CONSTRAINING FUNDAMENTAL PHYSICS WITH THERMAL AND KINETIC SUNYAEV-ZEL'DOVICH EFFECTS

Nick Battaglia CCA Flatiron Cornell University Princeton University

APC May 18 2018

Collaborators

Mathew Madhavacheril (Princeton) Simone Ferraro (Berkeley) **Emanuel Schaan (Berkeley)** Colin Hill (IAS) Hironao Miyatake (Nagoya) Matthew Hasselfield (Penn State) Matt Hilton (UKZN) Alexie Leauthaud (UCSC) **Christoph Pfrommer (Postdam)** Jon Sievers (UKZN/McGill) **Dick Bond (CITA)** David Spergel (Princeton)

Berkeley SICAT TO SARDING MICHIGAN

Growth of structure measurements from tSZ and kSZ observations

Systematic uncertainties current limiting factors What are the potential constraints?

Primary anisotropies in the cosmic microwave background are the foundation of modern cosmology. Sound waves at the surface of last scattering (z ~ 1100)

Concordance ΛCDM

Parameter	Best fit	68% limits
$\Omega_{ m b}h^2$	0.022069	0.02207 ± 0.00027
$\Omega_{ m c}h^2$	0.12025	0.1198 ± 0.0026
$100 heta_{ m MC}$	1.04130	1.04132 ± 0.00063
au	0.0927	$0.091\substack{+0.013\\-0.014}$
$n_{ m s}$	0.9582	0.9585 ± 0.0070
$\ln(10^{10}A_{ m s})$	3.0959	3.090 ± 0.025

Beyond Concordance ΛCDM

Is Dark Energy a cosmological constant?

Are modifications to GR required?

What is the sum of neutrino masses?

Here the CMB is limited:

- 1 snapshot in time (z = 1100)
- 2D surface (only so many large-scale modes)

Growth of structure measurements are 1 way to constrain these extensions

Planck Satellite (ESA)

z = 20.0

Growth of Structure

50 Mpc/h

Growth of Structure Halo Mass Function

Number Density of Halos

Growth of Structure Halo Mass Function

Galaxy clusters abundances are sensitive to ACDM extensions

Galaxy Clusters

10s to 100s of galaxies

Most massive gravitationally collapsed objects in the Universe

Multi-wavelength observations

Thermal Sunyaev-Zel'dovich Effect Inverse Compton scattering of CMB

$$\frac{\Delta T}{T_{CMB}} = g_v y$$

Compton-y parameter

 $\frac{\Delta T}{T_{CMB}} = g_v y$

Integrated pressure

$$y = \frac{k_b \sigma_T}{m_e c^2} \int n_e T_e dl$$

tSZ Pros -Total thermal energy $Y \sim \int y \, dA \propto T_{vir} M_{vir}$ $T_{vir} \propto M_{vir} / R_{vir}$ $Y \propto M_{vir}^{5/3}$ -Most massive halos -Redshift independent

How do detect the tSZ and find clusters

The Atacama Cosmology Telescope

Google earth

The Atacama Cosmology Telescope

Finding SZ clusters in data

Filtered

Signal processing - Match filter Model for the signal (y-profile) Model for the noise (CMB + Instrumental)

Raw

Characterizing SZ clusters in data

Follow-up observations Estimate their masses - Via the observable Y

Raw

Filtered

Cosmology with clusters

Number counts

$$N = \int_{0}^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M, z)}{\int dM}$$

Mass function
We do not measure mass $P(M|A)$
Selection function & Mass proxy Gastrophysics

Cluster counts

Cosmological constraints from cluster counts

Limited by uncertainty in the Y-M relation & Pressure profile

Cosmological constraints from cluster counts

Cosmological constraints from cluster counts

Empirically calibrate Y-M relation using weak lensing!

A coherent distortion of source galaxy apparent shapes Galaxy clusters produce a tangential distortion of the shear field - Infer total mass within given aperture

Mass calibration with CS82

Mass Fits

- We fit the weak-lensing signal using simulations and an NFW profile.
- Use this mass calibration in upcoming ACT cluster cosmology work.

Hyper Suprime Camera

Subaru telescope

8.2 m, grizy, ~ 0.6" seeing

Full HSC 1400 sq deg.

Complete overlap with AdvACT

Preliminary HSC - ACT results

Comparison to Planck

ACT-HSC weak-lensing mass calibrations are consistent with previous results. WL mass cal. of SZ selected clusters is progressing and will continue to.

ACTPol cluster sample

Looking ahead

Advanced ACT cluster search

- Advanced ACT is underway will survey southern sky in 5 bands (30 → 220 GHz) with complete LSST overlap
- Preliminary cluster search: 90 + 150 GHz multi-frequency matched filter, one season of AdvACT data + all other available ACT/ACTPol data
- Black = area used for a preliminary cluster search, overlaid on Planck 353 GHz map; Blue = DES; Green = SDSS – we have not done optical follow-up outside of SDSS + DES (public DR1) regions yet

Preliminary Advanced ACT cluster sample

SZ Cluster Cosmology Forecast CMB-S4

kSZ late-time growth of structure

Kinetic Sunyaev-Zel'dovich Effect Doppler boosting of CMB photons

Emergence of kSZ detections

What is measured?

Velocity field on large-scales

$$\approx -\tau_{\text{cluster}} v_r$$

$$\mathbf{v} \approx \mathbf{f}_g \left(aH \frac{i\mathbf{k}}{k^2} \right) \delta$$
$$f_g = \frac{d\ln\delta}{d\ln a} \approx [\Omega_m(z)]^{\gamma}$$

$$f_g(z,k) pprox \mu(k) \Omega_m^\gamma(z)$$

Neutrinos

Pair-wise velocity statistic & measurements

$$\left\langle \frac{\Delta T}{T}(\mathbf{x}) \ v_r^{\mathrm{rec}}(\mathbf{y}) \right\rangle = -\bar{\tau} \left\langle v_r^{\mathrm{true}}(\mathbf{x}) \ v_r^{\mathrm{rec}}(\mathbf{y}) \right\rangle$$

Also see Planck Coll. 2016 & SPT Soergel et al. 2016

Motivation - kSZ cosmology forecasts Pair-wise velocity estimator

Huge potential to constrain fundamental physical parameters and extensions to the concordance cosmological model

Beware of fisher forecasts What are some of the systematics?

See recent work by Calafut, Bean, & Yu 2017

For a halo of a given mass, what is the optical depth?

Dependence on τ

Uncertainties on τ will soon be a leading systematic uncertainty in the cosmological parameters obtained from kSZ measurements

How does one measure τ since it is not a "direct" observable?

τ - y relation an empirical solution?

Not surprisingly there is a relation between τ - y

At fixed gas mass temperature fluctuations are small found in simulations but this appears to independent of SG-model at the < 10% level

Astrophysics - galaxy formation

kSZ - Baryons effects & Cosmology

What is measured?

Measuring the τ profile

Combining tSZ & kSZ measurements Previously, Knox+2004 Sehgal+2005 proposed to constrain T, τ & v_{pec} Also see Erler et al 2017 (Jens' poster) & Mittal et al. 2018

Constraint dominant physical processes in galaxy formation?

Combining tSZ & kSZ measurements forecasts

Density

Pressure

The improvement seen here is coming from: Higher resolution, lower noise, and a larger sample

Cosmological implications

- Pushing into the non-linear regime leads to increasing the uncertainties from baryons and potential biases in the inference of cosmological parameters

- Or provides unique constraints on the main baryonic processes the govern growth of structure on these scales (galaxy formation)

Cosmological impact of feedback

Which halos do we need to measure?

dominated by group-scale halos over relevant wavenumbers

Lensing is Low: Cosmology, Galaxy Formation, or New Physics?

Alexie Leauthaud^{1,2}, Shun Saito³, Stefan Hilbert^{4,5}, Alexandre Barreira³, Surhud More², Martin White⁶, Shadab Alam^{7,8}, Peter Behroozi^{6,9}, Kevin Bundy^{1,2}, Jean Coupon¹⁰,

Cosmological Implications

BOSS CMASS galaxies + ACTPol CMB data z ~ 0.6, M ~ 2 x 10^{13} M_{sun}

Oth order modeling of the Baryons

AdvACT + other surveys

Funded, large area, multiple frequency bands 20,000 clusters covering the entire LSST Potential for kSZ cross correlations is large

The Simons Observatory

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo

• 10 Countries

•

- 40+ Institutions
- 160+ Researchers

Canada

0

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

South Africa

Kwazulu-Natal, SA

Australia

- Melbourne
- Middle East
 - Tel Aviv

Summary and Outlook

Growth of structure measurements from tSZ and kSZ observations

Systematic uncertainties current limiting factors

What are the potential constraints?

Summary and Outlook

Growth of structure measurements from tSZ and kSZ observations

Theory needs to catch-up to the number of tSZ clusters

High S/N kSZ on coming soon

Systematic uncertainties current limiting factors

Weak-lensing calibrations to control systematics

kSZ constraints will be limited by τ

What are the potential constraints?

Competitive, independent, & complementary

Push other probes into non-linear regime

Summary and Outlook

Growth of structure measurements from tSZ and kSZ observations

Theory needs to catch-up to the number of tSZ clusters

High S/N kSZ on coming soon

ENERG

SIMONS

Systematic uncertainties current limiting factors

Weak-lensing calibrations to control systematics

kSZ constraints will be limited by τ

What are the potential constraints?

Competitive, independent, & complementary

Push other probes into non-linear regime

kSZ with LSST - projected fields approach

kSZ with LSST - projected fields approach

CMB experiment	beam FWHM	effective $noise^a$
	[arcmin]	$\Delta_T \ [\mu \text{K-arcmin}]$
Planck (2015 LGMCA map)	5	47
Advanced ACTPol	1.4	10
CMB-S4 (case 1) ^b	3	3
CMB-S4 (case 2)	1	3
CMB-S4 (case 3)	3	1
CMB-S4 (case 4)	1	1

<u>LSST</u>

26 gal/arcmin² (preliminary)

BUT CAREFUL with SYSTEMATICS (foregrounds!)

Hill, Ferraro, Battaglia et al. 2016

Ferraro, Hill, Battaglia et al. 2016