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Introduction

The main Cosmological Constant Problem (CCP1) can be phrased
as follows (see, e.g., [1] for a review):

why does the zero-point energy of the vacuum not produce naturally

a large cosmological constant A in the Einstein field equations?

The magnitude of the problem is enormous:

‘Anaive theory|/|Aexperiment| > 1042 .

[1] S. Weinberg, RMP 61, 1 (1989).
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Introduction

Indeed, it is known that QCD in the laboratory involves a vacuum
energy density (e.g., gluon condensate) of order

QD) (100 MeV)" ~ 10°% eV*.

Moreover, this energy density can be expected to change as the
temperature 1" of the Universe drops,

CD CD
o =)

How can it be that the Universe ends up with a vacuum energy density

[ALP)| = Jepresent| < 10728 gem™ ~ 10710 eV* ?

Here, there are 42 orders of magnitude to explain:

| A©PS) /R < 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 .
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Introduction

Even more CCPs after the discovery of the “accelerating Universe”:
ccP1 — why |A] < (Eqcp)* < (Felectroweak)* < (Euv)* ?
CCP2a—- wWhy A #£0 ?

— 4
CCPZb - Why A ~J pmatter ’present ~ 10 1 eV ?

Hundreds of papers have been published on CCP2.

But CCP1 needs to be solved first before CCP2 can even be addressed.
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Introduction

Here, a brief review of a particular approach to CCP1, which goes
under the name of g—theory [2,3].

Then, turn to CCP2, describe a possible mechanism, and discuss a
hint for new TeV-scale physics [4-6].

Outline talk:
1.1 Basics of g—theory «—— most important part of the talk
2.1 Coup d’envoi

2.2 Electroweak kick
2.3 Effective A and Eqy,
2.4 Recap mechanism

[2] FR. Klinkhamer & G.E. Volovik, PRD 77, 085015 (2008), arXiv:0711.3170.

[3] F.R. Klinkhamer & G.E. Volovik, JETPL 91, 259 (2010), arXiv:0907.4887.

[4] FR. Klinkhamer and G.E. Volovik, PRD 80, 083001 (2009), arXiv:0905.1919.
[5] F.R. Klinkhamer, PRD 82, 083006 (2010), arXiv:1001.1939.

[6] F.R. Klinkhamer, arXiv:1101.1281.

_ " LeCture’ February 25' o (Vl) ) p ’




1.1 Basics of g-theory

Crucial insight [2]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density | € | appearing in the action need not be the
same as the vacuum energy density | py | in the Einstein field equations.

How can this happen concretely ...
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1.1 Basics of g-theory

Consider the full qguantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Then, consider macroscopic edquations of this conserved microscopic
variable (later called ¢), whose precise nature need not be known.

An analogy: the mass density in liquids, which describes a microscopic
guantity — the number density of atoms — but obeys the macroscopic
equations of hydrodynamics, because of particle-number conservation.

However, is the quantum vacuum just like a normal fluid?
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1.1 Basics of g-theory

No, as the vacuum is known to be Lorentz invariant
(cf. experimental limits at the 10~1° level in the photon sector [7-9]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density which arises from the time component j, of a
conserved vector current j,.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (¢) of the number
density (n) which characterizes the known material fluids.

[7] A. Kostelecky and M. Mewes, PRD 66, 056005 (2002), arXiv:hep-ph/0205211.
[8] F.R. Klinkhamer and M. Risse, PRD 77, 117901 (2008), arXiv:0709.2502
[9] F.R. Klinkhamer and M. Schreck, PRD 78, 085026 (2008), arXiv:0809.3217.
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1.1 Basics of g-theory

With such a variable ¢(x), the vacuum energy density of the effective
action can be a generic function

e =¢€(q), (1)

which may include a constant term due to the zero-point energies of
the fields of the Standard Model (SM), €(q) = Apare + €var(q)-

From (1) thermodynamics and (2) Lorentz invariance, it then follows that

de
Pvg—(é—q—>g—pva (2)

with the first equality corresponding to an integrated form of the
Gibbs—Duhem equation (for chemical potential i = de/dq).

Recall GD-eq: Ndu =V dP — SdIl = dP = (N/V)du for dT" = 0.
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1.1 Basics of g-theory

Both terms entering py- from (2) can be of order (Eyy)?, but they
can cancel exactly for an appropriate value gy of the vacuum variable gq.

Hence, for a generic function €(q),

d
Jqo : AE,OV:[G(C])—Q 2(;)}(1261 =0, (3)

with constant vacuum variable ¢, [a similar constant variable is known
to play a role for the Larkin—Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle ...

But, is a relativistic vacuum variable ¢ possible at all?
Yes, there exist several theories which contain such a ¢ (see later).
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1.1 Basics of g-theory

To summarize, the g—theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not

known for sure that the “beyond-the-Standard-Model” physics harbors
an appropriate ¢g—type variable.

Still, better to have one possible solution than none.

(Two remarks in Appendix A.)
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2.1 Coup d’envol

Now, the remaining problems (or puzzles, rather):

CCP2a—- why A #£0 ?

CCP2b also goes under the name of ‘cosmic coincidence puzzle’ (ccp).

Here, consider a possible realization of ¢ operative at an UV (Planckian)
energy scale.

In the very early Universe, the vacuum energy density py (¢) rapidly
drops to zero and stays there, but small effects may occur at cosmic
temperatures T' of the order of the TeV scale ...
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2.2 Electroweak kick

Explicit realization of vacuum variable ¢ via a 3—form gauge field A [10,11].
Effective action of GR+SM,

SMg, v] = / d'z\/—detg (KN Rlg] + Asm + Ly [, g]), (4)
RAL
with Ky = 1/(167Gy) and h = ¢ = 1, is replaced by [3]
SMA4, g,9] = /R 4 d'z+/—detg (K (@) Rlg) + €(q) + L} [w,g]), (5a)

1
2 afvd
a F ) 5b
21 B ( )

q

Fopys = ViaApys) (5¢)

[10] M.J. Duff and P. van Nieuwenhuizen, PLB 94, 179 (1980).
[11] A. Aurilia, H. Nicolai, and P.K. Townsend, NPB 176, 509 (1980).
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2.2 Electroweak kick

Then, variational principle produces generalized Einstein equations
with a vacuum energy density term

— ’é’_ d_g (6)
PV = q dq )
which is precisely of the Gibbs—Duhem form (2). Technically, the extra
term on the RHS of (6) appears because of the fact that ¢ = q(A, g).

Specifically, the generalized Einstein and Maxwell equations give:

2K(q) (Rag — Jap R/Z) = -2 (Vavﬁ — Jap D) K(q)
+ov(q) gap — Tah » (72)
dpv(a)  pdKlg) _ (7b)
dq dq

Egs. (6)—(7) are generic, i.e., independent of scale and dimension of g.
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2.2 Electroweak kick

Spatially-flat (F)RW universe with two types of matter, massive (‘type 1’)
and massless (‘type 2’) particles. Resulting ODEs:

6 (Hd—K@—FKHQ)

pv + pymi1 + par2, (8a)

dq dt
dK (dH dpv
6 2H? ) = L= 8b
dq ( it ) dg (50
d
Z];ﬂ + 4 —kmi(t/tew)| Hpan = 0, (8c)
dpnre .
pr +4Hppyo = 0, (8d)

with prescribed equation-of-state (EOS) function «s; () peaking at x = 1.




2.2 Electroweak kick

Analytically, it has been shown [4] that there exists a solution which

e starts from a standard radiation-dominated FRW universe with py, = 0,
e is perturbed around ¢ = tey ~ Epjanck/(Eew)? With py # 0,
e resumes the standard radiation-dominated expansion with py = 0.

Specifically, the vacuum energy density for ¢t ~ tqy IS given by

pv (t) ~ ki (8) H ()", (9)

which has a peak value of order (tey) ™% ~ ((Eew)2 /Ep|anck)4

but vanishes as t — oc.

=- standard (nondissipative) dynamic equations of g—theory do not
produce a constant py. remnant > 0 from the electroweak kick.
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2.3 Effective A and E g,

As argued in [4], quantum-dissipative effects of the vacuum energy
density may lead to a finite remnant value of order

4 _
A= PV, remnant ™~ ((Eew)2 /EPIanck) ~ (10 ’ eV)4 ) (10)

for Eew ~ 1 TeV and Epjanck ~ 10'° TeV. In fact, expression (10) was
already suggested by Arkani-Hamed, Hall, Kolda, and Murayama [12].

It is possible [5] to modify the “classical” g—theory equations (8) in such
a way as to recover (10).

Even better, a simple field-theory model has been presented in [6].

Details for simple model [6] in Appendix C (skip Appendix B for [5]).

Here, focus on the physics implications.

[12] N. Arkani-Hamed et al., PRL 85, 4434 (2000), arXiv:astro-ph/0005111.
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2.3 Effective A and E g,

Theoretical value of the effective cosmological constant given by

AT = Tim  pp=Y(t) = rP™ (Few)® /(Epianck)” | (11)

t— o0

with a number '™ = 7y (Teeze) from the solution of the ODEs.

Equating this to the experimental value A®*® ~ (2 meV)* gives

Aexp 1/8 0.013\'/®
Eew — ( num) (EPIanck)1/2 ~ 38 TeV ( num ) . (12)
'y Ty

Analytic bound: r¥™ S 1 = Eew 2 2 TeV.

Numerical results for r{3'™ give Ee,, estimates of Table 1.
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2.3 Effective A and E g,

Table 1. Preliminary estimates [5] of the energy scale FEew for hierarchy parameter
¢ = (Epjanck/Few)* > 1. Both massive type—1 and massless type-2 particles are as-
sumed to have been in thermal equilibrium before the “kick” and the number of type—-2
particles is taken as Negg o = 102.

Left: Prescribed kick with type—1 particles of equal mass M = FEew and, for dissipative
coupling constant ¢ = 2, Eew shown as a function of the effective number of d.o.f. N ;.
Right: Dynamic kick with case—A type—1 mass spectrum (Nig, M1g; N1p, M1p) =
(40, 2 X Eew; 60, 1/3 x Eew) and Eew =< M1; > shown as a function of ¢.

G Nett 1 FEew [TeV] ¢ Netf 1 FEew [TeV]
2 1 8.5 0.2 102 14.8

2 10° 4.9 2 102 3.8

2 102 3.2 20 102 5.6

2 103 2.8

2 10% 2.7
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2.4 Recap mechanism

B Presence of massive particles with electroweak interactions

[average mass < M > = FEg, ~ TeV] changes the expansion rate
H (t) of the Universe compared to the radiation-dominated case.

B Change of the expansion rate kicks py (t) away from zero.

B Quantum-dissipative effects operating at cosmic time tq, Set by
Feyw may result in a finite remnant value of py, .

B Phenomenological description of this process with a simple field
theoretic model.

B Required Eg, value ranges from 2 to 20 TeV, depending on the
effective number of new particles and details of the model.
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Conclusions

CCP1: self-adjustment of a special type of vacuum variable ¢ can
give py (qo) = 0 in the equilibrium state g = qo.

CCP2: finite remnant value of py (¢) may result from quantum-dissipative
effects operating at a cosmic time te,, Set by the scale Eqy ~ TeV
of massive particles with M ~ FEg,, and electroweak interactions.

Hint: required Eg, value ranges from 2 to 20 TeV, which, if correct,
iImplies new TeV-scale physics beyond the SM.

(+ Appendices for technical details.)
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Appendix A: Two remarks

Two remarks [3]:

1. The adjustment-type solution (3) of the CCP1 circumvents
Weinberg’s no—go “theorem” [1].

Crux: g is a non-fundamental scalar field (cf. theory of Sec. 2.2).

2. Next guestion is how the Universe got the right value ¢;?

Possible answer via a generalization of g—theory, for which the
correct value ¢ arises dynamically (cf. brief summary below).
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Appendix A: Two remarks

Realization of vacuum variable ¢ by aether-type velocity field us [13,14],
setting Eyv = Epianck- For a flat FRW metric with cosmic time ¢, there is
an asymptotic solution for ug = (ug, up) and Hubble parameter H (t):

uo(t) — qot, wup(t) =0, H(t)— 1/t. (A.1)

Define v = uo/ Epjancks T = t Epjancks h = H/ Epjanck, and A = A/(EPIanck)éI:-
Then, the field equations are [13]:
b4+3h0—3h*v = 0, (A.2a)
2\ — (0)* =3 (hv)* = 6h?, (A.2b)

with the overdot standing for differentiation with respect to .
Starting from a de-Sitter universe with A > 0, there is a unique value of

Jo = qo/(Epianck)? to end up with a static Minkowski spacetime, gy = 1/\/2.

[13] A.D. Dolgov, PRD 55, 5881 (1997), arXiv:astro-ph/9608175.
[14] T. Jacobson, PoS QG-PH, 020 (2007), arXiv:0801.1547.
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Appendix A: Two remarks

| 50 (A+1)/A+7t2) v(t) vs. y=logiog T » 50 h(t) vs. y
”\
1.25 2.00 /' .
\ ~
1.00 ————=——=wm 150 ==l N
\ ’a’:,-v’ ,’, ‘s:-::=
075 (3 o7 1.00 =
0.50 -\, , 0.50
\ L’
0.25 S= y 0 y
0 0.5 1 1.5 2 0 0.5 1 1.5 2

Fig. Al. Four numerical solutions of ODEs (A.2ab) for A = 2 and boundary conditions
v(l) =14+0.25and v(1) = +1.25.

= Minkowski value gy = \/A/2 = 1 arises dynamically [see left panel].

= Minkowski spacetime is an attractor.
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Appendix B: Model universe

Model universe with three components (see Appendix A of [5]):
0. Vacuum variable ¢ entering the gravitational coupling K (q).

1. Massive ‘type 1’ particles (subspecies : = a, b, ¢, . ..) with masses
M; of order Eqy ~ 1 TeV and electroweak interactions.

2. Massless ‘type 2’ particles with electroweak interactions.

Now, proceed as follows:
B Consider a flat FRW universe with Hubble parameter H(t).

B Allow for energy exchange between the two matter components,
so that total type—1 energy density peaks around tew = Epjanck/ (Few)?.

B Get function ®js1;(t) from EOS parameter wys1;(t), with
Fa1i(t) ~ 0 for t < tew in the ultrarelativistic regime.

¥ Introduce a dissipative coupling constant ¢ = O(1) and a function
v(t) which equals 1 for ¢ < tey, and drops to zero for t > tey.
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Appendix B: Model universe

Modified ¢g—theory ODEs (standard ODESs recovered for ( = 0 and v = 1):
6 (HK'¢+KH?)=pv+ > puii+pus, (B.1a)
1=a,b,c,...

/

: K
6 k' (H+2H) = vpy + (1=9) = 200 + > $Faniparsi] s (B.1b)

. _ Ni: T Ao1 , Ao
Pyt + (4 — R Hpa = 1 { 21WPM2 — Sq p{/] -2y Pr1i,(B.1c)
N1 Ltew Y tew
. Aot Ao
pre +4H ppo = -2 W pPM2 T 229 PM1i s (B.1d)
tew tew .

where the overdot [prime] stands for differentiation with respect to ¢ [¢].
Functions ~, @, and v shown in Figs. B1-B4 below.
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Appendix B: Model universe

Use simple Ansatze: py(q) < (¢ — qo)? and K(q) x q.

With tew and &€ = (Epjanck/ Eew)? > 1, define dimensionless variables:

T = (tew) h =tew H, (B.2a)
rv = (tew)' pv, ran =& (tew)® prrn (B.2b)
r = &(q/q—1). (B.2c)

Figures B1-B3 and B4 show numerical results for ¢ = 10? and ¢ = ~.




Appendix B: Model universe

08 7 h =1 (da/dr)/a 5 1+x 0.4 a* rvia and a* 'M1b 12 KMm1a and Kmip
0.6 1.5 0.3 0.9
— \
0.4 1 " NN 0.2 1= 0.6 —
N Pl
0.2 0.5 0.1 = 0.3
0 0 t 0 i A s
T
005115225 3 005115225 3 0051152 25 3 0051152253
_ 2 4 A
5 a 0.4 2ry =X 19 a” rue 12 ,v,and y
_— —_
15 —— 0.3 0.9 \ —— 09 P
1 0.2 0.6 \_ =g 0.6 7
/ “ — ] /
0.5 0.1 0.3 0.3 -
0/ T 0 T 0 T 0 / T
005115 2 25 3 0051152 25 3 0051152 25 3 005115 2 25 3

Fig. B1: Numerical solution [5] of standard (nondissipative) g—theory ODEs (B.1) for
¢ =0 and v = 1. The hierarchy parameter is ¢ = 102 [oscillatory effects suppressed
for larger values of &, recovering the smooth behavior of (9)]. Further coupling constants
{X21, A2} = {18, 2} and case—A type—1 mass spectrum (Niq, M1iq; N1p, M1p) =
(40, 2 Eew; 60, 1/3 Eew).
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Appendix B: Model universe

h 4 4 _ _
0.8 - 0.4 X 0.4 a” ny1a and a” ruip 19 Km1a and km1p
0.6 0.3 0.3 0.9
0.4 0.2 0 2HT===o 0.6
[} — |t
0.2 0.1 [ 0.1 0.3 _—
0 T 0 T 0 T~ - 0 T B e e .
005115225 3 0051152 25 3 0051152 25 3 0051152 25 3
4 PN
5 a — 0.4 101y 12 a” e 12 o,v,and y
—~ — — 1
1.5 T 0.3 0.9\ //7 0.9 \\ //
! 0.2 0.6 0.6
0.5 0.1 0.3 0.3 / N
0/ T 0 T 0 T 0 / \\ -
0051152 25 3 0051152253 005115225 3 0051152 25 3

Fig. B2: Same as Fig. B1, but now for the modified g—theory ODEs (B.1) with dissipative
coupling constant { = 2 and v(7) = 0 for 7 > Tyeeze = 3.




Appendix B: Model universe

7h 2102 ¢ (d?a/dr?)/a a® rura and a® ruip Rm1a and Ruip

1.2 1 0.4 1.2
0.9 0 — 0.3 0.9

0.6 — / 0.2 0.6 1 ommmt="T""
0.3 -2 // 0.1 03[,

0 T -3 T 0 T 0 T
0 20 40 60 80100120 0 20 40 60 80100120 0 20 40 60 80100120 0 20 40 60 80100120

5 107" a 0.4 10y 12 a* vz 40,V /(& vt + € ')
1. 0.3 : .
? — o2 g 2 2 8 /
/ . . - /
0.5 0.1 0.3 1.0
_—

0 T 0 T 0 T 0 T
0 20 40 60 80100120 0 20 40 60 80100120 0 20 40 60 80100120 0 20 40 60 80100120

Fig. B3: Same as Fig. B2, but evolved further.




Appendix B: Model universe

0.8 7h 0.4 X 04 a* rvia and a* ryip 15 Rm1a and Rmib
0.6 0.3 0.3 0.9
0.4 0.2 0.2/ r~F==mxg 0.6
/ T 'f e ///
0.2 0.1 0.1 " 0.3
0 T 0 T 0 ™ T O et bt s P
0051152 25 3 005115 2 25 3 005115 2 25 3 005115 2 25 3
4 PN
5 a — 0.4 10 ry 12 a” rve 12 w,v,and y
1.5 — 0.3 0.9 0.9 '\\ //'
Pl \ - N
1 0.2 N N—— 0.6
P [ — Do
0.5 0.1 0.3 0.3 7 N
0/ T 0 T 0 T 0 ~ \\ T
0051152 25 3 0051152 25 3 0051152 25 3 0051152 25 3

Fig. B4: Same as Fig. B2, but now for £ = oc.




Appendix C: Field-theoretic model

Simple field-theoretic model can generate an effective cosmological

constant (remnant vacuum energy density) of order Aeg ~ (meV)?, from
new TeV-scale ultramassive particles with electroweak int eractions .

The model is simple in the sense that it involves only a few types of
fields and two energy scales, Epjanck and Eey.

Specifically, two types of scalars:
B ultramassive (type-1) fields ¢, fora =1, ..., Ny;
¥ massless (type-2) fields ¢, forb =1, ..., No;

H take NV, o No @ 102 from @ SM and () SUSY~.

Basic model equations are (h = ¢ = k = 1; signature —, +, +, +):
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Appendix C: Field-theoretic model

S = [ doy=g(Kr(a) Rig) +ev(@) + L rlo.0.]) . (a0

1

¢ = —o; €PN (0 Agrs1 | V=G » (C.1b)
1 2

pvig) = ev(q) —poq= 2 (C] — C]O) ; (C.1c)
q/2 for T > Tc(,}) ,

Kr(q) = " (C.1d)
610/2 for TSTC,K’

o = 1/87Gn) = (Epjanck)® = (2.44 x 10'® GeV)?. (C.1e)




Appendix C: Field-theoretic model

1 1 1
E%,T = 3 a¢'3a¢+§3a¢'3a¢+§M2(¢'¢)
+9r (Y -¥) (- ), (C.2a)
2
. { 70 (1 — (T/T..,) ) for T<T.,, o)
0 for T >T.,,

M = Feaw, (C.2c)
T.;, = O(Eew)-. (C.2d)
Te g > Tc(,}) = O(Few) - (C.2e)

§ = (EPIanck/Eew)4. (C.3)




Appendix C: Field-theoretic model

Spatially flat, homogeneous, and isotropic (F)RW universe.

Timescale set by

tew = Epianck/(Eew)? = (1/meV) (TeV/Eey)”. (C.4)

Dimensionless variables:

T = (tew)_l t, h=tew H, (C.5a)
Mn = 5_1 (tew)4 PMn rv = (tew)4 PV = 332/2 ) (C.5b)
x = £ (q/qg — 1) . (C.5¢)




Appendix C: Field-theoretic model

Dimensionless ODEs:

(i +2h2) (22/2+ € (ran + iy = 3h2) ) = hai = 0, (Céa

a1+ (4 —FRan) hrarr — Ao e + Aeran = 0, (C.6b)

rave +F4hrae + Ao rae — A2y = 0, (C.6e)

3hi 0[raa(r) = 1o, ] = (2224 € (rann + 702 = 30%) ) = 0, (Cé

with EOS function &, from [5] and coupling parameters |\  (go)?|:

2
Ma2(T) = AOlre g —rue ( 1 — \/ng/rc,g ) : (C.6e)
N5 t/4 a(t) M
A = A — C.6
21(7_) 12(7-) P [ <30 M2 (Tmin)> a(Tmin) Eew (€60




Appendix C: Field-theoretic model

Model universe has early phase given by a standard radiation-dominated
FRW universe = fully determined boundary conditions of ODEs.

0.8
0.6
0.4
0.2

4.0
3.0
2.0
1.0

0

7h

%051 152253"

a

-

/

/

0051152253

T

1.2
0.9
0.6
0.3

0.8
0.6
0.4
0.2

0

107" a* rys

‘\\

00051152 253"

KM1

//

>

0051152253

T

1.2
0.9
0.6
0.3

1.2
0.9
0.6
0.3

0

107"a* rye , 107 o

l/

fm!

N

%0 051152253°

A2/, Apq/A

"1

0051152253

T

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

0

40 ry = 20 X2

\

%051 152253°

5 (k1 'm1)?

\

0051152253

T

Fig.

C1: Numerical solution of the dimensionless ODEs (C.6). Model parame-
ters are {&, A, re, g, 7o, k} = {107, 10%, 12, 3}. The ODEs are solved over the in-
terval [7Tmin, Tmax] = [0.01, 3] with the boundary conditions at 7 = 7y = 0.25:
{z, h, a, rar1, T2} = {0, 2, 1, 0, 12}. Essentially the same results for ¢ = 1099,
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Appendix C: Field-theoretic model

The calculated value ry remnant &~ 2.4 x 1073 gives gy ~ 4.7 TeV,
according to (12).

But, here, main focus on the physical content of a theory capable of
generating the observed cosmological “constant” of our Universe.

Hence, analytic result of interest:

lim ry (7)

T—00

. (C.7)

M2 (Tfreeze)zrc, K

=00 1 / 2
| = g (ﬁMl (Tfreeze) M1 (Tfreeze))
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