctuations: $P_{\rm S} \sim \frac{H^2}{\dot{\phi}} \propto k^{n-1}$

BICEP: Pretty Swirly Things

Energy scale of inflation: $\Lambda \simeq r^{1/4} \times (3.3 \times 10^{16} \text{ GeV})$

$\Lambda = [2.1, 2.4] \times 10^{16} \text{ GeV}$

Single-Field Inflation: The Consistency Condition

Slow Roll Parameter
$$\epsilon = \frac{m_{\rm Pl}^2}{16\pi} \left(\frac{V'(\phi)}{V(\phi)}\right)^2$$

Tensor/Scalar Ratio $r = 16\epsilon$

Tensor Power Spectrum $P_T \propto k^{n_T} = k^{-2\epsilon}$

Planck + BICEP Tensor Spectral Index

Primordial B-modes and Single-Field Inflation

Small Field or Large Field?

Lyth Bound

 $\Delta \phi < 0.1 M_p \Rightarrow r < 0.01 \Rightarrow \frac{H}{M_p} < 10^{-5}$

Constraints on Higgs-like Inflation

(Freese & WHK, arXiv:1403.5277)

Constraints on Natural Inflation

Constraints on Natural Inflation

(Freese & WHK, arXiv:1403.5277)

Flow Monte Carlo: 20,000 Inflation Models

The Inflationary Flow Equations

 $\frac{d\epsilon}{dN} = 2\epsilon \left(\eta - \epsilon\right)$ $\frac{d\eta}{dN} = {}^{2}\lambda - \epsilon\eta$ $\frac{d}{dN} \propto \sqrt{\epsilon} \frac{d}{d\phi}$ $\frac{d^{\ell}\lambda}{dN} = \left[(\ell-1)\eta - \ell\epsilon\right]^{\ell}\lambda + {}^{(\ell+1)}\lambda$ $\ell < 8$

Monte Carlo Potential Reconstruction

Monte Carlo Potential Reconstruction

Monte Carlo Potentials and the Lyth Bound

Direct Dectection: DECIGO

 $\Omega_{\rm GW} = (2.6 \pm 0.2) \times 10^{-16}$ $k = 1.6 \times 10^{14} \,\,{\rm Mpc}^{-1}$

Direct Dectection: DECIGO Forecast

(Caligiuri, WHK, Kosowsky, arXiv:1409.3195)

Direct Dectection: DECIGO Forecast

(Caligiuri, WHK, Kosowsky, arXiv:1409.3195)

Direct Dectection: DECIGO Forecast

Future Missions

Planck Forecast BB Sensitivity

(WHK, Kolb, Moradinezhad, Riotto)

PRISM Assumed Sensitivities

ν	$n_{\rm det}$	$ heta_{\mathrm{fwhm}}$	σ_I p	er det	$\sigma_{(Q,U)}$ per det		
			$\mu K \cdot s$	arcmin	$\mu K \cdot \operatorname{arcmin}$		
GHz		arcmin	RJ	CMB	RJ	CMB	
105	250	4.8'	34.5	45.6	48.8	64.4	
135	300	3.8'	28.6	44.9	40.4	63.4	
160	350	3.2'	24.4	45.5	34.5	64.3	
185	350	2.8'	20.8	47.1	29.4	66.6	
200	350	2.5'	18.9	48.5	26.7	68.6	

P. Andre et al. [PRISM Collaboration], arXiv:1306.2259 [astro-ph.CO].

PRISM Forecast BB Sensitivity

PRISM Forecast Model Constraints

PRISM Forecast: Consistency Condition

COrE Assumed Sensitivities

ν	$n_{ m det}$	$ heta_{\mathrm{fwhm}}$	(σ_I	$\sigma_{(Q,U)}$		
			$\mu K \cdot \epsilon$	arcmin	$\mu K \cdot \operatorname{arcmin}$		
GHz		arcmin	RJ	CMB	RJ	CMB	
75	300	14.0	2.36	2.73	4.09	4.72	
105	400	10.0	2.03	2.68	3.50	4.63	
135	550	7.8	1.68	2.63	2.90	4.55	
165	750	6.4	1.38	2.67	2.38	4.61	
195	1150	5.4	1.07	2.63	1.84	4.54	
225	1800	4.7	0.82	2.64	1.42	4.57	

F. R. Bouchet et al. [COrE Collaboration], arXiv:1102.2181

COrE Forecast BB Sensitivity

CoRE Forecast Model Constraints

COrE Forecast: Consistency Condition

Five Questions We Can (Maybe) Answer

- (1) What is the shape of the tensor power spectrum? Is the consistency condition satisfied?
 (Planck/DECIGO)
- (2) Do we need a non-power-law scalar spectrum to resolve the tension between BICEP and Planck? (Extra neutrino?)
- (3) What is the form of the leading-order operator in the inflationary potential? (Reconstruction?)
- (4) Is there evidence for quantum gravity effects, for example a Planck-scale cutoff on quantum modes of order H/M?
- (5) Can we explain CMB anomalies, such as the hemispherical asymmetry observed by Planck? ("Just enough" inflation?)