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Introduction

12 February 2016: LIGO reports detection of gravitational
waves on Sept. 14, 2015 (GW150914)
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GW150914 event (B.F. Abbott et al. 2016, Phys. Rev. Lett. 116,
061102)
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How does a laser interferometer work? Interpretation is
gauge-dependent; prediction of the phase shift is not.

Hanford detector (from LIGO website)
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REVIEW OF LASER INTERFEROMETERS
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beam splitter at the origin (x , y) = (0,0)
mirrors at (L,0) and (0,L)
laser beams starting in phase propagate in both arms (of
equal length L), reflect off mirrors, travel back to beam
splitter where they are collected and analyzed.
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Effect of a grav. wave on a ring of particles ⊥ direction of
propagation:

If a grav. wave impinges, it causes the lengths of the two arms
to vary by different amounts. The lengths travelled by the two
beams are different → phase shift ∆ϕ = 2πδl/λ
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Grav. waves are small perturbations of Minkowski spacetime

gµν = ηµν + hµν

in asymptotically Cartesian coords., with

|hµν | ≪ 1

(really! h ∼ 10−21 for LIGO)
Transverse-traceless (TT) gauge:

h0µ = hµ
µ = 0
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For a grav. wave propagating along the z-axis,

(hµν) =


0 0 0 0
0 hxx 0 0
0 0 −hxx 0
0 0 0 0

+


0 0 0 0
0 0 hxy 0
0 hxy 0 0
0 0 0 0


≡ h+ + h×

2 distinct polarizations
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Effect of the + mode on a ring of particles as time goes by:

Effect of the × mode on a ring of particles:
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Consider, for simplicity, a grav. wave with single polarization h+

propagating along the z-axis normal to the interferometer’s
plane, to first order O(h). Treat beam splitter and mirrors as test
particles. Their separation x i obeys the geodesic deviation eq.

ẍ i = R i
00j x j

where x i = x i
(0) + δx i . In TT gauge,

ẍ i =
1
2

ḧ(TT)
ij x j

(0)
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Assumption: L ≪ λg

grav. wave wavelength λg ̸= λ wavelength of laser light

for ν = 1 kHz, L/λg ∼ 10−2 (not true for LISA)

Integrate ẍ i = 1
2 ḧ(TT)

ij x j
(0) →
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
δx = 1

2 hxxx ≃ h+(t)x

δy = 1
2 hyyy ≃ h+(t)y

tidal effect (effect of curvature = gradient of acceleration of
gravity)

δL
L

∼ h

for LIGO L ∼ 4 km, h ∼ 10−21, δL ∼ 4 · 10−3 fm
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The variation in length of the interferometer’s arms is

δL(t) = δx(t)− δy(t) = Lh+(t)

the phase difference at output is

∆ϕ = 2π
δL
λ

= 2π
L
λ

h+(t)
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TWO OBJECTIONS ...

.

......

1) Given that the gravitational field stretches both the
interferometer arm L and the wavelength λ of the laser light
propagating through it, why is the grav. wave detectable?
Analogy with cosmology (popular with astronomers): expansion
of space stretches all distances and wavelengths alike, causing
cosmological redshift.

.

......

2) (more technical): gravity deflects light and deflection is first
order, O(h), so laser beams don’t propagate along x- and y -
axes. Then interferometers shouldn’t work when grav. wave
hits.
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Only pedagogical interest? Not really, effects are tiny and
everything 1st order should be scrutinized. One LIGO
spokeperson could not answer 1) in a seminar. Answer is not
trivial.

Qualitative answer in P.R. Saulson, Am. J. Phys. 65, 501
(1997)
Qualitative answer by Kip Thorne in Caltech lectures
online: “spacetime curvature influences light in a different
manner that it influences the mirror separations ... the
influence on the light is negligible and it is only the mirrors
that get moved back and forth and the light’s wavelenght
does not get changed at all ...”–but no calculations.
D. Garfinkle, Am. J. Phys. 74, 196 (2006): analogy
between gauge freedom of GR and Aharonov-Bohm effect
of QM - not explicit.
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Will provide a quantitative answer based on calculations in TT
gauge universally used to describe LIGO interferometers.

V.F., Gen. Rel. Grav. 39, 677 (2007)

Re-iterated in

S. Hughes 2009, Ann. Rev. Astr. Astrophys. 47, 107;
arXiv:1002.2591

Result is gauge-independent (but interpretations are not).
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... AND THE ANSWER

Assume: TT gauge, single polarization grav. wave propagating
along z-axis, L ≪ λg .
Laser beams follow null geodesics

dkµ

dτ
+ Γµρσkρkσ = 0 , kµ ≡ dxµ

dτ

Now
kµ = kµ

(0)︸︷︷︸
O(1)

+ δkµ︸︷︷︸
O(h)

= δµ0 + δµ1 + δkµ︸︷︷︸
O(h)

To 1st order,

d(δkµ)

dτ
= −1

2
ηµα (hαρ,σ + hασ,ρ − hρσ,α)︸ ︷︷ ︸

O(h)

kρ
(0)k

σ
(0)︸ ︷︷ ︸

O(1)
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with
kρ
(0)k

σ
(0) = δρ0δσ0 + 2δ0(ρδσ)1 + δρ1δσ1 + O(h)

Integrate along unperturbed path with error O(h2) →

δkµ = −
∫ L

0
dx

�
�hµ

0,0 +�
�hµ

0,1 + hµ
1,0 + hµ

1,1︸ ︷︷ ︸
x=t along path


+

1
2

∫ L

0
dx

(
��h00 +���2h01 + h11

),µ
+ O(h2)

≃ 1
2

∫ L

0
dx h11

,µ + O(h2)
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so that

δkµ =
δµ0

2
[h11(t = 2L)− h11(t = 0)] + O(h2)

no spatial deflection to 1st order
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Angular frequency measured by an observer uµ is ω = −kµuµ.
For the beam splitter,

uµ = uµ
(0) + δuµ︸︷︷︸

O(h)

= δµ0 + δuµ

ω = ω0 + δk0 and the percent variation is

δω

ω0
=

h11(t = 0)− h11(t = 2L)
2

+ O(h2) = O(h2)

For L ≪ λg ,
δλ

λ
=

δω

ω0
= O(h2)
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so that, to 1st order,
.

......

δL
L

= h+(t)

δλ

λ
= 0

(exactly as in Thorne’s words)

and
∆ϕ = 2π

δL
λ

= 2π
L
λ

h+(t)
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For physical lengths along, e.g., the x-axis lphys =
√

g11 l ,
λphys =

√
g11 λ but

δλphys

λphys
=

δλ

λ
,

δLphys

Lphys
=

δL
L

so calculation using coordinate lengths is correct.
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CONCLUSIONS

Interferometer arms and laser wavelength are stretched
differently by grav. wave
Spatial deflections of laser beams ∼ O(h2) ≤ 10−42 for
GW150914
∆ϕ is gauge-independent, explanation (and objections) are
not
LIGO detectors work well, as demonstrated by the
GW150914 event.
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THANK YOU........
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