Constraining the Physics of Dense Matter With Neutron Stars

J. M. Lattimer

Department of Physics & Astronomy Stony Brook University

Laboratoire Astroparticule & Cosmologie Paris, France 13 September, 2016

э.,

Outline

- ► The Dense Matter EOS and Neutron Star Structure
 - General Causality, Maximum Mass and GR Limits
 - Neutron Matter and the Nuclear Symmetry Energy
 - Theoretical and Experimental Constraints on the Symmetry Energy
- Extrapolating to High Densities with Piecewise Polytropes
- Radius Constraints Without Radius Observations
- Universal Relations
- Observational Constraints on Radii
 - Photospheric Radius Expansion Bursts
 - Thermal Emission from Quiescent Binary Sources
 - Ultra-Relativistic Neutron Star Binaries
 - Neutron Star Mergers
 - Supernova Neutrinos
 - Pulse Modeling of X-ray Bursts and X-ray Pulsars
 - Effects of Systematic Uncertainties

• • = •

Dany Page UNAM

J. M. Lattimer

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

Extremal Properties of Neutron Stars

The most compact and massive configurations occur when the low-density equation of state is "soft" and the high-density equation of state is "stiff" (Koranda, Stergioulas & Friedman 1997). ε_o is the only causal limit **EOS** parameter 6 The TOV solutions scale Pressure with ε_{α} 4 soft 2 stiff 0 p = 026 8 10 ε_{0} 4 Density J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Causality + GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precision upper limit to *R* sets an upper limit to the maximum mass.

 $R_{1.4} > 8.15 M_{\odot}$ if $M_{max} \ge 2.01 M_{\odot}$.

 $M_{max} < 2.4 M_{\odot}$ if R < 10.3 km.

If quark matter exists in the interior, the minimum radii are substantially larger.

Mass-Radius Diagram and Theoretical Constraints

J. M. Lattimer

Neutron Star Radii and Nuclear Symmetry Energy

- ► Radii are highly correlated with the neutron star matter pressure around (1 – 2)n_s ≃ (0.16 – 0.32) fm⁻³. (Lattimer & Prakash 2001)
- Neutron star matter is nearly purely neutrons, $x \sim 0.04$.
- Nuclear symmetry energy

 $S(n) \equiv E(n, x = 0) - E(n, 1/2)$ $E(n,x) \simeq E(n,1/2) + S_2(n)(1-2x)^2 + \dots$ $S(n) \simeq S_2(n) \simeq S_v + \frac{L}{3n}(n-n_s) + \frac{K_{sym}}{18}\left(\frac{n-n_s}{n}\right)^2 \dots$ • $S_{\nu} \sim 32$ MeV; $L \sim 50$ MeV from nuclear systematics. • Neutron matter energy and pressure at n_s : $E(n_{\rm s},0) \simeq S_{\rm v} + E(n_{\rm s},1/2) = S_{\rm v} - B \sim 16 \; {\rm MeV}$ $p(n_s, 0) = \left(n^2 \frac{\partial E(n, 0)}{\partial n}\right) \simeq \frac{Ln_s}{3} \sim 2.5 \text{ MeV fm}^{-3}$

Theoretical Neutron Matter Calculations

Nuclei provide information for matter up to n_s .

Theoretical studies, beginning from fitting low-energy neutron scattering data and few-body calculations of light nuclei, can probe higher densities.

- Auxiliary Field Diffusion Quantum Monte Carlo (Gandolfi & Carlson)
- Chiral Lagrangian Expansion (Drischler, Hebeler & Schwenk; Sammarruca et al.)

Nuclear Experimental Constraints

The liquid droplet model is a useful frame of reference. Its symmetry parameters S_v and S_s are related to S_v and L:

$$\frac{S_s}{S_v} \simeq \frac{aL}{r_o S_v} \left[1 + \frac{L}{6S_v} - \frac{K_{sym}}{12L} + \dots \right].$$

Symmetry contribution to the binding energy:

$$E_{sym}\simeq S_{v}\mathcal{A}I^{2}\left[1+rac{S_{s}}{S_{v}\mathcal{A}^{1/3}}
ight]^{-1}.$$

Giant Dipole Resonance (dipole polarizability)

$$\alpha_D \simeq \frac{AR^2}{20S_v} \left(1 + \frac{5}{3} \frac{S_s}{S_v A^{1/3}}\right).$$

Neutron Skin Thickness

$$r_{np} \simeq \sqrt{\frac{3}{5}} \frac{2r_o I}{3} \frac{S_s}{S_v} \left(1 + \frac{S_s}{S_v A^{1/3}} \right)^{-1} \left(1 + \frac{10}{3} \frac{S_s}{S_v A^{1/3}} \right).$$

Theoretical and Experimental Constraints

- H Chiral Lagrangian
- G: Quantum Monte Carlo
- $S_v L$ constraints from Hebeler et al. (2012)

Neutron matter constraints are compatible with experimental constraints.

Neutron Star Crusts

The evidence is overwhelming that neutron stars have crusts.

- Neutron star cooling, both long term (ages up to millions of years) and transient (days to years), supports the existence of ~ 0.5 − 1 km thick crusts with masses ~ 0.02 − 0.05 M_☉.
- Pulsar glitches are best explained by n ¹S₀ superfluidity, largely confined to the crust, ΔI/I ~ 0.01 – 0.05.

The crust EOS, dominated by relativistic degenerate electrons, is very well understood.

Piecewise Polytropes

Crust EOS is known: $n < n_0 = 0.4 n_s$.

Read, Lackey, Owen & Friedman (2009) found high-density EOS can be modeled as piecewise polytropes with 3 segments.

They found universal break points $(n_1 \simeq 1.85 n_s, n_2 \simeq 3.7 n_s)$ optimized fits to a wide family of modeled EOSs.

For $n_0 < n < n_1$, assume neutron matter EOS. Arbitrarily choose $n_3 = 7.4n_s$.

For a given p_1 (or Γ_1): $0 < \Gamma_2 < \Gamma_{2c}$ or $p_1 < p_2 < p_{2c}$. $0 < \Gamma_3 < \Gamma_{3c}$ or $p_2 < p_3 < p_{3c}$.

Minimum values of p_2 , p_3 set by M_{max} ; maximum values set by causality.

Constraining the Physics of Dense Matter With Neutron Stars

 $log(\rho in g/cm^3)$

Even if the EOS becomes acausal at high densities, it may not do so in a neutron star.

We automatically reject parameter sets which become acausal for $n \le n_2$. We consider two model subsets:

- Model A: Reject parameter sets that violate causality in the maximum mass star.
- ► Model B: If a parameter set results in causality being violated within the maximum mass star, extrapolate to higher densities assuming c_s = c.

高 とう ヨン うまと

Maximum Mass and Causality Constraints

J. M. Lattimer

Radius - p_1 Correlation

Mass-Radius Constraints from Causality

Piecewise-Polytrope $R_{M=1.4}$ Distributions

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Piecewise-Polytrope Average Radius Distributions

With these assumptions

- Hadronic crust with well-known EOS
- Neutron matter constraint $(p_{min} < p_1 < p_{max})$
- Two piecewise polytropes for $p > p_1$
- Causality is not violated
- *M_{max}* is limited from below from pulsar observations

model A yields interesting bounds to radius and tight correlations among the compactness, moment of inertia, binding energy and tidal deformability.

(日本) (日本) (日本)

Moment of Inertia - Compactness Correlations

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Moment of Inertia - Radius Constraints

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Binding Energy - Compactness Correlations

Binding Energy - Mass Correlations

Tidal Deformatibility - Moment of Inertia

Tidal Deformatibility - Mass

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Binary Tidal Deformability

In a neutron star merger, both stars are tidally deformed. The most accurately measured deformability parameter is

$$\begin{split} \bar{\Lambda} = & \frac{8}{13} \Big[(1+7\eta-31\eta^2) (\bar{\lambda}_1+\bar{\lambda}_2) \\ & -\sqrt{1-4\eta} (1+9\eta-11\eta^2) (\bar{\lambda}_1-\bar{\lambda}_2) \Big] \end{split}$$

where

$$\eta = \frac{M_1 M_2}{(M_1 + M_2)^2}.$$

For $S/N \approx 20 - 30$, typical measurement accuracies are expected to be (Rodriguez et al. 2014; Wade et al. 2014):

 $M_{chirp} \sim 0.01 - 0.02\%, \qquad \bar{\Lambda} \sim 20 - 25\%$

 $M_1 + M_2 \sim 1 - 2\%, \qquad M_1/M_2 \sim 10 - 15\%$ 通 と く ヨ と く ヨ と

Tidal Deformatibility - Λ

Tidal Deformatibility - $\overline{\Lambda}$

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

Simultaneous Mass/Radius Measurements

• Measurements of flux $F_{\infty} = (R_{\infty}/D)^2 \sigma T_{\text{eff}}^4$ and color temperature $T_c \propto \lambda_{\text{max}}^{-1}$ yield an apparent angular size (pseudo-BB):

 $R_{\infty}/D = (R/D)/\sqrt{1-2GM/Rc^2}$

 Observational uncertainties include distance D, interstellar absorption N_H, atmospheric composition Best chances are:

通 と く き と く き と

- Isolated neutron stars with parallax (atmosphere ??)
- Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters (reliable distances, low B H-atmosperes)
- Bursting sources (XRBs) with peak fluxes close to Eddington limit (gravity balances radiation pressure)

$$F_{\rm Edd} = \frac{cGM}{\kappa D^2} \sqrt{1 - 2GM/Rc^2}$$

PRE M - R Estimates

QLMXB M - R Estimates

J. M. Lattimer

Combined R fits

Assumed P(M) is that measured from pulsar timing $(\bar{M} = 1.4M_{\odot})$.

J. M. Lattimer Constraining the Physics of Dense Matter With Neutron Stars

イロト イヨト イヨト イヨト

Folding Observations with Piecewise Polytropes

J. M. Lattimer

Bayesian Analyses

Role of Systematic Uncertainties

Systematic uncertainties plague radius measurements.

- Assuming uniform surface temperatures leads to underestimates in radii.
- Uncertainties in amounts of interstellar absorption
- Atmospheric composition: In quiescent sources, He or C atmospheres can produce about 50% larger radii than H atmospheres.
- Non-spherical geometries: In bursting sources, the use of the spherically-symmetric Eddington flux formula leads to underestimate of radii.
- Disc shadowing: In burst sources, leads to underprediction of A = f_c⁻⁴(R_∞/D)², overprediction of α ∝ 1/√A, and underprediction of R_∞ ∝ √α.

(日) (同) (E) (E) (E)

Additional Proposed Radius and Mass Constraints

- ► Pulse profiles Hot or cold regions on rotating neutron stars alter pulse shapes: NICER and LOFT will enable timing and spectroscopy of thermal and non-thermal emissions. Light curve modeling → M/R; phase-resolved spectroscopy → R.
- Moment of inertia Spin-orbit coupling of ultra- relativistic binary pulsars (e.g., PSR 0737+3039) vary *i* and contribute to *i*: *I* ∝ *MR*².
- Supernova neutrinos Millions of neutrinos detected from a Galactic supernova will measure $BE = m_B N - M$, $\langle E_{\nu} \rangle$, τ_{ν} .
- QPOs from accreting sources ISCO and crustal oscillations

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (M/R) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Overview - 5

... while phase-resolved spectroscopy promises a direct constraint of radius *R*.

Crime Ourrieur (

Conclusions

- Neutron matter calculations and nuclear experiments are consistent with each other and set reasonably tight constraints on symmetry energy behavior near the nuclear saturation density.
- ► These constraints, together with assumptions that neutron stars have hadronic crusts and are causal, predict neutron star radii R_{1.4} in the range 12.0 ± 1.0 km.
- ► Astronomical observations of photospheric radius expansion X-ray bursts and quiescent sources in globular clusters suggest R_{1.4} ~ 10.5 ± 1 km, unless maximum mass and EOS priors are implemented.
- Should observations require smaller or larger neutron star radii, a strong phase transition in extremely neutron-rich matter just above the nuclear saturation density is suggested. Or should GR be modified?