Could massive primordial black holes be the dark matter?

Sébastien Clesse

based on: S.C., J. Garcia-Bellido arXiv:1501.07565, arXiv:1603.05234, arXiv:1610.08479

RWTH - Aachen University Institute for Theoretical Particle Physics and Cosmology (TTK)

Virtual Institute of Astroparticle (VIA) Physics, Seminar, 27th. January, 2017

Outline

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

1 Dark Matter

Primordial Black Holes

- PBH in Hybrid Inflation
- Constraints on PBH abundances
- 5 After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives Dark Matter accounts for $\Omega_{\rm DM}=0.266\pm0.013$ of the Universe's energy density today (Planck 2015)

Observational evidences: CMB, weak gravitational lensing, galaxy rotation curves, large scale structures...

DM must be nearly collisionless, non relativistic and stable

- A Weakly Interacting Massive Particle (WIMP)
- Axion, LSP, gravitino, others...
- Black holes: the only already known candidate, but they must be massive and primordial

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives Dark Matter accounts for $\Omega_{\rm DM}=0.266\pm0.013$ of the Universe's energy density today (Planck 2015)

Observational evidences: CMB, weak gravitational lensing, galaxy rotation curves, large scale structures...

DM must be nearly collisionless, non relativistic and stable

- A Weakly Interacting Massive Particle (WIMP)
- Axion, LSP, gravitino, others...
- Black holes: the only already known candidate, but they must be massive and primordial

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives Dark Matter accounts for $\Omega_{\rm DM}=0.266\pm0.013$ of the Universe's energy density today (Planck 2015)

Observational evidences: CMB, weak gravitational lensing, galaxy rotation curves, large scale structures...

DM must be nearly collisionless, non relativistic and stable

- A Weakly Interacting Massive Particle (WIMP)
- Axion, LSP, gravitino, others...
- Black holes: the only already known candidate, but they must be massive and primordial

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

- Primordial Black Holes (PBH) formed in the early Universe when sufficiently important density fluctuations collapse gravitationally
- When the size of the fluctuation becomes smaller than the Hubble horizon: $k \leftrightarrow t$ so that $k = a(t)H(t) \leftrightarrow M = \frac{M_{\rm pl}^2}{H_{\rm inf}} e^{2N_k}$
- $\bullet\,$ Fraction β of the Universe collapsing into PBH of mass M at t_M :

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

variance related to the power spectrum of curvature (density) fluctuations $\sigma^2 = \mathcal{P}_{\zeta}(k_M)$

- Model parameter: threshold curvature fluctuation $0.01 \lesssim \zeta_c \lesssim 1$ (e.g. $\zeta_c = 0.086$ in Harada et al., 1309.4201)
- At the time of formation, $\beta \ll 1$, but $\rho_{\rm PBH} \propto 1/a^3$ whereas $\rho_{\rm rad} \propto 1/a^4$ and thus one can have $\beta \sim \mathcal{O}(1)$ and $\Omega_{\rm PBH} = \Omega_{\rm DM} \simeq 0.27$ today.

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

- Primordial Black Holes (PBH) formed in the early Universe when sufficiently important density fluctuations collapse gravitationally
- When the size of the fluctuation becomes smaller than the Hubble horizon: $k \leftrightarrow t$ so that $k = a(t)H(t) \leftrightarrow M = \frac{M_{\rm Pl}^2}{H_{\rm inc}} e^{2N_k}$

• Fraction β of the Universe collapsing into PBH of mass M at t_M :

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

variance related to the power spectrum of curvature (density) fluctuations $\sigma^2 = \mathcal{P}_{\zeta}(k_M)$

- Model parameter: threshold curvature fluctuation $0.01 \lesssim \zeta_c \lesssim 1$ (e.g. $\zeta_c = 0.086$ in Harada et al., 1309.4201)
- At the time of formation, $\beta \ll 1$, but $\rho_{\rm PBH} \propto 1/a^3$ whereas $\rho_{\rm rad} \propto 1/a^4$ and thus one can have $\beta \sim \mathcal{O}(1)$ and $\Omega_{\rm PBH} = \Omega_{\rm DM} \simeq 0.27$ today.

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

- Primordial Black Holes (PBH) formed in the early Universe when sufficiently important density fluctuations collapse gravitationally
- When the size of the fluctuation becomes smaller than the Hubble horizon: $k \leftrightarrow t$ so that $k = a(t)H(t) \leftrightarrow M = \frac{M_{\rm pl}^2}{H_{\rm inf}} e^{2N_k}$
- Fraction β of the Universe collapsing into PBH of mass M at t_M :

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

variance related to the power spectrum of curvature (density) fluctuations $\sigma^2 = \mathcal{P}_\zeta(k_M)$

- Model parameter: threshold curvature fluctuation $0.01 \lesssim \zeta_c \lesssim 1$ (e.g. $\zeta_c = 0.086$ in Harada et al., 1309.4201)
- At the time of formation, $\beta \ll 1$, but $\rho_{\rm PBH} \propto 1/a^3$ whereas $\rho_{\rm rad} \propto 1/a^4$ and thus one can have $\beta \sim \mathcal{O}(1)$ and $\Omega_{\rm PBH} = \Omega_{\rm DM} \simeq 0.27$ today.

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

- Primordial Black Holes (PBH) formed in the early Universe when sufficiently important density fluctuations collapse gravitationally
- When the size of the fluctuation becomes smaller than the Hubble horizon: $k \leftrightarrow t$ so that $k = a(t)H(t) \leftrightarrow M = \frac{M_{\rm pl}^2}{H_{\rm inf}} e^{2N_k}$
- $\bullet\,$ Fraction β of the Universe collapsing into PBH of mass M at t_M :

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

variance related to the power spectrum of curvature (density) fluctuations $\sigma^2 = \mathcal{P}_\zeta(k_M)$

- Model parameter: threshold curvature fluctuation $0.01 \lesssim \zeta_c \lesssim 1$ (e.g. $\zeta_c = 0.086$ in Harada et al., 1309.4201)
- At the time of formation, $\beta \ll 1$, but $\rho_{\rm PBH} \propto 1/a^3$ whereas $\rho_{\rm rad} \propto 1/a^4$ and thus one can have $\beta \sim \mathcal{O}(1)$ and $\Omega_{\rm PBH} = \Omega_{\rm DM} \simeq 0.27$ today.

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

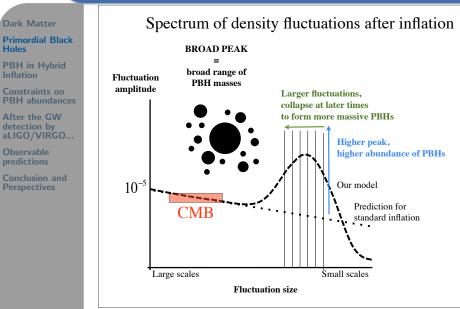
Observable predictions

Conclusion and Perspectives

- Primordial Black Holes (PBH) formed in the early Universe when sufficiently important density fluctuations collapse gravitationally
- When the size of the fluctuation becomes smaller than the Hubble horizon: $k \leftrightarrow t$ so that $k = a(t)H(t) \leftrightarrow M = \frac{M_{\rm pl}^2}{H_{\rm inf}} e^{2N_k}$
- Fraction β of the Universe collapsing into PBH of mass M at t_M :

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

variance related to the power spectrum of curvature (density) fluctuations $\sigma^2 = \mathcal{P}_\zeta(k_M)$

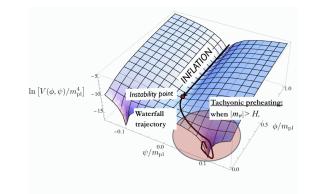

- Model parameter: threshold curvature fluctuation $0.01 \lesssim \zeta_c \lesssim 1$ (e.g. $\zeta_c = 0.086$ in Harada et al., 1309.4201)
- At the time of formation, $\beta \ll 1$, but $\rho_{\rm PBH} \propto 1/a^3$ whereas $\rho_{\rm rad} \propto 1/a^4$ and thus one can have $\beta \sim \mathcal{O}(1)$ and $\Omega_{\rm PBH} = \Omega_{\rm DM} \simeq 0.27$ today.

credit: Ilia Musco, Sam Young

Dark Matter	
Primordial Black Holes	
PBH in Hybrid Inflation	
Constraints on PBH abundances	1
After the GW detection by aLIGO/VIRGO	
Observable predictions	
Conclusion and Perspectives image.png	

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

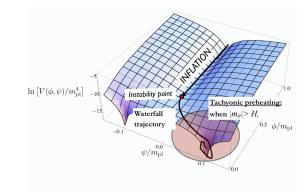
Observable predictions

Conclusion and Perspectives Inflation with two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION It's like playing mini-golf... but the goal is to avoid the holes!

Fast waterfall: usual regime (less than 1-efold) \rightarrow DISFAVORED Mild waterfall: inflation continues... (> 60 e-folds) \rightarrow RULED OUT Transitory case: a few tens of e-folds (CMB \rightarrow inflation in the valley)

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

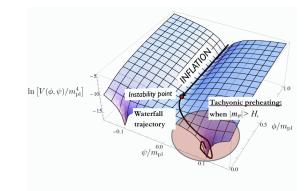
Observable predictions

Conclusion and Perspectives Inflation with two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION It's like playing mini-golf... but the goal is to avoid the holes!

Fast waterfall: usual regime (less than 1-efold) \rightarrow DISFAVORED Mild waterfall: inflation continues... (> 60 e-folds) \rightarrow RULED OUT Transitory case: a few tens of e-folds (CMB \rightarrow inflation in the valley

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

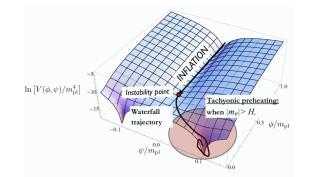
After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives Inflation with two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION It's like playing mini-golf... but the goal is to avoid the holes!

Fast waterfall: usual regime (less than 1-efold) \rightarrow DISFAVORED Mild waterfall: inflation continues... (> 60 e-folds) \rightarrow RULED OUT Transitory case: a few tens of e-folds (CMB \rightarrow inflation in the valley)

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives It's like playing mini-golf... but the goal is to avoid the holes!

$$V(\phi,\psi) = \Lambda \left[\left(1 - \frac{\psi^2}{M^2} \right)^2 + \frac{(\phi - \phi_{\rm c})}{\mu_1} - \frac{(\phi - \phi_{\rm c})^2}{\mu_2^2} + \frac{2\phi^2\psi^2}{M^2\phi_{\rm c}^2} \right]$$

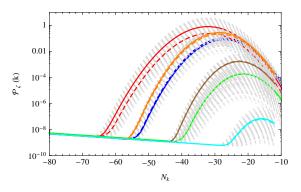
Along $\psi = 0$, experts will recognize the first terms of a Taylor expansion of logarithmic radiative corrections (as in F-term, D-term, loop inflation)

Our model - the primordial power spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation


Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives Power spectrum of curvature perturbations calculated

- Numerically using the multi-field theory cosmological perturbations
- \bullet Analytically and numerically using the δN formalism

Broad peak in the power spectrum Position, width and amplitude fixed by $\Pi \equiv M \sqrt{\phi_c \mu_1} / M_{\rm pl}^2$

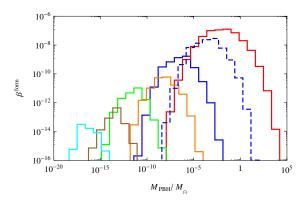
Our model - PBH mass spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances


After the GW detection by aLIGO/VIRGO...

Observable predictions

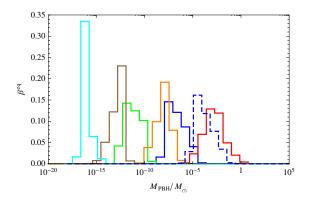
Conclusion and Perspectives

Then use your formula for PBH formation...

$$\beta^{\text{form}}(M) \equiv \left. \frac{\rho_{\text{PBH}}(M)}{\rho_{\text{tot}}} \right|_{t=t_k} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\zeta^2}{2\sigma^2}} d\zeta$$

Our model - PBH mass spectrum

Dark Matter


Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

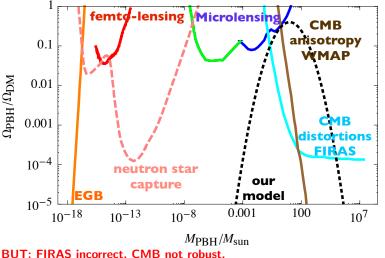
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

...and let PBH evolve until matter-radiation equality....

- ullet Surprisingly, reasonable values of $\zeta_c
 ightarrow$ Dark Matter abundance
- ullet Relatively broad spectrum, PBH mass related to the parameter μ_1

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

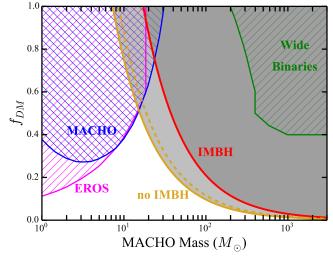
Observable predictions

Conclusion and Perspectives

possible (early) clustering/merging $\rightarrow 10 - 100 M_{\odot}$ still allowed

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

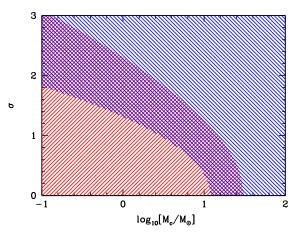
After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

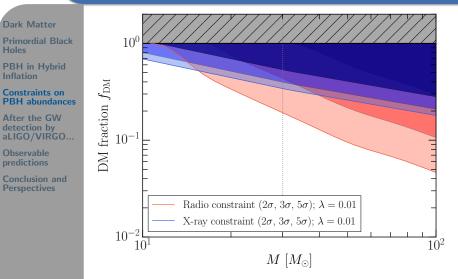
Eridanius II dwarf galaxy observations, Li et al., 1611.05052

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO..


Observable predictions

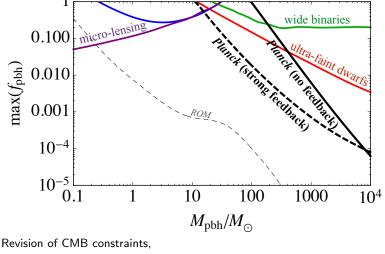
Conclusion and Perspectives

Constraints from Microlensing and Heating of dwarf galaxies Broad log-normal distribution of width σ , A. Green, 1609.01143 But: effect of IMBH? Clustering in the halo?

Radio and X-rays from the Milky Way, Gaggero et al., 1612.00457

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Ali-Haïmout, Kamionkowski, 1612.005644

Possible link with the aLIGO/VIRGO discovery

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

In September 2015, Advanced LIGO / VIRGO detected the merging of two BHs of 36 and 29 solar masses

Inferred merging rate: $2 - 400 yr^{-1} Gpc^{-3}$

3H masses beyond expectations:

- More exotic scenario for the formation of BH binaries?
- The sign of a whole population of massive PBHs?

Is the inferred merging rate consistant with PBH dark matter ? S.C., J. Garcia-Bellido, 1603.05234, S. Bird et al., 1603.00464, M. Sasaki et al., 1603.08338

- No, if PBHs are uniformly distributed in the halo of massive galaxies
- Yes, if PBHs are regrouped in sub-halos such as ultra-faint dwarf galaxies

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives In September 2015, Advanced LIGO / VIRGO detected the merging of two BHs of 36 and 29 solar masses

Inferred merging rate: $2 - 400 yr^{-1} Gpc^{-3}$

BH masses beyond expectations:

- More exotic scenario for the formation of BH binaries?
- The sign of a whole population of massive PBHs?

Is the inferred merging rate consistant with PBH dark matter ? S.C., J. Garcia-Bellido, 1603.05234, S. Bird et al., 1603.00464, M. Sasaki et al., 1603.08338

- No, if PBHs are uniformly distributed in the halo of massive galaxies
- Yes, if PBHs are regrouped in sub-halos such as ultra-faint dwarf galaxies

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives In September 2015, Advanced LIGO / VIRGO detected the merging of two BHs of 36 and 29 solar masses

Inferred merging rate: $2 - 400 yr^{-1} Gpc^{-3}$

BH masses beyond expectations:

- More exotic scenario for the formation of BH binaries?
- The sign of a whole population of massive PBHs?

Is the inferred merging rate consistant with PBH dark matter ? S.C., J. Garcia-Bellido, 1603.05234, S. Bird et al., 1603.00464, M. Sasaki et al., 1603.08338

- No, if PBHs are uniformly distributed in the halo of massive galaxies
- Yes, if PBHs are regrouped in sub-halos such as ultra-faint dwarf galaxies

PBH merging rates - sharp vs. broad mass spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives 1. Sharp mass spectrum (all PBH have the same mass):

 $\tau \simeq 1.4 \times 10^{-8} f_{\rm DM} \delta_{\rm PBH}^{\rm loc} {\rm yr}^{-1} {\rm Gpc}^{-3}$

Density contrast $\delta^{\rm loc}_{\rm PBH} \sim 10^9 - 10^{10} \rightarrow {\rm LIGO}$ rates

\sim DM density contrast in ultra-faint dwarf galaxies

This may solve several problems :

- Missing satellite problem
- Too big to fail problem
- Orrelations in the X-ray and Infrared background
- Evade micro-lensing and CMB constraints due to clustering
- 0 Broad spectrum: subdominant $\sim 10^5 M_{\odot}$ seeds of sumermassive and intermediate BH
- 2. Broad mass spectrum

PBH merging rates - sharp vs. broad mass spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

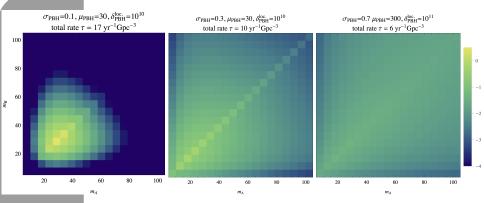
After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives 1. Sharp mass spectrum (all PBH have the same mass):

 $\tau \simeq 1.4 \times 10^{-8} f_{\rm DM} \delta_{\rm PBH}^{\rm loc} {\rm yr}^{-1} {\rm Gpc}^{-3}$

Density contrast $\delta^{\rm loc}_{\rm PBH} \sim 10^9 - 10^{10} \rightarrow {\rm LIGO}$ rates


\sim DM density contrast in ultra-faint dwarf galaxies

This may solve several problems :

- Missing satellite problem
- 2 Too big to fail problem
- Orrelations in the X-ray and Infrared background
- Sevade micro-lensing and CMB constraints due to clustering
- 0 Broad spectrum: subdominant $\sim 10^5 M_{\odot}$ seeds of sumermassive and intermediate BH
- 2. Broad mass spectrum

RWTHAACHEN UNIVERSITY

PBH merging rates - sharp vs. broad mass spectrum

Merging rates of BHs with masses $m_{\rm A}$ and $m_{\rm B}$, the color scale representing $\log(\tau \ {\rm yr} \ {\rm Gpc}^3)$.

Reconstruction of the PBH mass spectrum with $\sim \mathcal{O}(10^3)$ merging events

Observable predictions

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

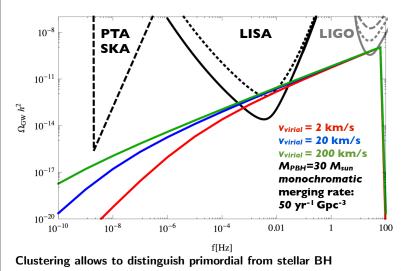
Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

- Merging events \rightarrow LIGO, VIRGO...
- Background of gravitational waves \rightarrow LIGO, VIRGO, eLISA, DECIGO, PTAs...
- $\textbf{0} \quad \text{Detection of ultra-faint dwarf galaxies} \rightarrow \textbf{DES, Euclid}$
- Correlated anomalies in the CIB and XCB, A. Kashlinski, 1605.04023
- Interpretent of the second second
- $\textcircled{O} X\mbox{-ray heating due to PBH} \rightarrow \mbox{ionization of the IGM at high redshifts} \rightarrow 21\mbox{cm signal}$
 - \rightarrow Square Kilometre Array (SKA)
- CMB distortions \rightarrow **PIXIE**
- I Heating of ultra-faint dwarf galaxies, A. Green, 1609.01143

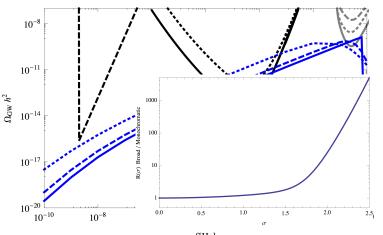

Testable scenario within the next few years!

Background of gravitational waves

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Sébastien Clesse (RWTH)

Observable predictions


Background of gravitational waves

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

 $$^{\rm f[Hz]}$$ Broad spectrum enhances the GW spectrum, unlike stellar BH

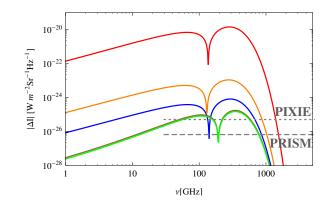
Distortions of the CMB black-body spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances


After the GW detection by aLIGO/VIRGO..

Observable predictions

Conclusion and Perspectives Silk damping at small scales

- \rightarrow Energy injection before last scattering
- \rightarrow Spectral distortions of the CMB black-body spectrum

Peak in \mathcal{P}_{ζ} at small scales \rightarrow CMB distortions are enhanced

Conclusions

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

1. Dark Matter can be made of massive PBH

2. PBH regrouped in sub-halos \rightarrow aLIGO merging rates

3. Fully testable scenario in many ways and epochs (aLIGO/VIRGO, eLISA, Planck, PIXIE, CORE, DES, GAIA, SKA, Euclid)

Perspectives: formation mechanisms, setting new constraints, look for new signals...

Conclusions

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

1. Dark Matter can be made of massive PBH

2. PBH regrouped in sub-halos \rightarrow aLIGO merging rates

3. Fully testable scenario in many ways and epochs (aLIGO/VIRGO, eLISA, Planck, PIXIE, CORE, DES, GAIA, SKA, Euclid)

Perspectives: formation mechanisms, setting new constraints, look for new signals...

Conclusions

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

1. Dark Matter can be made of massive PBH

2. PBH regrouped in sub-halos \rightarrow aLIGO merging rates

3. Fully testable scenario in many ways and epochs (aLIGO/VIRGO, eLISA, Planck, PIXIE, CORE, DES, GAIA, SKA, Euclid)

Perspectives: formation mechanisms, setting new constraints, look for new signals...

Conclusions

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives 1. Dark Matter can be made of massive PBH

2. PBH regrouped in sub-halos \rightarrow aLIGO merging rates

3. Fully testable scenario in many ways and epochs (aLIGO/VIRGO, eLISA, Planck, PIXIE, CORE, DES, GAIA, SKA, Euclid)

Perspectives: formation mechanisms, setting new constraints, look for new signals...

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

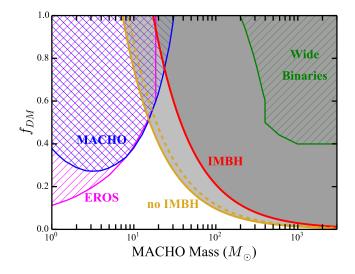
Conclusion and Perspectives

Thank you for your attention

ERI II dwarf galaxy

Dark Matter

Primordial Black Holes


PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

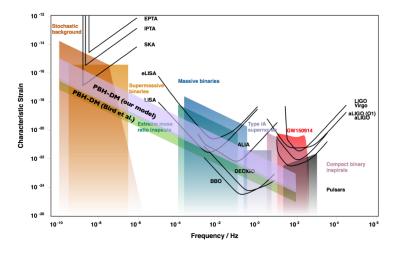
Observable predictions

Conclusion and Perspectives

Background of gravitational waves (preliminary)

Dark Matter

Primordial Black Holes

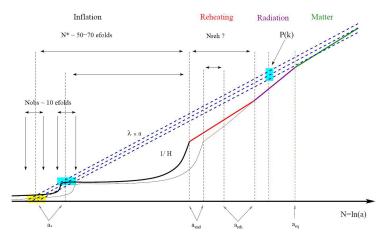

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives



Generalities about inflation

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Slow-roll single-field inflation

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Inflaton field ϕ evolves slowly along its potential $V(\phi)$

Slow-roll dynamics

$$\begin{split} H^2 &= \frac{V(\phi)}{3M_{\rm pl}^2} \text{ and } 3H\dot{\phi} = -\frac{\mathrm{d}V}{\mathrm{d}\phi} \\ \text{Hubble-flow (slow-roll) parameters: } \epsilon_0 &\equiv \frac{H_{\rm ini}}{H} \text{ and } \epsilon_{i+1} \equiv \frac{\mathrm{d}\ln|\epsilon_i|}{\mathrm{d}N} \\ \text{In slow-roll : } \epsilon_1 &\simeq \frac{M_{\rm pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2 \qquad \epsilon_2 \simeq 2M_{\rm pl}^2 \left[\left(\frac{V_{,\phi}}{V}\right)^2 - \frac{V_{,\phi\phi}}{V}\right] \end{split}$$

Observable predictions

Cosmological perturbations:

$$\phi(x,t) = \bar{\phi}(t) + \delta\phi(x,t), \qquad g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$$

- Scalar power spectrum amplitude: $A_{
 m s}\equiv {\cal P}_{\zeta}(k_{
 m p})\simeq rac{H^2}{8\pi^2 M_{
 m pl}^2\epsilon_1}$
- Scalar spectral index: $n_{\rm s} = 1 2\epsilon_1 \epsilon_2$
- Tensor to scalar ratio: $r \simeq 16\epsilon_1$

evaluated at t_* when the pivot scale $k_* = 0.05 \,\mathrm{Mpc}^{-1}$ exits the Hubble radius $(k_* = a(t_*)H(t_*))$

Slow-roll single-field inflation

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Inflaton field ϕ evolves slowly along its potential $V(\phi)$

Slow-roll dynamics

$$\begin{split} H^2 &= \frac{V(\phi)}{3M_{\rm pl}^2} \text{ and } 3H\dot{\phi} = -\frac{\mathrm{d}V}{\mathrm{d}\phi} \\ \text{Hubble-flow (slow-roll) parameters: } \epsilon_0 &\equiv \frac{H_{\rm ini}}{H} \text{ and } \epsilon_{i+1} \equiv \frac{\mathrm{d}\ln|\epsilon_i|}{\mathrm{d}N} \\ \text{In slow-roll : } \epsilon_1 &\simeq \frac{M_{\rm pl}^2}{2} \left(\frac{V,\phi}{V}\right)^2 \qquad \epsilon_2 \simeq 2M_{\rm pl}^2 \left[\left(\frac{V,\phi}{V}\right)^2 - \frac{V,\phi\phi}{V}\right] \end{split}$$

Observable predictions

Cosmological perturbations:

$$\phi(x,t) = \bar{\phi}(t) + \delta\phi(x,t), \qquad g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$$

- Scalar power spectrum amplitude: $A_{\rm s}\equiv {\cal P}_\zeta(k_{\rm p})\simeq {H^2\over 8\pi^2 M_{\rm pl}^2\epsilon_1}$
- Scalar spectral index: $n_{\rm s} = 1 2\epsilon_1 \epsilon_2$
- Tensor to scalar ratio: $r \simeq 16\epsilon_1$

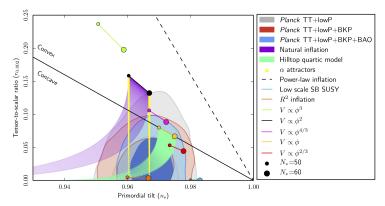
evaluated at t_* when the pivot scale $k_* = 0.05 Mpc^{-1}$ exits the Hubble radius $(k_* = a(t_*)H(t_*))$

After Planck...

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation


Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Contraints on $n_{\rm s}, r...$ (Planck 2015, 1502.02111)

If two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION

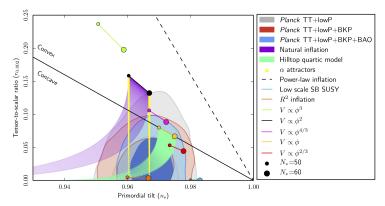
Playing hybrid inflation is like playing mini-golf... but the aim is to avoid the holes!

After Planck...

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation


Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Contraints on $n_{\rm s}, r...$ (Planck 2015, 1502.02111)

If two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION

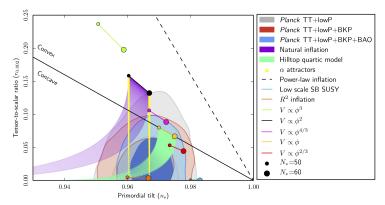
Playing hybrid inflation is like playing mini-golf... but the aim is to avoid the holes!

After Planck...

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation


Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Contraints on $n_{\rm s}, r...$ (Planck 2015, 1502.02111)

If two scalar fields (ϕ and ψ) \rightarrow HYBRID INFLATION

Playing hybrid inflation is like playing mini-golf... but the aim is to avoid the holes!

Our model - the primordial power spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Problems with hybrid inflation:

- Original model (in the vacuum dominated regime) predicts $n_{\rm s}>1$ \rightarrow RULED OUT
- Supersymmetric realizations (F-term and D-term): $0.98 \lesssim n_{\rm s} \lesssim 1$ \rightarrow STRONGLY DISFAVORED
- Mild waterfall case ? $n_{\rm s} \simeq 1-4/N_{k_{\rm p}} \lesssim 0.94$ \rightarrow RULED OUT

Transitory case + two-field potential:

$$V(\phi,\psi) = \Lambda \left[\left(1 - \frac{\psi^2}{M^2} \right)^2 + \frac{(\phi - \phi_c)}{\mu_1} - \frac{(\phi - \phi_c)^2}{\mu_2^2} + \frac{2\phi^2\psi^2}{M^2\phi_c^2} \right]$$

Along $\psi = 0$, experts will recognize the first terms of a Taylor expansion of logarithmic radiative corrections (as in F-term, D-term, loop inflation)

• $n_{\rm s} = 1 - \frac{4M_{\rm Pl}^2}{\mu_2^2}$ (dominated by ϵ_2 , i.e. the curvature of the potential) • $\mathcal{P}_{\zeta}(k_{\rm p}) = \frac{\Lambda \mu_1^2}{12\pi^2 M_{\rm pl}^6} \left(\frac{k_{\rm p}}{k_{\phi c}}\right)^{n_{\rm s}-1}$

Our model - the primordial power spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Problems with hybrid inflation:

- Original model (in the vacuum dominated regime) predicts $n_{\rm s}>1$ \rightarrow RULED OUT
- Supersymmetric realizations (F-term and D-term): $0.98 \lesssim n_{\rm s} \lesssim 1$ \rightarrow STRONGLY DISFAVORED
- Mild waterfall case ? $n_{\rm s} \simeq 1-4/N_{k_{\rm p}} \lesssim 0.94$ \rightarrow RULED OUT

Transitory case + two-field potential:

$$V(\phi,\psi) = \Lambda \left[\left(1 - \frac{\psi^2}{M^2} \right)^2 + \frac{(\phi - \phi_c)}{\mu_1} - \frac{(\phi - \phi_c)^2}{\mu_2^2} + \frac{2\phi^2\psi^2}{M^2\phi_c^2} \right]$$

Along $\psi = 0$, experts will recognize the first terms of a Taylor expansion of logarithmic radiative corrections (as in F-term, D-term, loop inflation)

• $n_{\rm s} = 1 - \frac{4M_{\rm pl}^2}{\mu_2^2}$ (dominated by ϵ_2 , i.e. the curvature of the potential) • $\mathcal{P}_{\zeta}(k_{\rm p}) = \frac{\Lambda \mu_1^2}{12\pi^2 M_{\rm pl}^6} \left(\frac{k_{\rm p}}{k_{\phi \rm c}}\right)^{n_{\rm s}-1}$

Our model - the primordial power spectrum

Dark Matter

Primordial Black Holes

PBH in Hybrid Inflation

Constraints on PBH abundances

After the GW detection by aLIGO/VIRGO...

Observable predictions

Conclusion and Perspectives

Problems with hybrid inflation:

- Original model (in the vacuum dominated regime) predicts $n_{\rm s}>1$ \rightarrow RULED OUT
- Supersymmetric realizations (F-term and D-term): $0.98 \lesssim n_{\rm s} \lesssim 1$ \rightarrow STRONGLY DISFAVORED
- Mild waterfall case ? $n_{\rm s} \simeq 1-4/N_{k_{\rm p}} \lesssim 0.94$ \rightarrow RULED OUT

Transitory case + two-field potential:

$$V(\phi,\psi) = \Lambda \left[\left(1 - \frac{\psi^2}{M^2} \right)^2 + \frac{(\phi - \phi_c)}{\mu_1} - \frac{(\phi - \phi_c)^2}{\mu_2^2} + \frac{2\phi^2\psi^2}{M^2\phi_c^2} \right]$$

Along $\psi = 0$, experts will recognize the first terms of a Taylor expansion of logarithmic radiative corrections (as in F-term, D-term, loop inflation)

• $n_{\rm s} = 1 - \frac{4M_{\rm pl}^2}{\mu_2^2}$ (dominated by ϵ_2 , i.e. the curvature of the potential) • $\mathcal{P}_{\zeta}(k_{\rm p}) = \frac{\Lambda \mu_1^2}{12\pi^2 M_{\rm pl}^6} \left(\frac{k_{\rm p}}{k_{\phi_r}}\right)^{n_{\rm s}-1}$

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Summary of the model

- $\textbf{0} \text{ Hybrid inflation} + \text{mid-mild waterfall} \rightarrow \text{broad peak in } \mathcal{P}_{\zeta} \rightarrow \text{PBH}$
- In Right abundances for Dark Matter
- Passes all present astronomical constraints
- Seeds for SMBH at the center of galaxies and IMBH

Possible link with the Advance LIGO discovery

- LIGO inferred merging rates if PBH are clustered
- Natural candidate: ultra-faint dwarf galaxies
- ④ A solution to missing satellites and too-big-to-fail problems
- Explains anomalies in the CIB and XCB
- Operation of the second sec

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Summary of the model

- $\textbf{0} \text{ Hybrid inflation} + \text{mid-mild waterfall} \rightarrow \text{broad peak in } \mathcal{P}_{\zeta} \rightarrow \text{PBH}$
- In Right abundances for Dark Matter
- Passes all present astronomical constraints
- Seeds for SMBH at the center of galaxies and IMBH

Possible link with the Advance LIGO discovery

- LIGO inferred merging rates if PBH are clustered
- Natural candidate: ultra-faint dwarf galaxies
- A solution to missing satellites and too-big-to-fail problems
- Explains anomalies in the CIB and XCB
- Operation of the PBH mass spectrum

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives

Observable predictions

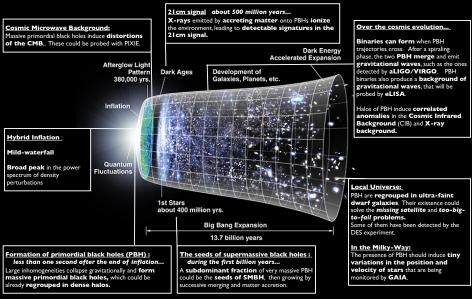
- $\textbf{9} \quad \text{Microlensing, position and velocity of stars} \rightarrow \textbf{GAIA}$
- **2** 21cm signal at reionization \rightarrow Square Kilometre Array (SKA)
- $\textbf{O} CMB \text{ distortions} \rightarrow \textbf{PRISM-like mission}$

Perspectives

- Background of gravitational waves
- Merging history (N-body simulations)
- 8 Refined picture for D-term inflation
- Influence of quantum diffusion at the critical instability point
- Sourcest for GAIA (microlensing and star position/velocities)
- Iink with GC excess?

Dark Matter

- Primordial Black Holes
- PBH in Hybrid Inflation
- Constraints on PBH abundances
- After the GW detection by aLIGO/VIRGO...
- Observable predictions
- Conclusion and Perspectives


Observable predictions

- $\textbf{9} \quad \text{Microlensing, position and velocity of stars} \rightarrow \textbf{GAIA}$
- **2**1cm signal at reionization \rightarrow Square Kilometre Array (SKA)
- $\textcircled{O} \ \mathsf{CMB} \ \mathsf{distortions} \to \textbf{PRISM-like} \ \textbf{mission}$

Perspectives

- Background of gravitational waves
- Ø Merging history (N-body simulations)
- Sefined picture for D-term inflation
- Influence of quantum diffusion at the critical instability point
- Solution Forecasts for GAIA (microlensing and star position/velocities)
- Ink with GC excess?

Our model of Primordial Black Holes Dark Matter in a sketch...

Sébastien Clesse (RWTH)