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Data Scientific Applications in Astronomy: Advent and
Opportunities

Modern astronomical instruments record huge volumes of data in the
form of images, catalogs, raw data and signals in different bandwidths.
A new wave of pursuits in astronomy thus involve the use of
statistics, machine learning, and artificial intelligence to solve
problems. An emerging interdisciplinary area of study which calls for
scientists to collaborate from the fields of:

1 Astronomy and astrophysics
2 Statistics
3 Mathematics
4 Computer and Information sciences.

Opportunities:
1 to attract students from astrophysics, statistics, and computer science

backgrounds; to create awareness in the fast developing field
2 Scientometric analysis can provide insights to the pattern of

collaboration between scientists from different domains, the popularity
of various sub domains, and the direction in which future pursuits can
be made.

3 to develop an evolving, inter-disciplinary field and create nationwide
community on AstroInformatics.

4 bring in International Astrostatistics Association (IAA) for cross
collaboration and greater visibility- PI is the Vice-Chair.
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Our Work: Cobb-Douglas Habitability Production Function

The CD-HPF is a novel approach to estimate the habitability of an
exoplanet. It is formulated as a minimization problem:

Y = f (R,D,Ts ,Ve) = K · Rα · Dβ · T γ
s · V δ

e

Key aspects of this model:

1 Inspired by econometric models
2 Important factors of habitability can contribute differently for

different planets
3 convergence can be proved
4 can be solved by a computer in the log-linear form
5 new result powered by the principle of mathematical induction

ensuring global optima under additional parameters such as orbital
velocity, eccentricity etc.

Video link
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Classification of Exoplanets

The rate at which exoplanets are being discovered is increasing. With the
scheduled launch of the JWST in 2018, automated methods of
classification need to be explored.
As a part of this endeavor, we plan:

1 Explore the efficacy of various classification algorithms
2 Propose the best methods of classification based on linear separability

of data, etc.
3 Simulate the growth of data and tested the efficacy of ML algorithms

on artificially augmented datasets
4 propose new methods to handle under-represented classes
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Eccentricity Estimation of Exoplanets

One of the aspects of the PHL-EC catalog is that it assigns an eccentricity
of 0 if the eccentricity of the orbit of a planet cannot be estimated. This
prevents eccentricity from directly being used as a feature in the CD-HPF
as it is in a multiplicative form.
To tackle this, the following methods are being tried:

1 Modeling the eccentricity of planets using perturbation theory
2 Modeling the eccentricity of planets using quadratic and logarithmic

regression

Having determined the eccentricities reliably, the CD-HPF can be extended
as:

Y = k · Rα · Dβ · T γ
s · V δ

e · S
ζ
f · (E + ε)τ

thus incorporating other important factors for habitability.
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Metallicity effects on habitability- Computational DoE
Problem

Target variable, y , habitability; factorial analysis needed to determine
importance of metals toward habitability; nK designs where K is number
of levels refers to designs with K factors where each factor (metal) has n
levels; levels are continuous posing a huge design problem. Requires novel
metaheuristic, Multi-stage Memetic Algorithm (MSMA) to solve the
problem.

MSMA Operators: Four operators are defined and used in two
stages- used to accomplish. Each stage requires croosover and
mutaion operators, Ω1 and Ω2 for stage 1 and, Ω3 and Ω4 for stage 2
respectively. We optimize over the support points in stage 1 and
optimize over the distribution of the support points in stage 2. Hence
the name, Multi stage memetic algorithm.
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Remarks: Metallicity effects on habitability- Computational
DoE Problem

The proposed design is to be optimized in multiple stages, where in
one stage we optimize over the design points and in the other stage,
we optimize over the distribution of the support(design) points.
Ω1 is defined as the transposition(crossover) operator in breeding
strategy while Ω2 is the mutation operator, used to choose and create
mutants.
generate random population with K design runs, where design points
are sampled randomly from the design space and all weights are
assigned the same.
Information Matrix is used to evaluate fitness of population.
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Novelty

1 Knowledge creation in Machine Learning and computational Design
of Experiments (DoE)

2 Novel applications in highly sporadic and imbalanced data arising in
exoplanet studies, classification, star quasar classification, nova
classification

3 ”small-data treatment”: The treatment for classification of exoplanets
requires reasonable under-sampling and artificial augmentation. This is
the opposite big-data pursuit and requires novel interventions!

4 New theorems and proofs solidifying the analytical and statistical
foundation

5 Finding hidden correlations in the complex astronomical Big Data

6 Standardization of meta-data for better science
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Novel contributions at a glance

Novel convex optimization based model for habitability score, more
powerful and general compared to the existing model, ESI

propose improved habitability models under constraints and greater
parameters by introducing stochastic fronter analysis to tackle the problem
of curvature violation

New habitability catalog

Novel computational method-MSMA to determine relevance and
importance of factors in metallicity of exoplanets
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Publication Details

Title Published/ Year Impact
Presented factor

New Habitability Score via Journal of Astronomy 2016 2.2
Data Analytic Modeling and Computing
Book chapter on Machine Handbook of Research 2016
Learning Approaches for on Applied Cybernetics
Supernova Classification and Systems Science,

IGI Global
Comparative study in MNRAS 2017 4.952
classification methods
and exploration of
Habitability Catalog:
PHL-EC
Proxima Centauri b: to be
Theoretical Validation of J.Astronomy and Computing 2018 2.2
Potential Habitability
via CD-HPF
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Publication Details

Title Published/ Year Impact
Presented factor

ASTROMLSKIT: Open Neighborhood 2015
source statistical Astronomy Meeting
Toolkit
CD-HPF: New Habitability Space Science 2016
Score via Data Symposium
Analytic Modeling
Machine Learning Done AISC to be 1.7
Right: A case study in Springer and
Quasar-Star Classification
Classification MNRAS to be 4.952
of Novae submitted
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Introduction

Astronomy has suddenly become an immensely data-rich field, with
numerous digital sky surveys across a range of wavelengths, with many
Terabytes of pixels and with billions of detected sources due to
advancement of technology and new advanced technological telescopes
and other such instruments.

The nature of the data is very complex which needs to be analyzed and
interpreted.

The main focus here is to deal with the complexity of data like missing
value, balancing of dataset or wrong data value.

The entire work is broadly classified into : cosmology and habitability
exploration.
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Problem Statement

To design and develop a machine learning system which will analyze
astronomical data and reduce the complexities in parameter estimation
of various cosmological objects.
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Literature Survey

[Karim Pichara et al, 2013] Used Bayesian networks for predicting missing
data and Random Forest classifier to classify stars.

[B. L. Lago et al, 2010] used two traditional methods chi-square and
complete-likelihood approaches and compared and found that likelihood
approach gives more restrictive constraints on MLCS2k2 light-curve fitter
and SALT2 light-curve fitter.

[Louis N.Irwin,2014] used ESI (Earth Similarity Index), as a parameter
which rates the similarity of exoplanet to Earth based on the mass, size &
temperature and PHI (Planetary Habitability Index) as another parameter
and finally come up with a third parameter(based on above 2),
BCI(Biological Complexity Index) to provide a more complete form to
predict life outside the earth.
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Literature Survey continues

[Z.E.Musielak,2014] had recently a new observation in which, based on
the radio waves emissions ,they are predicting the exo-moons.

[Debray,Raymond,2013] tried to train a classifier on light curves, which
were represented as a time series of data and various attributes
corresponding to this were stored in a binary table. An open source
machine learning algorithm was used with a variety of classification
methods. They got good accuracy results but it was not well tested for
large data sets and left with much more scope for improvements.

[Schulze-Makuch D. et.al. 2011] in their work showed a two- tiered
approach to assess the habitability of exoplanets. As one parameter ESI
was considered and the other parameter was PHI(Planetary Habitability
Index). These 2 indices were properly designed and formulated by them in
order to assess the habitability but requires more information of important
planetary parameters.
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Comparative Study in Classification Methods and
Exploration of Habitability Catalog: PHL-EC

The focus of this work is to explore the potential & efficacy of various
machine learning algorithms like kNN, Decision Tree, Random Forest,
Support Vector Machine , Näıve Bayes’ and Linear Discriminant Analysis
to automate the classification of newly discovered exoplanets.

These algorithms are provided in an integrated manner to analyze the
data from PHLs Exoplanet Catalog.
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PHL-EC: Habitability Catalog

Data used for this work has been taken from Planetary Habitability
Laboratory- Exoplanet Catalog, (PHL-EC), University of Puerto Rico.

Data set can be downloaded from,
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database

PHL-EC data set has 68 features and were having 3416 confirmed
exoplanets at the time of writing the paper. Currently the database has
3667 planets last updates on 21st May 2017.

The 68 features have 13 categorical and 55 continuous features.

The data set combines measured and modeled parameters of various
sources. Hence, provides a good metric for visualization and statistical
analysis.
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Class labels in the dataset

After thorough analysis of the dataset, we have identified two class labels:

Planetary Class classifies planets based on thermal zone (hot, warm or
cold) and it’s mass (Asteroidan, Mercurian, sub-terrain, Terrain,
super-terrain, Neptunian & Jovian).

Habitability Class classifies planets based on only temperature. It is
described as follows -
1. Hypopsychroplanet - very cold (below −500 C)
2. Psychroplanet - cold (−500 C to 00 C)
3. Mesoplanet - warm (00 C to 500 C)
4. Thermoplanet - hot (500 C to 1000 C)
5. Hyperthermoplanet - very hot (1000 C to 1500 C)
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In the year 2015, there were 3 planets classes based on their thermal
properties. They were - Mesoplanet, Psychroplanet and non-habitable
planet classes. Later in 2016, 2 more classes were added. They are
Thermoplanet and Hypopsychroplanet.

We are concerned with the planets belong to Psychroplanet and
Mesoplanet class as planets of these classes can sustain life.
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Handling of problems associated with the dataset

There are few shortcomings in the catalog like missing data for few
features, wrong data value or unbalanced data class.

Missing Data were handled by inserting the class-wise mean for
continuous valued attributes and the mode for categorical-valued
attributes. Only about 1% of data in the dataset (after removing
unimportant attributes for processing) is missing.
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Handling of Biased Data

The dataset was first scraped in June,2015. 664 planets with known
surface temperature were considered, out of which 9 were a part of
Mesoplanet class and 7 in Psychroplanet class. The remaining planets
were in non habitable class.

smaller datasets were constructed by considering all the planets in
Mesoplanet, Psychroplanet class and 10 random planets from non
habitable class.

Classification and testing were performed on theses smaller dataset
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Later in the month of May 2016, dataset was updated with 3411 entries;
Out of which 24 planets belong to Mesoplanet, 13 in Psychroplanet and
remaining 3374 in Non habitable class. The non-habitable planet class
dominates the other two classes. The result of classification performed on
an unbalanced dataset is shown below.

Table: Accuracy Results for Each Algorithm Executed on Unbalanced PHL-EC
Data Set

Algorithm Accuracy (%)

Näıve Bayes 98.7
Decision Tree 98.61
LDA 93.23
k-NN 97.84
Random Forest 98.7
SVM 97.84
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How did we handle unbalanced data?

All 13 entries from psychroplanet class were considered and 13 random
and unique entries from other 2 classes. we frame a smaller dataset with
39 entries which is balanced. Each data set was divided in the ratio of
9:4(training : testing) and 500 iterations of training and testing were
performed on each such data set. 500 such datasets were framed for
analysis. Overall 2,50,000 iteration of training & testing were performed
for each classifier. below is the result of classification -

Table: Accuracy results for each algorithm executed on artificially balanced
PHL-EC data set

Algorithm Accuracy(%)

Random Forest 96.311
Decision Tree 94.542
Näıve Bayes 92.583

LDA 77.396
k-NN 68.607
SVM 36.489
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Other method: generation of duplicate data using repeated
kNN-SVM

As the Mesoplanet and Psychroplanet classes are dominated by
non-habitable class. To balance data in all 3 classes, we have generated
duplicate data for the Mesoplanet and Psychroplanet class.

The data imputation is done by assuming a Poisson distribution of
features, followed by cross-validating the data repeatedly using K-NN and
SVM classification.

Repeated kNN-SVM algorithm is used to label the classes of the newly
generated data.

The accuracy of kNN is seen to be 99% and SVM is 100%.
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CD-HPF: New Habitability Score via Data Analytic
Modeling

This work focuses on two important metrics , Earth Similarity Index (ESI)
and Planetary Habitability Index (PHI) to assess the habitability of a
planet as specified by the astrophysicists.

In this work , we have successfully suggested a new way of obtaining the
ESI value and then using this calculated new ESI (called here as
Habitability Score), we implemented KNN algorithm to classify the planet
in habitable class or non habitable class.

The new way identified by us for this work is Cobb-Douglas Habitability
Production Function (CD-HPF), which has its root in famous Cobb
Douglas function used mainly in Economics.
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Earth Similarity Index (ESI)
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Planetary Habitability Index (PHI)

Some researchers defined another parameter based on the chemical
composition of the planet called as PHI . It is specified as-

where S defines a substrate, E the available energy, C the appropriate
chemistry and L the liquid medium.

PHI in this form lacks some of the important properties that may be
required to assess the habitability of a planet.
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Proposed Approach

A novel approach to analytically determine the habitability score of all
confirmed exoplanets.

Goal is to determine the likelihood of an exo-planet to be habitable using
the newly defined habitability score (CDHS) based on Cobb-Douglas
habitability production function (CD-HPF), which computes the
habitability score by using measured and calculated planetary parameters.

We looked for a feasible solution that maximizes habitability scores using
CD-HPF with some defined constraints.

CD-HPF is a feasible solution that maximizes the objective function, and
is called an optimal solution under the constraints known as returns to
scale.
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CD-HPF: Optimization Function

Returns to scale measure the extent of an additional output obtained
when all input factors change proportionally. There are three types of
returns to scale: 1. Constant Return to Scale (CRS) 2. Increasing Return
to Scale (IRS) 3. Decreasing Return to Scale (DRS)

CD-HPF uses the four parameters used in the ESI metric, i.e. surface
temperature, escape velocity, radius and density to calculate the
Cobb-Douglas Habitability Score (CDHS).
- Analogous to the method used in ESI, two types of Cobb-Douglas
Habitability Scores are calculated – the interior CDHSi and the surface
CDHSs . The final score is computed by a linear convex combination of
these two, since it is well known that a convex combination of
convex/concave function is also convex/concave.
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CDHPF- Optimization Function

The interior CDHSi , denoted by Y1, is calculated using radius R and
density D,

The Surface CDHSs , denoted by Y2, is calculated using surface
temperature Ts and escape velocity Ve ,

The final combination Y , which is the convex combination of Y1 & Y2 is
given as-

Y = w ′ · Y 1 + w ′′ · Y 2 ,

where the sum of w ′ and w ′′ equals 1 and their values are weight to
interior and surface CDHS. The final CDHPF function can be written as-

Y = f (R,D,Ts ,Ve) = (R)α · (D)β · (Ts)γ · (Ve)δ .

The goal is to maximize Y , iff α + β + γ + δ <= 1.
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Plots of CDHPF

Figure: Interior and surface CDHS for DRS

Figure: Interior and surface CDHS for CRS
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Classification

The computed CDHS is classified into 5 classes using Attribute-enhanced
kNN algorithm.

The probabilistic herding and thresholding are used to group the
exo-planets according to their Y scores.

Each CDHS value is compared with its K (specified by the user) nearest
exoplanet’s (closer Y values) CDHS value, and the class which contains
maximum nearest to the new one is allotted as a class for it.
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Training data set is uniformly distributed between 5 classes, so that bias
in the training set can be removed.

Initially, each class holds one fifth of the training data and a new class,
i.e. Class 6, defined as Earth’s Class (or ”Earth-League”), is derived by the
proposed algorithm from first 5 classes where it contains data based on
probabilistic herding and thresholding.
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Normalization of CDHS

CDHS value was also normalized for both CRS & DRS case to have the
score in the range of 0-1 for all 664 exoplanets.

We have applied Attribute-enhanced kNN algorithm to classify the
planets. Under class 6 (Earth League Class), 16 exoplanets were
categorized by the algorithm.
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Figure: Results for Normalized & non-normalized cases of classification for DRS

Figure: Results for Normalized & non-normalized cases of classification for CRS
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Perturbed Cobb Douglas Model

The idea is to include some more important parameters along with radius,
density, surface temperature and escape velocity to the CDHS model.

Two other important parameters i.e. stellar flux and eccentricity are
added.

For majority of the planets, eccentricity is assumed to be zero in the data
set, which can’t be used in Cobb Douglas formula (since it is a production
function).

Some changes are suggested -

Y = f (R,D,Ts ,Ve , Sf ,E ) = (R)α · (D)β · (Ts)γ · (Ve)δ · (Sf )ζ · (E + ε)τ .

where ε is the smallest eccentricity assumed in case eccentricity is zero
(spherical orbit and hence stable) for that planet. We need to optimize
eccentricity by using optimal control theory.

Snehanshu Saha, Ph.D (Center for Applied Mathematical Modeling, PES University, astrirg.org)Celebrating Computing in Astroinformatics: Exploring habitability of Exoplanets via Modeling and Machine Learning 3819/10/2018 36 / 52



SBAF: Neural Nets and Habitable classes

We explore the efficacy of using a novel activation function in Artificial
Neural Networks (ANN) in characterizing exoplanets

We call this Saha-Bora Activation Function (SBAF) as the motivation -
The function is demonstrated to possess nice analytical properties doesn’t
seem to suffer from local oscillation problems.

Neural networks, commonly known as Artificial Neural network(ANN), is
a system of interconnected units organized in layers, which processes
information signals by responding dynamically to inputs. Layers of the
network are oriented in such a way that inputs are fed at input layer and
output layer receives output after being processed at neurons of one or
more hidden layers.
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SBAF

Hidden layers consist of computing neurons that are connected to input
and output layers through a system of weighted connections. The network
has ability to learn from input patterns, whereby with every input fed to
the network, weights are updated in such a way that the error between the
desired and observed output is minimum. Hidden layers are equipped with
a special function called activation function to trigger neurons to process
and propagate outputs across the network.

A special class of ANN called Back propagation deals with computing the
error between observed and desired output and later feeds this error back
to the network with each cycle or ’epoch’. The weights are updated
correspondingly and learning or training of the network is performed till
the error is minimized–Activation function–functional mapping between
inputs and outputs.
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SBAF-The Mathematical Structure

y =
1

1 + kxα(1− x)1−α
;

⇒ lny = ln1− ln(1 + kxα(1− x)1−α)

= −ln(1 + kxα(1− x)1−α)

⇒ 1

y

dy

dx
= − 1

(1 + kxα(1− x)1−α)
·
[
kαxα−1(1− x)1−α − kxα(1− α)(1− x)1−α−1

]
= − k

(1 + kxα(1− x)1−α)
·
[
αxα−1(1− x)1−α − (1− α)xα(1− x)−α

]
⇒ dy

dx
= y

[
α

x
− (1− α)

1

1− x

]
kxα(1− x)1−α

(1)
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How the derivative behaves-SBAF!

= y

[
α(1− x)− (1− α)x

x(1− x)

]
kxα(1− x)1−α

= y2

[
α− x

x(1− x)

]
kxα(1− x)1−α

(2)

From the definition of the function, we have:

y =
1

1 + kxα(1− x)1−α

⇒ kxα(1− x)1−α =
1− y

y

(3)

Substituting Equation 3 in 2, we obtain the final form
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Continued..SBAF

dy

dx
= y2 · α− x

x(1− x)
· 1− y

y

=
y(1− y)

x(1− x)
· (α− x)

(4)

Existence of Optima: Second order Differentiation of SBAF for Neural
Network

⇒ d2y

dx2
=

x(1− x) · y(y − 1)

(x(1− x))2

=
y(y − 1)

x(1− x)

The first derivative vanishes when α = x , the second derivative is positive
when α > x and is negative when α < x
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Visualizing SBAF

Figure: Surface Plot of SBAF
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Remarks About SBAF

This is equivalent to the CDHS formulation when CD-HPF is written as
y = kxα(1− x)β where α + β = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, k is suitably
assumed to be 1 (CRS condition), and the representation ensures global
maxima (maximum width of the separating hyperplanes) under such
constraints. The new activation function to be used for training a neural
network for habitability classification boasts of an optima.

Evidently, from the graphical simulations, we observe less flattening of
the function and therefore the formulation should be able to tackle local
oscillations more easily as compared to the more generally used sigmoid
function. Moreover, since 0 ≤ α ≤ 1, 0 ≤ x ≤ 1, 0 ≤ 1− x ≤ 1, the
variable term in the denominator of SBAF, kxα(1− x)1−α may be
approximated to a first order polynomial. This may help us in
circumventing expensive floating point operations without compromising
the precision.
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NN Architecture

The basic structure of the neural network consists of input layer, hidden
layer and output layer. Let us assume the nodes at input layer are i1, i2 ,
at hidden layer h1, h2 and at output layer o1, o2.

Figure: to optimize the weights so that the network can learn how to map from
inputs to outputs
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Key Takeaways from SBAF

Bingo! Perfect classification- 100% of the three classes

Accuracy remains in tact even after removing surface temperature from
the set of features

Other activation functions are special cases of SBAF-namely Sigmoid
and ReLU

Maxima is unique in the defined interval. This will circumvent the local
maxima problem.

Production Function perspective- K can’t be negative! This is useful for
training and tuning the neural network.
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Further Investigations in to the habitability metrics: PSO
for Range of Scores

Particle Swarm Optimization (PSO) is an optimization technique that
iteratively improves a large number of randomly initialized solutions, called
particles, to yield a globally best solution for a given problem

It makes no assumptions of the problem being solved

PSO does not require a gradient to be estimated and therefore does not
require the objective function to be differentiable

Goal: Constant Elasticity Earth Similarity Approach (CEESA)
score–maximize a Constant Elasticity of Substitution (CES) production
function constructed with the density (D), radius (R), escape velocity
(Ve), mean surface temperature (Ts) and the orbital eccentricity (E ) of
the planet under either Constant or Decreasing Returns to Scale to
estimate similarity to Earth.
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CESSA-PSO

Problem Statement: maximizing the objective function,

Y = (r .Rρ + d .Dρ + t.Ts
ρ + v .Ve

ρ + e.E ρ)
η
ρ , (5)

where, 0 < ρ ≤ 1, coefficients r , d , t, v , e lie between 0 and 1 and add up
to 1, and η is constrained by the scale of production used, 0 < η < 1
under DRS and η = 1 under CRS.
Solution: Use the PSO algorithm to maximize Equation 5 to produce an
Earth similarity metric.
Challenges:

PSO was not designed to handle constraints in its classical definition.

The algorithm needed to be modified to operate in a constrained search
space
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Solution Approach: CESSA-PSO

PSO does not use the gradient of the objective function

it must be able to simulate the gradient in order to gauge whether or not
it is generating better solutions at the end of each iteration

we can observe the value of the input variables as it pilots the objective
to converge to a globally optimal solution.

when particles are initialized or updated, the algorithm does not ensure
the resulting solutions are feasible. The solution is twofold.

resample each random solution from the uniform distribution until every
initial solution is feasible

while updating velocities always update toward a feasible solution,
gathered so far by the algorithm, closest to the particle under update. This
ensures that every particle eventually converges toward feasible solutions
even if they do not necessarily traverse the feasible solution space.
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Handling constraints

Each iteration can be summed up as,

vi = ω.vi + kg (gbest −pi ) + kp(lbest i − pi ) (6)

pi = pi + vi (7)

where ω is a constant in (0, 1) and kg , kp are uniformly generated random
numbers. These values function as inertial weights.

Leaders in Optimization

Simulate gradients

Generating a score interval for planets–BIG difference from the earlier
computational approaches!
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Snapshot: Outcome of Models and ML Techniques

Convergence of two approaches- Scoring via Modeling (CDHS/CESSA)
with Feature based Classification via Machine Learning (SBAF)

Habitability Score is not a rigid number- rather flexible!

Existing habitability metrics (ESI/PHI) are specials cases of our metric
CDHS

Factoring eccentricity in to the habitability model

**************************************************************

Our Papers: http://astrirg.org/projects.html

Our Codes: http://pesitsouthcompsoc.org/resources

https://github.com/orgs/NeuralFuzzy/dashboard
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Thank You
Je vous remercie
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