High-Mass X-ray Binaries: nature, formation & evolution

S. Chaty Université Paris 7 / CEA Saclay

Colloquium APC, 11/10/2011

Kick-off of X-ray

NUMBER 11

IDE THE SOLAR SYSTEM*

d Frank R. Paolini bridge, Massachusetts

ridge, Massachusetts

S. Chaty

High energy binary systems

Low-mass X-ray Binaries (LMXBs): Roche lobe overflow

High-mass X-ray Binaries (HMXBs): Stellar wind accretion

Galactic X-ray binaries

• 300 Galactic X-ray binaries (Liu et al 2006, 2007): LMXBs + HMXBs

• 187 LMXBs (62%):

- Companion later than B (M<IM_☉)
- Mass transfer: Roche lobe filling, accretion disk
- BH or NS LMXBs (Z/Atoll sources...): Sco X-I...
- + IMXBs with intermediate masses...

S. Chaty mardi 11 octobre 2011

Galactic X-ray binaries

• 114 HMXBs (38%):

- Luminous early-type OB companion (M>10M_{\$})
- Mass transfer:
 - Direct accretion from circumstellar disk (+ Roche lobe overflow) (Be III-V stars): BeXBs
 - Radially outflowing stellar wind or Beginning Atmospheric Roche Lobe Overflow (sg I/II stars): sgXBs

Galactic distribution of LMXBs

LMXBs (old companion stars) concentrated in Galactic bulge & migration off the plane (|b|>3-5°)

90

60

30

0

-30

-60

-90

180

120

60

0 Galactic longitude [deg]

Galactic latitude [deg]

Low Mass X-ray Binaries

240

180

300

mardi 11 octobre 2011

Galactic distribution of HMXBs

- HMXBs (young companion stars): underabundant in central kpc, uneven distribution on Galactic plane towards tangential directions of spiral arms
- Impact of recent stellar formation & evolution, already noticed with Ginga & RXTE (Koyama et al. 1990; Grimm et al. 2002)

mardi 11 octobre 2011

General properties of HMXBs

Туре	Percent of all (100) HMXBs	Luminosity class	Pulse periods (s)	Binary period (d)	Binary eccentricity	Log Lx (erg/s)
BeXB	57	III-V	0.05-500	2-260	0.3-0.9	36-38
(XP*)	10	III-V	200-1400	250	0.03	34-35
sgXB	25	I-II	200-700	3-40	0-0.3	34-35
Others	8					

• Taken from the review on X-ray binaries by Charles & Coe 2006

 *X Per-like systems: long pulse periods, persistent low flux, low variability, rare uncorrelated weak X-ray outbursts

Be X-ray binaries (BeXBs)

- Donor: B0-B2e star with circumstellar «decretion» disc of gas (Coe 2000, Negueruela 2004)
 - created by low-velocity/high-density wind (10⁻⁷M^α/yr): Hα emission line (disc size)
 + continuum free-free/free-bound (IR excess)
- Compact object: NS in a wide & eccentric orbit
- Transient & bright X-ray outbursts when NS crosses decretion disk
- ~50 in MW, >35 in SMC

BeXBs in X-rays

- <u>Type I</u>: regular periodic outbursts at periastron
- <u>Type II:</u> giant outbursts at any phase: dramatic expansion of circumstellar disc including NS
- <u>«Missed» outbursts:</u> low $H\alpha$ emission (small disc) or centrifugal inhibition of accretion
- <u>«Shifting phase» outbursts</u>: rotation of density structures in circumstellar disc

BeXBs: MW vs S/LMC

- Large number of BeXBs in SMC (>35) instead of ~3 predicted by galactic mass ratio of 50! Probably due to bridge of material MW/MCs (McBride et al. 2008)
- Previous closest SMC/LMC approach ~100 Myr ago: new massive stars formed current HMXB population
- Large number of SNRs of similar age (~5 Myr): increased starbirth due to tidal interactions (Stavely-Smith et al. 1997; Stanimirovic et al. 1999)

BeXBs: MW vs S/LMC

- Strong spatial correlation between emission line stars & 8-12 Myr stars with BeXBs in SMC (Meyssonnier & Azzopardi 1993, Maragoudaki et al 2001)
- Number of HMXBs: indicator of SFR & starburst activity (Popov et al. 1998, Grimm et al. 2003)
- SMC/LMC provide good sample of BeXBs in a compact region

Fig. 6. Isodensity contour map of main sequence stars with Fig. 8. Isodensity contour map of main sequence stars with 17 < U < 18 and -1.1 < U - V < 0.2, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6, corresponding to age 15 < U < 16 and -1.4 < U - V < -0.6. 3×10^7 yr- 1.7×10^8 yr ($\pm 10^7$ yr). The fragmentation mentioned 8×10^6 - 1.2×10^7 yr. above is followed by the formation of a "shell" in the northern SMC and a higher concentration of stars in the southwest region of the SMC

Fig. 7. Isodensity contour map of main sequence stars with 16 < U < 17 and -1.3 < U - V < -0.2, corresponding to age (1.2-3) ×107 yr. The "Bar" of the SMC is now more marked.

Fig. 9. Isodensity contour map of main sequence stars with U < 15 and -1.5 < U - V < -0.8, corresponding to age younger than 8 × 10⁶ yr. The youngest SMC stellar population is now concentrated in the "Bar" and the Wing.

BeXBs: MW vs S/LMC

• Similar BeXB populations:

 MW (solid) & SMC (dashed) (McBride et al. 2008)

 MW (white) & LMC (black) (Negueruela & Coe 2002)

Figure 4. Spectral distribution, as determined from high tio blue spectra, of Be/X-ray binaries in the SMC (dot–da the distribution of Be/X-ray binaries in the Galaxy (solid

BeXBs vs isolated Be

MW BeXBs (solid) & isolated Be (dashed) (McBride et al. 2008)

Narrow spectral type distribution of BeXBs begins at O8 (~22 Ma), peaks at B0 (~16 Ma) and stops at B2 (~10 Ma): wide orbits vulnerable to disruption during SN event, especially for less massive B stars

S. Chaty

Formation of BeXBs

- Distribution of Be stars (Portegies Zwart 1995)
- Low-mass systems (< 8 M_x, later than B2V): disrupted by SN kick velocities & angular momentum loss
- Heavier systems (> 22 Ma, earlier than 09V): become sgXBs

mardi 11 octobre 2011

Formation of BeXBs

- Model of Rejuvenation: product of binary evolution
- Mass transfer spins up (outer layers of) secondary star => Be phenomenon (not born as fast rotators, nor spun-up in final MS stages)
- Systems formed from moderately massive binaries undergoing semi-conservative mass transfer evolution
 - Wide orbits (200-600d) produced before SN event
 - eccentricity produced by small asymmetries during SN event

(Rappaport & van den Heuvel 1982; van den Heuvel 1983; Verbunt & van den Heuvel 1995)

mardi 11 octobre 2011

Be circumstellar disc

- Natural disk truncation due to tidal torques at certain resonance points (P_{Keplerian} = integer fraction of P_{orb}): no transport of matter beyond these points
 - BeXBs with high eccentricities allow size of disc to depend on orbital phase, at periastron the disc can include NS orbit => Type I X-ray outbursts
 - Accretion on NS unlikely for BeXBs with circular orbits always truncated at fixed size, smaller than Roche lobe => Persistent low-level X-ray emission from stellar wind + occasional Type II outbursts

Spherical accretion

Be circumstellar disc

The accretion mass rate increases

- Activity cycle variations in Be circumstellar disc, which forms and disperses...
- 3 periods: spin, orbital, and super-orbital
- BeXBA0538-66:
 P_{orb}=16.65d; P_{sup}=421d
- MACHO + OGLE: 18yr light-curves: P_{sup}: 300-3000d

Mc Gowan & Charles 2003 Rajoelimanana et al. 2011

mardi 11 octobre 2011

sg X-ray binaries (sgXBs)

- Donor: early-type sgOB star with steady wind outflow
- Compact object: NS in circular orbit
- 2 distinct groups:
 - Roche-lobe overflow systems
 - Wind-fed accreting systems

S. Chaty

Roche-lobe overflow sgXBs

- Classical «bright» sources, NS on circular orbit
- Matter flows via inner Lagrangian point to accretion disc -> high X-ray luminosity (L_x~10³⁸ erg/s) during outbursts
- Cyg X-I: the only sgXB with RL overflow (and stellar wind accretion) hosting a confirmed BH

(Kaper et al 2004)

Wind-fed sgXBs

- NS on close orbit (Porb<15d with low eccentricity), accretes deep inside strong steady radiation-driven highly supersonic stellar wind
- Persistent X-ray emission at regular low-level effect (L_x ~10³⁵⁻³⁶ erg/s); rare Type II outbursts, no Type I
- Large variations on short timescales (wind inhomogeneities)
- Orbits circularize with time & increasing mass-transfer rate

(Kaper et al 2004)

The Corbet diagram

The original Corbet Diagramme (1986)

 3 types of HMXB populations (X-ray accretion-powered pulsars) in different places due to dominant accretion process

S. Chaty

BeXB correlation

- BeXBs: strong correlation NS $P_{spin} \alpha (P_{orb})^2$
 - Accretion of significant angular momentum
 - Small/wide orbit => high/low average wind density => strong/weak accretion pressure => low/high P_{spin} (~high/weak centrifugal inhibition)
- sgXBs: no correlation due to low net angular momentum of accreted matter...

$\label{eq:spin} NS \ P_{spin} \\ \text{on the Corbet Diagramme}$

- HMXB P_{spin} regulated by stellar wind characteristics:
 - Supergiants: spherically-symmetric wind: density ρ(r) α r⁻²; velocity v: ~600-900 km/s
 - Be stars: wind density drops faster: $\rho(r) \alpha r^{-3->-3.5}$; v: ~200-300 km/s
- Larger gradients of p & v at NS distance in BeXBs => accretion of angular momentum more efficient (Waters et al. 1988; Waters & van Kerkwijk 1989)

$\label{eq:spin} NS \ P_{spin} \\ \text{on the Corbet Diagramme}$

- Accretion occurs on magnetized NS only if pressure of infalling material > centrifugal inhibition (Alfven radius inside magnetospheric boundary)
- Equilibrium period P_{eq} for which corotation velocity $V_C = Keplerian \ velocity V_K$ (at magnetospheric radius)
 - $V_C > V_K$ (~ $P_{spin} < P_{eq}$): Propeller mechanism increases P_{spin} (material spun away taking angular momentum)
 - V_C<V_K (~P_{spin}>P_{eq}): accretion reduces P_{spin} (Illarionov & Sunyaev 1975)

$\label{eq:spin} NS \ P_{spin} \\ \text{on the Corbet Diagramme}$

- Given density & steady accretion rate depending on direction of angular momentum vs NS spin: P_{spin} reaches $P_{eq} \alpha \rho^{-3/7}$
 - Current NS P_{spin} in sgXBs longer than predicted, closer to P_{eq} of stellar wind while the star was still a MS O star (Waters & van Kerkwijk 1989)
 - P_{spin} ≠ P_{eq} in BeXBs, constantly adjusting to changing conditions in wind: reflect values of earlier evolutionary stage (King 1991)

The INTEGRAL Legacy

The INTEGRAL observatory

- ESA satellite launched on 17/10/2002 by PROTON rocket on eccentric orbit
- 2 γ-ray coded mask telescopes 10 keV-10 MeV, 12' resolution, 19° fov

S. Chaty

Bird et al. 2007 Bird et al. 2010

S. Chaty

Multiwavelength observations

- Discovery: INTEGRAL (X/γ)
- Localisation: XMM/Swift/Chandra (X)
- Identification: opt/IR (ESO Paranal VLT / La Silla NTT)

Identification of sources

 4+20+1+5 IGRs localised with Chandra: Butler et al. 2009; Paizis et al. 2007; Tomsick, Chaty, Rodriguez et al. ApJ, 2006, 2008, 2009

• 12+17 IGRs localised with Swift: Rodriguez, Tomsick, Chaty, A&A, 2008a and 2008b

 Multi-wavelength follow-up of ~50 sources: Chaty, Rahoui, Foellmi et al., A&A, 2008; Filliatre & Chaty 2004; Rahoui et al. A&A 2008; Filliatre & Chaty, ApJ 2004, Pellizza, Chaty, Negueruela A&A 2006; Rahoui & Chaty 2010; Zurita Heras & Chaty 2008, 2009; Curran et al. 2011abc

Identification

- Astrometry
- Photometry
- Spectroscopy
- Results: ~20 sgHMXBs, some with MIR excess

S. Chaty et al.: Optical/NLR observations revealing the obscured INTEGRAL binary systems

Chaty, Rahoui, Foellmi, Rodriguez, Tomsick, Walter et al. 2008

3 observational facts:

I.INTEGRAL has quadrupled the known population of sgXBs

- II. INTEGRAL has revealed a previously hidden population of obscured sgXBs
- III. INTEGRAL has discovered huge and fast transient flares in sgXBs

Statistics on HMXBs

 Before INTEGRAL launch, HMXBs were mostly BeXBs: 54 (42%) BeXBs & 7 (5%) sgXBs (out of 130 HMXBs, Liu et al. 2000)

- 9 years later: 52 (46%) BeXBs & 29 (25%)(x5) sgXBs
 (out of 114 HMXBs, +128 in MCs, Liu et al. 2006)
- From study of individual sgXBs (GX 301-2, 4U 1700-377, Vela X-1...) to characteristics of whole population...

The Corbet Diagramme revisited by IBIS/ISGRI

• 22 BeXBs

- 20 sgXBs
- 3 SFXTs
- 2 unclXBs
- $P_{spin}: 0.6 > 10^4 s$

mardi 11 octobre 2011

3 observational facts:

 I.INTEGRAL has nearly quadrupled the known population of sgXBs

II. INTEGRAL has revealed a previously hidden population of obscured sgXBs

 III. INTEGRAL has discovered huge and fast transient flares in sgXBs

Obscured source: IGR J16318-4848

- Ist source discovered by INTEGRAL; bright IR counterpart
- Unusual absorption A_v=17 mag, 100x>IS, but 100x<X
- MIR excess (ESO/NTT+VLT & Spitzer observations)

Filliatre & Chaty 2004; Rahoui et al. 2008

S. Chaty mardi 11 octobre 2011

Obscured source: IGR J16318-4848

- NIR spectrum: stratified circumstellar enveloppe, wind: Luminous sgB[e] star: 10⁶L², 30M², 22000K, 20R²=0.1au
- MIR VISIR photometry: T_d=1100K, R_d=12R*=240R* (=1au) If P_{orb}=10d=> a=50R*<R_d => dust cocoon enshrouds the whole binary system
- MIR VISIR+Spitzer spectrum: aspheric geometry, disk rim at 5500K, warm dust shell at 900K

Chaty & Rahoui 2011; S. Chaty Filliatre & Chaty 2004; Rahoui et al. 2008

Chaty/ESA

Why INTEGRAL?

 ISGRI (>20 keV) immune to absorption that prevented discovery of intrinsically absorbed sources with earlier soft X-ray telescopes (Spectrum IGR J18450-0435)

Zurita Heras & Walter 2009

Why INTEGRAL?

- Flux (40-100 keV) in mCrab (Bird et al. 2010)
 - SFXT IGR J17544 = 0.2+/-0.1 (8 Ms) (Peak flux 20-40 keV = 33.7 mCrab)
 - SFXT XTE JI739 = 0.8 ± -0.1 (8 Ms) (Peak flux 20-40 keV = 43.9 mCrab)
 - Obscured IGR J16318 = 14.2+/-0.1 (3.4Ms) IGR J16320 = 5.7+/-0.1 (3.3Ms)
 - Vela X-I = 54.3+/-0.2 (3 Ms) 4UI700-377=120.8+/-0.1 (5.5 Ms)
- This explains why only bright sgXBs (~Vela X-I) were known before...

S. Chaty

3 observational facts:

 I.INTEGRAL has nearly quadrupled the known population of sgXBs

• II. INTEGRAL has revealed a previously hidden population of obscured sgXBs

 III. INTEGRAL has discovered huge and fast transient flares in sgXBs

SFXTs: IGR J1754

- sgXB: NS + blue O9lb supergiant star (25M*, 31000K, 22R*), Porb=4.9d (1/2 of bright & persistent source Vela X-1!)
- X-ray study: short (~hr) but complex & intense X-ray flares (factor of 10⁴⁻⁵)
- SFXT = Supergiant Fast Xray Transient 10³²⁻³⁴ erg/s

Pellizza, Chaty, Negueruela 2006 Zurita Heras & Chaty 2009

Accretion processes

- Accretion from clumpy stellar wind: study of density, structure & size of clumps
 (Owocki 2009; in't Zand 2005; Walter & Zurita Heras 2007, Negueruela et al. 2008, Ducci et al. 2009)
- Formation of transient accretion disks (Ruffert 1997; Ducci et al. 2010)
- Accretion with centrifugal/magnetic barriers (Bozzo et al. 2008)

Macro-clumping scenario

- Each SFXT outburst due to accretion of single clump,
 X-ray lightcurve = direct tracer of wind density
- Very high degree of porosity (macro-clumping) required to reproduce outburst frequency in SFXTs: good agreement with UV line profiles
- Flare/quiescent count rate ratio => clumps/inter-clump density ratio:
 - 15-50 in Intermediate systems
 - 10²⁻⁴ in SFXTs (~line-driven instabilities at large radii)

Macro-clumping scenario

- Typical wind clump parameters:
 - Compact object with large orbital radius: 10 R*
 - Clump size: few tenths of R*
 - Clump mass: 10^{22-23} g (for N_H = 10^{22-23} cm⁻²)
 - Mass loss rate: 10⁻⁽⁵⁻⁶⁾ M_x/yr
 - Clump separation of order R* (at orbital radius)
 - Volume filling factor: 0.02 -> 0.1

sgXBs vs SFXTs

- Basic model of porous wind predicts a substantial change in properties of the wind «seen by NS» at distance r~2R*
 - r<2R*: NS sees a large number of clumps, embedded in quasi-continuous wind
 - r>2R*: clump density so small that NS is effectively in empty space
- sgXBs can only lie within the 2 vertical lines

Negueruela et al. 2008

mardi 11 octobre 2011

sgXB configurations

- Classical sgXB: NS on circular orbit inside dust cocoon (I0R*) enshrouding whole binary system (~obscured source IGR JI6318): persistent X-ray emission
- Intermediate SFXT: NS outside dense region, on circular orbit
- SFXT: NS occasionnally accretes from clumpy stellar wind on wider, eccentric orbit, longer quiescence (~XTE JI739 Porb 50d)

Evolution of HMXBs

The missing link: IG

- Unusual SFXT behaviour:
 - outbursts of a few days (usually hours)
 - High level quiescence: L_{max}/L_{min}=10³ (usually 10⁴)
- Companion star: sg B0.5la;
 P_{orb}=18.5d, P_{spin}=21.05s —
- Intermediate SFXT: NS in narrow transition zone between high/low clump density

14000

12000

10000

8000

6000

4000

2000

0

-lux (Arbitrary unit)

mardi 11 octobre 2011

Origin of «misplaced» sgXBs?

There are 2 «misplaced» SFXTs: IGR J18483-0311/(B0.5 la)
 & IGR J11215-5952 (B1 la)

They should have evolved from normal MS OB-type star

Liu, Chaty, Yan, MNRAS

Origin of «misplaced» sgXBs?

Current Pspin = Peq while on MS (Waters & van Kerkwijk 1989) Lines: Theoretical NS Peq for O7V stars (solid lines) & BI la with 3x10¹²G (dotted line)

- But they are not spinning at P_{eq} of OV stars (or only if low B~10¹¹G)
- They can not have spun up after reaching P_{eq} since stellar wind accretion phases will randomly spin up & down
- The NS have not reached P_{eq}: not enough time due to weak stellar wind and eccentric orbit during MS stage

Liu, Chaty, Yan, MNRAS

Origin of «misplaced» sgXBs?

- Therefore they can not have evolved from normal MS OB-type stars as usual sgXBs
- They must be descendants of BeXBs (O-type emission line stars) after NS reaches P_{eq} (i.e. with previous accretion phase)
- And there must be many more such intermediate SFXTs... Liu, Chaty, Yan, MNRAS

Population Synthesis

- Long-period ~100d sgXBs require initial systems with Porb~10d
- These systems will survive Common Enveloppe Phase (poorly known phase of stellar evolution)
- End as close eccentric radio pulsar binary systems (double NS or BH/NS)
- Search for massive progenitors

Tauris & van den Heuvel 2006

Galactic distribution

- Study of HMXBs environment & birthplace
- Correlation between HMXBs and active OB stellar complexes
- Typical cluster size: 0.3 kpc Inter-cluster distance: 1.7 kpc Distance uncert.: 0.65 kpc

Coleiro & Chaty 2011

S. Chaty mardi 11 octobre 2011

Galactic rotation

- Propagation of density waves induces star formation in spiral arms (Lin et al 1969): angular velocity of spiral arm pattern Ω ~20-60/Gyr (Bissantz et al 2003)
- Delay of ~10 Myr between star formation & maximum number of HMXBs: Galactic rotation changed apparent position of arm
- Distribution of HMXBs should be offset by ~40° with current spiral arm pattern at a distance of ~5 kpc.
- Uncertainties: distance of HMXBs, location of arms, Sun GC distance (Dean et al 2005)

Galactic distribution

- Norma arm region: the most active formation site of young supergiants (Bronfman et al 1996): precursors to HMXBs
- Galactic bulge & Scutum/ Sagittarius arms
- Ongoing Herschel observations of INTEGRAL sources...

S. Chaty

Do we better understand HMXBs?

- Do we better understand the 3 populations of HMXBs?
- Do we better understand accretion processes, in particular in sgXBs?
- Do we understand fast transient flares (clumpy wind/transient accretion disks)?

Probably not fully yet, but at least we now have more sources to play with... ...and study formation and evolution processes...

Conclusions & Perspectives

BY SYLVAIN CHATY

Chaty/ ESA

- Continuity in sgXBs (obscured to SFXTs): differences naturally explained by simple orbital configurations
- Laboratory for studying physics of NS accretion:
 * direct accretion (formation of transitory accretion discs)
 * stellar winds (structure, high/low density, clumps...)

• Study of formation, evolution and final stages of NS/BH binaries

mardi 11 octobre 2011