Can MOND explain the data scattering of "big G" ?

Norbert Klein
 Imperial College London
 Department of Materials
 https://www.imperial.ac.uk/people/n.klein/publications.html

This work is currently unfunded and represents my dedicated "hobby" activity

Imperial College London

1985-1987: my early days contribution to experimental gravity research

A New method for testing Newton's gravitational law

from, J. Schurr, N. Klein, H. Meyer, H. Piel, H. Walesch et al., Metrologia 28, 397 (1991)

2014: Reincarnation of my engagement was triggered by my undergraduate teacher for Particle Physics Prof Hinrich Meyer

Hinrich's team is running an improved pendulum G experiment in a retired underground particle detector lab at DESY in Germany

> Gen Relativ Gravit (2012) 44:2537-2545
> DOI 10.1007/s10714-012-1411-y

RESEARCH ARTICLE

Test of the law of gravitation at small accelerations

[^0]- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?
- Conclusion
- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?

Conclusion

Phenomenological laws of celestial dynamics

Johannes Kepler, 1571-1630

Mordehai "Moti" Milgrom, born 1946
galaxies

The mystery of flat galaxy rotation curves

Data are from: E. Corbelli, P. Salucci (2000). "The extended rotation curve and the dark matter halo of M33". Monthly Notices of the Royal Astronomical Society 311 (2): 441-447. arXiv: astroph/9909252.Bibcode:2000MNRAS.311..441C. doi: 10.1046/j.1365-8711.2000.03075.x..

Newton:
$\frac{v^{2}}{r}=G \frac{M}{r^{2}} \Rightarrow v \propto \sqrt{\frac{1}{r}}$

Flat rotation curves:

$$
\frac{v^{2}}{r} \propto \frac{1}{r} \Rightarrow v=\text { const }
$$

Flat rotation curves suggest a 1/r law for the gravitational field at low accelerations !

The mystery of flat galaxy rotation curves

Experimental evidence: the transition to the flat regime occurs at a certain value of the gravitational field and is not related to a length scale.

How to bring an acceleration scale a_{0} into the equation for flat rotation curves?

$$
\frac{v^{2}}{r}=\frac{\sqrt{G a_{0} M}}{r} \Rightarrow v^{4}=G a_{0} M=\mathrm{const}
$$

The Baryonic Tully-fisher relation: hallmark for MOND

- In the flat regime of galaxy rotation curves, the baryonic mass is proportional to the fourth power of the rotation velocity my notation: Milgrom/McGaugh's first law
- The fit of $v^{4}=G a_{0} M$ yields $a_{0}=(1.2 \pm 0.2) \cdot 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$
for the fundamental MOND acceleration parameter my notation: Milgrom/McGaugh's second law
from S. McGaugh, The Astronomical Journal 143, 40 (2012):
baryonic mass vs rotation velocity for the flat regime of galaxy rotation curves
(squares: gas rich, circles: star rich)
MOND fit 1σ range

Modified Newtonian Dynamics [MOND]

fundamental parameter of MOND theory:

$$
a_{0}=(1.2 \pm 0.2) \cdot 10^{-10} \mathrm{~m} / \mathrm{s}^{2}
$$

- The MOND acceleration a_{0} is a turning point which marks a gradual transition from a $1 / r^{2}$ law (Newtonian regime $a \gg a_{0}$) to a $1 / r$ law (deep MOND regime $\left.a \ll a_{0}\right)$.
- The smoothness of the transition is determined by an interpolation function, which needs to obey the Newtonian- and deep-MOND limits
- The numerical value of the MOND acceleration is of the order of the Hubble constant multiplied by $c \Rightarrow$ numerical coincidence or key to the physics behind MOND ?

$$
a_{0} \approx c H_{0} / 6 \quad H_{0}=67.80 \pm \underset{\uparrow}{0.77 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \approx 2.2 \cdot 10^{-18} \mathrm{~s}^{-1}}
$$

Modified Newtonian Dynamics [MOND]

DISCOVER magazine
from the july/august 2015 ISSUE

Dark Matter Deniers

Exploring a blasphemous alternative to one of modern physics' most vexing enigmas.
By Steve Nadis \| Thursday, May 28, 2015

Mordehai Milgrom (left) and Stacy McGaugh
Milgrom: Weizmann Institute of Science; McGaugh: Case Western Reserve University

Transition region: the universal radial acceleration relation

Imperial College London

$$
\begin{aligned}
& \begin{array}{c}
\text { |P Selected for a Viewpoint in Physics } \\
\text { PRL 117, } 201101 \text { (2016) }
\end{array} \text { PH S IC A L R E V IE W L E TT ER S }
\end{aligned}
$$

One universal law for (almost ?) all galaxies
my notation: Milgrom/McGaugh's third law

Options for fits to the RAR, which are consistent with the deep MOND and Newtonian limits

$g_{\text {MOND }}=g_{\text {Newton }} \cdot f\left(\left|g_{\text {Newton }}\right| / a_{0}\right)$

MOND corrected, i.e. observed acceleration

Newtonian, i.e estimated from baryonic mass according to Newton's law

MOND interpolation function

4 popular choices for f

$$
f_{\text {MONDSimple }}\left(\left|a_{N}\right| / a_{0}\right)=\left[\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{a_{0}}{\left|a_{N}\right|}}\right] \quad f_{\text {MONDStandard }}\left(\left|a_{N}\right| / a_{0}\right)=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{1+\left(\frac{2 a_{0}}{\left|a_{N}\right|}\right)^{2}}}
$$

$$
f_{\text {McGaugh }}\left(\left|a_{N}\right| / a_{0}\right)=\frac{1}{1-\exp \left(-\sqrt{\left|a_{N}\right| / a_{0}}\right)}
$$

$$
f_{\text {Klein }}\left(\left|a_{N}\right| / a_{0}\right)=\left[1+\left(\frac{a_{0}}{\left|a_{N}\right|}\right)^{\beta}\right]^{\frac{1}{2 \beta}}
$$

MOND effects in our solar system?

Operational range
of Cavendish G experiments

$M=1 \mathrm{~kg} @ 1 \mathrm{~m}$ distance:
$a=6.67 \cdot 10^{-11} \mathrm{~m} / \mathrm{s}^{2}$
but: what about the background
field of the earth $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$?

MOND interpretations: the role of the background field

According to Newton's second law the motion of a mass m in a gravitational field g may be modified in two different ways:

1: modification of the Newtonian gravitational field g_{N} :

$$
m_{i} \frac{d^{2} \vec{x}(t)}{d t^{2}}=\vec{F}_{G, N} f\left(\left|\vec{g}_{N}\right| / a_{0}\right)=m_{g} g_{N} f\left(\left|\vec{g}_{N}\right| / a_{0}\right)
$$

2: modification of the inertial mass m :
m_{i} : inertial mass
m_{g} : gravitational mass

$$
\frac{m_{i}}{f\left(\left|\vec{g}_{N}\right| / a_{0}\right)} \frac{d^{2} \vec{x}(t)}{d t^{2}}=\vec{F}_{G, N}=m_{g} \vec{g}_{N}
$$

1 and 2 are identical in case of g_{N} being the gravitational field from one point mass only. How about case of a pendulum ?

Nonrelativistic MOND field theory [AQUALI

MOND effects are implemented by replacing the Poisson equation for the gravitational potential ϕ generated by a given mass distribution ρ by a modified non-linear Poison equation:

Newton

$$
\begin{aligned}
& \vec{\nabla} \Phi_{\text {Newton }}=4 \pi \rho G \\
& \vec{g}_{N}=-\vec{\nabla} \Phi_{\text {Newton }}
\end{aligned}
$$

MOND AQUAL (quadratic Lagrangian)

$$
\vec{\nabla} \cdot\left[\mu\left(\left|\vec{\nabla} \Phi_{M O N D}\right| / a_{0}\right) \vec{\nabla} \Phi_{M O N D}\right]=4 \pi \rho G, \quad \vec{g}_{M O N D}=-\vec{\nabla} \Phi_{M O N D}
$$

$$
\begin{array}{ll}
\mu_{\text {MONDSimple }}(x)=\frac{1}{1+x} & \begin{array}{l}
f_{\text {MONDsimple }} \text { and } f_{\text {MOND standard }} \\
\text { are obtained by solving the } \\
\text { modified Poison equation } \\
\text { for one point mass }
\end{array}
\end{array}
$$

- AQUAL excludes the observation of MOND effects on earth and within the solar system, because the magnitude of the total gravitational field is used in the argument of the interpolation function μ. This leads to the so-called external field effect in MOND.
- Relativistic generalization of AQUAL was unsuccessful.

AQUAL: J.D. Bekenstein, M. Milgrom, Astrophys. J. 286, 7 (1984)

MOND modified inertia interpretation

In MOND inertia the magnitude of the component of the gravitational field which leads to an accelerated motion should be MOND corrected. In case of a pendulum mass this excludes the gravitational field of the earth.
This should enable the observation of MOND effects for a pendulum at extremely small amplitudes !

Since the source masses are moved around, consequently the pendulum body moves \Rightarrow $g_{\text {Newton,h }}$ is time dependent. Therefore any meaningful MOND analysis must include dynamical effects

Laboratory Test of Newton's Second Law for Small Accelerations
J. H. Gundlach, S. Schlamminger, C. D. Spitzer, and K.-Y. Choi

Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
B. A. Woodahl

Physics Department, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA

J.J. Coy

Earth and Space Science Department, Saint Joseph's College, Rensselaer, Indiana 47978, USA E. Fischbach

Physics Department, Purdue University, West Lafayeette, Indiana 47907, USA (Received 12 February 2007; published 13 April 2007)

FIG. 2 (color online). The measured force versus the measured acceleration The solid line is the best fit for acceleration, a being exactly proportional to force F. Our data agree very well with the curve. The insets on the right and top of the main graph give the residuals of the data to the fitted line.
verification of Newton's second law for small accelerations towards $a=a_{0} / 1000$ by amplitude-frequency measurements of a free oscillating torsion pendulum. Here the restoring torque originates from the elastic properties of the fibre, which is electromagnetic \Rightarrow

Basic equation for the MOND correction of Cavendish experiments

$$
\frac{d^{2} \vec{x}(t)}{d t^{2}}=\left(\vec{g}_{N, h}+\vec{a}_{c}\right) f\left(\left|\vec{g}_{N, h}+\vec{a}_{c}\right| / a_{0}\right)+\frac{\vec{F}_{E M}}{m}
$$

Working hypothesis of my analysis

- MOND corrections are determined by the magnitude of the horizontal gravitational field component g_{N} and by accelerated motions due to constraining forces a_{c} (for example centripetal acceleration in case of pendulum rotation). According to GR, a centripetal acceleration contributes to the gravitational force
- Electromagnetic forces are not MOND corrected.

SPACESHIP WITH ARTIFICAL GRAVITY

Imperial College

- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?

Cavendish experiments: simple and genius

Imperial College London

(1) Suspended torsion wire or torsion strip
(2) Test masses
(3) Rigid massless bar
(4) 2 D approximate inertial frame of reference
(5) Source masses position 1
(6) Source masses position 2

Henry Cavendish, 17311810

- Extremely small spring constant of torsion mode leads to very high sensitivity
- Very weak excitation of torsion mode by seismic motion of the pendulum suspension point

PHILOSOPHICAL

 TRANSACTIONSTHE ROYAL
SOCIETY
rsta.royalsocietypublishing.org

The Newtonian constant of from Phil. Trans. R. Soc. A 372: 20140253 (2014) gravitation-a constant too difficult to measure? An introduction

Terry Quinn ${ }^{1, \dagger}$ and Clive Speake ${ }^{2}$

"big G" state-of-art 2017

time of swing
angular acc. $-\boldsymbol{A}$
el. servo $\quad \mathbb{V}^{-1}$
static defl. $\square \mathbf{\square}$
malanc
atom interf. $1-\boldsymbol{- r}$
from C. Rothleitner, S. Schlamminger, Review of Scientific Instruments 88,

111101 (2017)
my PhD pendulum experiment

This is a real challenge
and deserves a proper explanation

Imperial College London

physicsworld

GRAVITY | RESEARCH UPDATE
Gravitational-constant mystery deepens with new precision
measurements
30 Aug 2018 Hamish Johnston

Cavendish "big G" state-of-art Dec. 2018

Measurements of the gravitational constant using two independent methods

Qing Lil ${ }^{1,8}$, Chao Xue ${ }^{2,3,8}$, Jian-Ping Liu ${ }^{1,8}$, Jun-Fei Wu ${ }^{1,8}$, Shan-Qing Yang ${ }^{1 *}$, Cheng-Gang Shao ${ }^{1 *}$, Li-Di Quan ${ }^{4}$, Wen-Hai Tan ${ }^{1}$, Shu-Chao Wu ${ }^{1}$, Vadim Milyukov ${ }^{7}$ \& Jun Luno ${ }^{1,2,3 *}{ }^{1}$, Qing-Lan Wang ${ }^{6}$, Zhong-Kun Hu ${ }^{1}$, Ze-Bing Zhou ${ }^{1}$, Peng-Shun Luo ${ }^{1}$, Shu-Chao Wu ${ }^{1}$, Vadim Milyukov ${ }^{7}$ \& Jun Luo ${ }^{1,2,3 *}$

The Newtonian gravitational constant, G, is one of the most fundamental constants of nature, but we still do not have an accurate value for it. Despite two centuries of experimental effort, the value of G remains the least precisely known
of the fundamental constants. A discrepancy of up to 0.05 per cent in recent determinations of G suggests that there of the fundamental constants. A discrepancy of up to 0.05 per cent in recent determinations of G suggests that there
may be undiscovered systematic errors in the various existing methods. One way to resolve this issue is to measure G using a number of methods that are unlikely to involve the same systematic effects. Here we report two independent determinations of G using torsion pendulum experiments with the time-of-swing method and the angular-accelerationfeedback method. We obtain G values of 6.674184×10^{-10} and 6.674484×10^{-1} cubic metres per kilogram per second squared, with relative standard uncertainties of 11.64 and 11.61 parts per million, respectively. These values have the smallest uncertainties reported until now, and both agree with the latest recommended value within two standard deviations.
Q. Li et al., Nature 560, 582 (2018)

HUST (Huazhong University of Science and Technology)
T. Quinn et al., Trans . R. Soc. A 372, 20140032 (2014)

BIPM = Bureau International des Poids et Mesures

Measurements with 2 independent methods represent ideal test case for MOND, because explanation by systematic errors is much more unlikely!

Torsion pendulum: two versions with huge implications for MOND

Torsion wire
pendulum:
spring
pendulum
\Rightarrow restoring
torque > 95 \% electromagnetic

Torsion strip pendulum:
gravitational pendulum
\Rightarrow restoring
torque > 97 \%
gravitational

Linear pendulum equivalent of a Cavendish experiment: static deflection or Cavendish mode

Imperial College London
$\omega_{0}^{2} x(t) / a_{0^{10}}$
fast source mass move

$$
\ddot{x}(t)+\omega_{0}^{2} x(t)+\frac{\omega_{0}}{Q} \dot{x}(t)=g_{\text {ext }}(t)
$$

slow source mass move

pendulum oscillates around new equilibrium position

MOND simulations for Cavendish operation mode at $g_{\text {ext }}=a_{0}$

pendulum with mixed EM / G restoring force:

$$
\chi=\frac{\kappa_{e m}}{\kappa_{g}+\kappa_{e m}}
$$

$\chi=0$: pure gravitational
$\chi=1$: pure electromagnetic

$$
\begin{aligned}
\ddot{x}(t)= & {\left[g_{\text {ext }}(t)-\omega_{0}^{2}(1-\chi) x(t)\right] \cdot f\left(\left|g_{\text {ext }}(t)-\omega_{0}^{2}(1-\chi) x(t)\right| / a_{0}\right)-\omega_{0}^{2} \chi x(t)-\frac{\omega_{0}}{Q} \dot{x}(t) } \\
& \text { gravitational term: MOND corrected } \quad \text { EM term: not MOND corrected }
\end{aligned}
$$

Results of MOND pendulum simulation: comparison of gravitational and spring pendulum at $g_{\text {nemi }}=\mathscr{a}_{0}$

MOND increases pendulum frequency

MOND increases pendulum deflection

Dynamic MOND response of gravitational and spring pendulum for dififerent excitation fields

- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?

MOND corrections for the BIPM experiment

T. Quinn et al., Trans . R. Soc. A 372, 20140032 (2014)

Static deflection (SD) : measured deflection angle θ not affected by MOND. , but the calculation of the corresponding torque requires precise knowledge of the "spring" constant κ_{g}, which is determined by the resonant frequency of the pendulum ω_{p}.

$$
\text { torque }=\kappa_{g} \cdot \theta \propto \omega_{p}^{2} \cdot \theta \Rightarrow
$$

$$
\frac{\Delta G_{S D}}{G}=\frac{\text { torque }_{S D, M O N D}}{\text { torque }_{S D, \text { Newton }}}=2\left(\frac{\omega_{p, M O N D}-\omega_{p, \text { Newton }}}{\omega_{p, \text { Newton }}}\right)
$$

Electrostatic servo (ES) : torque by gravitational field of source masses balanced by an electric field from a capacitor (zero deflection) \Rightarrow no restoring pendulum force \Rightarrow

Only the external torque by the gravitational acceleration of source masses is MOND corrected:

$$
>\frac{\Delta G_{E S}}{G}=\frac{\text { torque }_{E S, M O N D}}{\text { torque }_{E S, \text { Newton }}}=\frac{g_{\text {ext }, \text { MOND }}-g_{\text {ext }, \text { Newton }}}{g_{\text {ext }, \text { Newton }}}
$$

Cavendish "big G" state-of-art Dec. 2018

Measurements of the gravitational constant using two independent methods

Qing Li ${ }^{1,8}$, Chao Xue ${ }^{2,3,8}$, Jian-Ping Liu ${ }^{1,8}$, Jun-Fei Wu ${ }^{1,8}$, Shan- Qing Yang ${ }^{1 *}$, Cheng-Gang Shao ${ }^{1 *}$, Li-Di Quan ${ }^{4}$, Wen-Hai Tan lang-Cheng Tu ${ }^{1,2}$, Qi Liu ${ }^{2,3}$, Hao Xu ${ }^{1}$, Lin-Xia Lii ${ }^{5}$, Qing-Lan Wang ${ }^{6}$, Zhong-Kun Hu ${ }^{1}$, Ze-Bing Zhou ${ }^{1}$, Peng-Shun Luo ${ }^{1}$, Shu-Chao Wu ${ }^{1}$, Vadim Milyukov ${ }^{7} \&$ Jun Luo $^{1,2,3 \text {. }}$

The Newtonian gravitational constant, G, is one of the most fundamental constants of nature, but we still do not have an accurate value for it. Despite two centuries of experimental effort, the value of G remains the least precisely known
of the fundamental constants. A discrepancy of up to 0.05 per cent in recent determinations of G suggests that there may be undiscovered systematic errors in the various existing methods. One way to resolve this issue is to measure G using a number of methods that are unlikely to involve the same systematic effects. Here we report two independent determinations of G using torsion pendulum experiments with the time-of-swing method and the angular-accelerationfeedback method. We obtain G values of 6.674184×10^{-11} and 6.674484×10^{-11} cubic metres per kilogram per second squared, with relative standard uncertainties of 11.64 and 11.61 parts per million, respectively. These values have the ommended value within two standar
Q. Li et al., Nature 560, 582 (2018)
T. Quinn et al., Trans . R. Soc. A 372, 20140032 (2014)

MOND corrections for the HUST experiment

Time-of- Swing (ToS) : the pendulum oscillates a small amplitudes. In the "near" position of source masses a small component (1-2\%) of the gravitational restoring torque adds to the spring torque of the fibre.

$$
\begin{aligned}
& \text { far position: } \quad \kappa_{f a r}=\kappa_{e m} \\
& \text { near position: } \kappa_{\text {near }}=\kappa_{e m}+\kappa_{g} \Rightarrow \\
& \qquad G \propto \kappa_{g}=\kappa_{\text {near }}-\kappa_{\text {far }} \propto \omega_{p, \text { near }}{ }^{2}-\omega_{p, \text { far }}{ }^{2}
\end{aligned}
$$

No MOND correction of pendulum frequency because the pendulum is still 98\% electromagnetic

Q. Li et al., Nature 560, 582 (2018)

Angular acceleration feedback (AAF) : source-mass induced pendulum oscillation compensated by pendulum turntable motion \Rightarrow MOND correction like for ES

But: rotation of turntable $\omega_{\mathrm{c}} \approx \mathrm{mrad} / \mathrm{s}$ adds centripetal acceleration of ca. $10^{-7} \mathrm{~m} / \mathrm{s}^{2}$, which defines the magnitude of MOND correction

MOND frequency correction of a "mixed" pendulum at $g_{\mathrm{enn}}=a_{0}$

MOND frequency corrections occur only in case of a large fraction of gravitational restoring force (about > 80% g-pendulum)

MOND solves the "hig G" conundrum

MOND corrected G data are consistent with $G=6.6742 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ with just 14 ppm standard deviation with one fit parameter $\beta=1.30$

Comparison of Cavendish MOND corrections with galaxy rotation curves

- The selected interpolation function with $\beta \approx 1.3$ fits G and galaxy data
- More data points are needed to fill the large gap between the galactic and Cavendish acceleration range.
- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?
- Conclusion

What can we learn about the physics behind MOND from this new experimental evidence?

- A general MOND inertia modification can be ruled out
- AQUAL non - relativistic MOND modified Poisson field equation can be ruled out
- MOND effects are controlled by the strength of the local gravitational field component in the direction of motion and by enforced accelerated motion
\Rightarrow General Relativity is basis for any reasonable explanation of the Physics behind MOND
\Rightarrow MOND effects are controlled by small deviations from flat space time in the 2D plane of pendulum motion

The physics behind: Einstein's lift at a_{0}

Imperial College London

Light beam upwards $\delta f_{6}=\delta f_{H}$
$a \approx 6 a_{0}=c H_{0}$
(b)

gravity

space expansion

Combined gravitational / cosmological red/blueshift
$\frac{\delta f}{f_{0}}=\frac{\delta f_{H}}{f_{0}} \pm \frac{\delta f_{G}}{f_{0}}=-\frac{H_{0} h}{c} \mp \frac{a_{N} h}{c^{2}} \approx-\frac{h}{c^{2}} a_{N}\left(\frac{6 a_{0}}{a_{N}} \pm 1\right)$
a) Light source on the floor (-)
b) Light source at the ceiling (+)
\Rightarrow Cosmological and gravitational redshift are of the same order of magnitude at $a \approx a_{0}$

Mc Vittie's metric: a point mass inside an expanding flat universe

$$
\begin{aligned}
& d s^{2}=\left[\frac{1-\frac{G m}{2 r c^{2} a(t)}}{1+\frac{G m}{2 r c^{2} a(t)}}\right]^{2} c^{2} d t^{2}-\left[1+\frac{G m}{2 r c^{2} a(t)}\right]^{4} a^{2}(t)\left(d r^{2}+r^{2} d \Omega^{2}\right) \approx \\
& \left(1-\frac{G m}{r c^{2}}\right) c^{2} d t^{2}-\left(1+2 H_{0} t+\frac{2 G m}{r c^{2}}\right)\left(d r^{2}+r^{2} d \Omega^{2}\right)
\end{aligned}
$$

extrapolates between Schwarzschild metric on a small scale and FLRW metric on a large scale
For a recent review see Carrera und
Giulini, Rev. Mod. Phys. 82 (2010)
169
assuming $\quad a(t)=\exp \left(H_{0} t\right) \approx 1+H_{0} t$

- As an example, a mass of 1 kg has a gravitational field of a_{0} at a distance of 0.87 m . The corresponding metric element is as small as 1 ± 10^{-27}. This is smaller than the background of gravitational waves and quantum effects may play a role ?!
- Quantum fluctuations of the space-time metric may have an influence on solutions of the geodesic equation, which describes the motion of an object in a space time metric.
- Introduction to the MOND phenomenology
- The MOND pendulum at small accelerations
- MOND analysis of Cavendish-type G experiments
- What can we learn about the Physics behind MOND ?
- Conclusion

Conclusion

- Cavendish G experiments were analysed in the framework of MOND taking into account pendulum and source mass dynamics.
- The results revealed great consistency between G results measured by different operation modes of recent Cavendish experiments.
- The MOND corrected G values from Cavendish experiments published over the last ten years were found to be consistent with $G=6.6742 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ within a standard deviation of 14 ppm.
- The amount of MOND corrections were found to be consistent with the universal acceleration relation of galaxy rotation curves employing one distinct MOND interpolation function.
- Future pendulum experiments should be designed to enable high precision measurements at the galactic acceleration scale a_{0}.
- MOND effect may be controlled by the magnitude of tiny deviations from flat space time, which are small enough at a_{0} to be affected by subtle quantum effects.

THANK YOU FOR LISTENING

paper on arXiv
arXiv:1901.02604 [gr-qc]

[^0]: H. Meyer • E. Lohrmann • S. Schubert •
 W. Bartel • A. Glazov • B. Löhr • C. Niebuhr •
 E. Wünsch • L. Jönsson • G. Kempf

