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Topics

Who cares?

What is probability?
Bayesian approach
Examples
Frequentist approach
Summary

. Will discuss mainly in context of PARAMETER
ESTIMATION. Also important for GOODNESS of
FIT and HYPOTHESIS TESTING



It 1s possible to spend a lifetime
analysing data without realising that
there are two very different
fundamental approaches to statistics:

Bayesianism and Frequentism.



How can textbooks not even mention

Bayes / Frequentism?

For simplest case (m T O ) <« Gaussian
with no constraint on m(tr Ue) then

Mm—Ko < m(true) < m

Ko

at some probability, for both Bayes and Frequentist

(but different interpretations)

See Bob Cousins “Why isn’t every physicist a Bayesian?”” Amer Jrnl Phys 63(1995)398



We need to make a statement about
Parameters, Given Data

The basic difference between the two:

Bayesian :  Probability (parameter, given data)
(an anathema to a Frequentist!)

Frequentist : Probability (data, given parameter)
(a likelihood function)



PROBABILITY
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as n-> infinity
Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)
Varies from person to person  ***

Quantified by “fair bet”



Bayesian versus Classical
Bayesian
P(Aand B) = P(A;B) x P(B) = P(B;A) x P(A)
e.g. A= event contains t quark
B = event contains W boson
or A=lamin Paris

B =1 am giving a lecture
P(A;B) = P(B;A) x P(A) /P(B)

Completely uncontroversial, provided....



Bayesian P(A: B) = P(B; QZ;)P(A) _Bayes

p(param | data) a p(data | param) * p(param)

T ) T

posterior likelihood prior

Problems: p(param) Has particular value
“Degree of belief”
Prior What functional form?

Coverage



P(parameter) Has specific value
“Degree of Belief”
Credible interval

Prior: What functional form?

Uninformative prior: flat?
In which variable? e.g.m, m?, Inm,....?

Even more problematic with more params

Unimportant if “data overshadows prior”

Important for limits

Subjective or Objective prior?
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Mass of Z boson (from LEP)
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Mass-squared of neutrino

g TP l

“lenukilcen”

N\

E 8
5

Prior = zero in unphysical region
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Bayes: Specific example

Particle decays exponentially: dn/dt = (1/t) exp(-t/t)
Observe 1 decay at time t,: L(t) =(1/t) exp(-t,/T)
Choose prior mi(t) for t !
e.g. constant up to some large t L
Then posterior p(t) =L(t) * r(1)
has almost same shape as £L(1)

Use p(t) to choose interval for T —
T in usual way

Contrast frequentist method for same situation
later.
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Bayesian posterior =2 intervals

Upper limit Lower limit
1 ]
Central interval Shortest




llya Narsky, FNAL CLW 2000

Upper Limits from Poisson data
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P (Data;Theory) % P (Theory;Data)
HIGGS SEARCH at CERN

|s data consistent with Standard Model?
or with Standard Model + Higgs?

End of Sept 2000: Data not very consistent with S.M.
Prob (Data ; S.M.) < 1% valid frequentist statement

Turned by the press into: Prob (S.M. ; Data) < 1%
and therefore Prob (Higgs ; Data) > 99%

l.e. “ltis almost certain that the Higgs has been seen’
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P (Data;Theory) % P (Theory;Data)



P (Data;Theory) %= P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
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P (Data;Theory) %= P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
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Example 1: Is coin fair ?

Toss coin: 5 consecutive talls

What is P(unbiased; data) ? i.e. p =
Depends on Prior(p)

If village priest: prior ~ &(p = 1/2)

If stranger in pub: prior~1 for 0 <p <1

(also needs cost function)
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Example 2 . Particle Identification

Try to separate ©’s and protons

probability (p tag; real p) = 0.95
probability (x tag; real p) = 0.05
probability (p tag; real ©) = 0.10
probability (x tag; real n) = 0.90

Particle gives proton tag. What is it?
Depends on prior = fraction of protons

f proton beam, very likely

f general secondary particles, more even

f pure T beam, ~0
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1)

2)

Peasant and Dog

Dog d has 50%
probability of being
100 m. of Peasant p

Peasant p has 50%
probability of being
within 100m of Dog d ?

River x =0

River x =1 km



Given that: a) Dog d has 50% probability of
being 100 m. of Peasant,

Is it true that: b) Peasant p has 50% probability of
being within 100m of Dog d ?

Additional information
e Rivers at zero & 1 km. Peasant cannot cross them.

0<h<lkm

» Dog can swim across river - Statement a) still true

If dog at —101 m, Peasant cannot be within 100m of
dog

Statement b) untrue
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Classical Approach

Neyman “confidence interval” avoids pdf for u
Uses only P( x;u )

Confidence interval [t - >
P( 4~ U2contains x4 )= & Trueforany U

T 71 ]

Varying intervals fixed
from ensemble of
experiments

Gives range of (4 for which observed value X, was “likely” (¢t )
Contrast Bayes : Degree of belief = o that gxisin - 1
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Classical (Neyman) Confidence Intervals

Uses only P(data|theory)
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90% Classical interval for Gaussian
o=1 u=>0

e.g. m?(v,), length of small object
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FIG. 3. Standard coanfidence belt for 90% C.L. ceatral confidence intervals for the mean of =
Gaussian, in units of the rms devistion.
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/Lll < /Ll Sﬂu at 90% confidence

Frequentist

Bayesian

/Ll| and /u“ known, but random
Iu unknown, but fixed
Probability statement about L& and L

IL[| and /Llu known, and fixed

Al unknown, and random
Probability/credible statement about IL[




Coverage

Fraction of intervals containing true value
Property of method, not of result

Can vary with param
Frequentist concept. Built in to Neyman construction

Some Bayesians reject idea. Coverage not guaranteed
Integer data (Poisson) = discontinuities

|deal coverage plot
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Coverage : L approach (Not frequentist)

P(n,n) =e*u"/n! (Joel Heinrich CDF note 6438)
-2 InA< 1 A =Pmn,pn)/P(n,y,.,) UNDERCOVERS
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Frequentist central intervals, NEVER undercovers

(Conservative at both ends)
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Classical Intervals

 Problems

* Advantages

34



FELDMAN - COUSINS

Wants to avoid empty classical intervals -2

Uses “£L-ratio ordering principle” to resolve
ambiguity about “which 90% region?” -

[Neyman + Pearson say L-ratio is best for
hypothesis testing]

No ‘Flip-Flop” problem
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Flip-flop
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Poisson confidence intervals. Background =3
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TABLE 1. Ilustrative caleulations in the confidence belt construction fo
presence of known mean background b = g Here we find the acceptance i
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4 0.139 L 0.195 0,965 1 v v &
5 0.132 2 0.175 0.753 4 v v @
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Standard Frequentist

Pros:

Coverage

Widely applicable

Cons:

Hard to understand
Small or empty intervals
Difficult in many variables (e.g. systematics)

Needs ensemble
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Bayesian

Pros:

Easy to understand

Physical interval

Cons:

Needs prior
Coverage not guaranteed

Hard to combine
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Bayesian versus Frequentism

Bayesian Frequentist

Basis of Bayes Theorem - Uses pdf for data,
method Posterior probability for fixed parameters

distribution
Meaning of |Degree of belief Frequentist definition
probability
Prob of Yes Anathema
parameters?
Needs prior? | Yes No
Choice of Yes Yes (except F+C)
interval?
Data Only data you have ....+ other possible
considered data
Likelihood Yes No

principle?
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Bayesian versus Frequentism

Bayesian Frequentist
Ensemble of |No Yes (but often not
experiment explicit)
Final Posterior probability Parameter values -
statement distribution Data is likely
Unphysical/ Excluded by prior Can occur

empty ranges

Systematics Integrate over prior Extend dimensionality
of frequentist
construction

Coverage Unimportant Built-in

Decision Yes (uses cost function) | Not useful

making
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Bayesianism versus Frequentism

“Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”



