Axions in Gravity with Torsion

Cristóbal Corral
cristobal.corral@postgrado.usm.cl

Departamento de Física, Universidad Técnica Federico Santa María.
Centro Científico Tecnológico de Valparaíso, Chile.

Lecture for
Virtual Institute of Astroparticle Physics, October 23, 2015.
O. Castillo-Felisola, C.C, V.E. Lyubovitskij, S. Kovalenko \& I. Schmidt Phys.Rev.D91,085017 (2015)

Outline

(1) Introduction: Why torsion?
(2) Notation and conventions.
(3) Einstein-Cartan Theory

- In vacuum
- Coupled with fermions

4 The strong CP problem
(5) Axions in gravity with torsion
(6) Conclusions and outlook

Introduction: Why torsion?

Einstein (1915): General Relativity

- Torsion-free condition: $\mathcal{T}_{\mu}{ }^{\lambda}{ }_{\nu}=\Gamma_{\mu}{ }^{\lambda}{ }_{\nu}-\Gamma_{\nu}{ }^{\lambda}{ }_{\mu} \equiv 2 \Gamma_{[\mu}{ }^{\lambda}{ }_{\nu]}=0$
- Local Lorentz Symmetry and diffeomorphisms.
- One gravitation dynamical field: the metric.
- Second order equations of motion for the metric.

Cartan (1922): First order formalism

- The torsion-free condition is relaxed: $\mathcal{T}_{\mu}{ }^{\lambda}{ }_{\nu} \neq 0$.
- Equivalence with GR when torsion vanishes.
- Two gravitation dynamical fields: metric and torsion.
- First order equations of motion for the fields.

Introduction: Why torsion?

- Natural generalization of GR.
- It is consistent with the vacuum tests of GR.
- Torsion appears naturally in:
- Gauge theories of gravitation,
- String theory,
- Supergravity, etc.
- The introduction of fermions is straightforward.
- Allows the solution of the strong CP problem.

Notation and conventions

- Vielbein: $g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}$ with $\eta_{a b}=\operatorname{diag}(-,+, \ldots,+)$.
- $V^{a}=e_{\mu}^{a} V^{\mu}$ and $V^{\mu}=E_{a}^{\mu} V^{a}$, where $e_{\mu}^{a} E_{b}^{\mu}=\delta_{b}^{a}$ and $e_{\mu}^{a} E_{a}^{\nu}=\delta_{\mu}^{\nu}$.
- Wedge Product (σ denotes the permutation of the indices)

$$
\begin{equation*}
d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{p}}=\sum_{\sigma}(-1)^{|\sigma|} d x^{\sigma\left(\mu_{1}\right)} \otimes \ldots \otimes d x^{\sigma\left(\mu_{p}\right)} \tag{1}
\end{equation*}
$$

- p-forms are defined $\left(\mathbf{e}^{a} \equiv e_{\mu}^{a} d x^{\mu}\right)$

$$
\begin{equation*}
\boldsymbol{\alpha}=\frac{1}{p!} \alpha_{\mu_{1} \ldots \mu_{p}} d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{p}}=\frac{1}{p!} \alpha_{a_{1} \ldots a_{p}} \mathbf{e}^{a_{1}} \wedge \ldots \wedge \mathbf{e}^{a_{p}} \tag{2}
\end{equation*}
$$

- D-dimensional Hodge dual

$$
\begin{equation*}
\star\left(\mathbf{e}^{a_{1}} \wedge \ldots \wedge \mathbf{e}^{a_{p}}\right)=\frac{1}{(D-p)!} \epsilon^{a_{1} \ldots a_{p}}{ }_{a_{p+1} \ldots a_{D}} \mathbf{e}^{a_{p+1}} \wedge \ldots \wedge \mathbf{e}^{a_{D}} . \tag{3}
\end{equation*}
$$

Notation and conventions

- Covariant derivative of a Lorentz tensor $\left(\mathbf{d} \equiv \mathbf{e}^{a} \partial_{a}\right)$

$$
\begin{equation*}
\boldsymbol{D} \boldsymbol{A}^{a}{ }_{b}=\mathbf{d} \boldsymbol{A}^{a}{ }_{b}+\boldsymbol{\omega}^{a}{ }_{c} \wedge \boldsymbol{A}^{c}{ }_{b}-\boldsymbol{\omega}^{c}{ }_{b} \wedge \boldsymbol{A}^{a}{ }_{c}, \tag{4}
\end{equation*}
$$

- Cartan structure equations

$$
\begin{align*}
\mathbf{d e}^{a}+\boldsymbol{\omega}^{a}{ }_{c} \wedge \mathbf{e}^{c} & =\boldsymbol{\mathcal { T }}^{a}=\frac{1}{2} \mathcal{T}_{m}{ }^{a}{ }_{n} \mathbf{e}^{m} \wedge \mathbf{e}^{n}, \tag{5}\\
\mathbf{d} \boldsymbol{\omega}^{a b}+\boldsymbol{\omega}^{a}{ }_{c} \wedge \boldsymbol{\omega}^{c b} & =\boldsymbol{\mathcal { R }}^{a b}=\frac{1}{2} \mathcal{R}^{a b}{ }_{m n} \mathbf{e}^{m} \wedge \mathbf{e}^{n} . \tag{6}
\end{align*}
$$

- Decomposition of the Lorentz connection $\boldsymbol{\omega}^{a b}=\dot{\boldsymbol{\omega}}^{a b}(e)+\mathcal{K}^{a b}$, where

$$
\begin{equation*}
\mathbf{d e}^{a}+{\stackrel{\grave{\omega}}{ }{ }^{a}{ }_{b} \wedge \mathbf{e}^{b} \equiv \check{D}^{a} \mathbf{e}^{a}=0 \quad \text { and } \quad \boldsymbol{T}^{a}=\mathcal{K}^{a}{ }_{b} \wedge \mathbf{e}^{b} . . . ~}_{\text {. }} \tag{7}
\end{equation*}
$$

- Bianchi identities

$$
\begin{equation*}
\boldsymbol{D} \boldsymbol{T}^{a}=\mathcal{R}^{a}{ }_{b} \wedge \mathbf{e}^{b} \quad \text { and } \quad \boldsymbol{D} \mathcal{R}^{a b}=0 \tag{8}
\end{equation*}
$$

Actions in physics

- Scalar field

$$
S_{\phi}=-\frac{1}{2} \int \mathbf{d} \phi \wedge \star \mathbf{d} \phi=-\frac{1}{2} \int d^{D} x e \partial_{m} \phi \partial^{m} \phi
$$

- Dirac field

$$
S_{\psi}=-\frac{1}{2} \int(\bar{\psi} \boldsymbol{\gamma} \wedge \star \boldsymbol{D} \psi+\text { h.c. })=-\frac{1}{2} \int d^{D} x e E_{a}^{\mu}\left(\bar{\psi} \gamma^{a} D_{\mu} \psi+\text { h.c. }\right)
$$

- Yang-Mills

$$
S_{\mathrm{YM}}=-\int \operatorname{Tr}[\boldsymbol{F} \wedge \star \boldsymbol{F}]=-\frac{1}{4} \int d^{D} x e F_{\mu \nu}^{A} F^{A \mu \nu}
$$

- Einstein-Cartan

$$
S_{\mathrm{gr}}=\frac{1}{2 \kappa^{2}} \int \mathcal{R}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)=\frac{1}{2 \kappa^{2}} \int d^{D} x e \mathcal{R}
$$

Einstein-Cartan Theory

- Metricity condition, i.e. $\nabla_{\rho} g_{\mu \nu}=0$.
- The connection $\Gamma_{\mu}{ }^{\lambda}{ }_{\nu}=\left\{\mu^{\lambda}{ }_{\nu}\right\}+\mathcal{K}_{\mu}{ }^{\lambda}{ }_{\nu}$ includes an additional piece, called contorsion, which encodes the torsional information through

$$
\begin{equation*}
\mathcal{K}_{\mu}{ }^{\lambda}{ }_{\nu}=\frac{1}{2}\left(\mathcal{T}_{\mu}{ }^{\lambda}{ }_{\nu}-\mathcal{T}_{\nu \mu}{ }^{\lambda}+\mathcal{T}^{\lambda}{ }_{\nu \mu}\right) . \tag{9}
\end{equation*}
$$

- Metric and contorsion are independent fields.
- Einstein-Cartan action

$$
\begin{equation*}
S_{\mathrm{gr}}=\frac{1}{2 \kappa^{2}} \int \mathcal{R}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)=\frac{1}{2 \kappa^{2}} \int d^{4} x e \mathcal{R} \tag{10}
\end{equation*}
$$

where we have defined $e=\operatorname{det} e_{\mu}^{a}$ and $\mathcal{R}=E_{\mu}^{a} E_{\nu}^{b} \mathcal{R}^{a b}{ }_{\mu \nu}$ with

$$
\begin{equation*}
\mathcal{R}^{a b}{ }_{\mu \nu}=2 \partial_{[\mu} \omega_{\nu]}{ }^{a b}+2 \omega_{[\mu \mid}{ }^{a}{ }_{c} \omega_{\mid \nu]}{ }^{c}{ }^{c}, \tag{11}
\end{equation*}
$$

and $\omega_{\mu}{ }^{a}{ }_{b}=e_{\lambda}^{a}\left(\partial_{\mu} E_{b}^{\lambda}+\Gamma_{\mu}{ }^{\lambda}{ }_{\nu} E_{b}^{\nu}\right)$.

Einstein-Cartan Theory in vacuum

- The D-dimensional Einstein-Cartan theory in vacuum is described by the action

$$
\begin{equation*}
S=\frac{1}{2 \kappa_{*}^{2}} \int \boldsymbol{\mathcal { R }}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right) . \tag{12}
\end{equation*}
$$

$$
\begin{align*}
\delta \mathbf{e}^{a} & : \tag{13}\\
\delta \boldsymbol{\mathcal { R }}_{a b}-\frac{1}{2} \eta_{a b} \mathcal{R}=0, & \mathcal{T}_{a}{ }^{p}{ }_{b}-2 \mathcal{T}_{[a} \delta_{b]}^{p}=0 . \tag{14}
\end{align*}
$$

The solution to the algebraic Eq. (14) is $\mathcal{T}_{a b c}=0$. Thus, $\boldsymbol{\omega}^{a b}=\stackrel{\boldsymbol{\omega}}{ }_{a b}(e)$ and the Eq. (13) reduces to the usual Einstein's equations in vacuum.

Einstein-Cartan Theory coupled with fermions

- D-dimensional action ${ }^{1}$

$$
\begin{equation*}
S=\frac{1}{2 \kappa_{*}^{2}} \int \boldsymbol{\mathcal { R }}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)+\frac{1}{2} \int(\bar{\psi} \boldsymbol{\gamma} \wedge \star \boldsymbol{D} \psi-\boldsymbol{D} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi) \tag{15}
\end{equation*}
$$

where $\kappa_{*}^{2} \sim \frac{1}{M_{*}^{2+n}}, \boldsymbol{\gamma}=\gamma_{a} \mathbf{e}^{a}, \bar{\psi}=-\imath \psi^{\dagger} \gamma^{0}$ and the covariant derivative ${ }^{2}$

$$
\begin{equation*}
\boldsymbol{D} \psi=\mathbf{d} \psi+\frac{1}{4} \boldsymbol{\omega}^{a b} \gamma_{a b} \psi \tag{16}
\end{equation*}
$$

- Decomposing the Lorentz connection $\boldsymbol{\omega}^{a b}=\check{\boldsymbol{\omega}}^{a b}(e)+\mathcal{K}^{a b}$, we obtain an equivalent action (up-to-a boundary term)

$$
\begin{align*}
S= & \frac{1}{2 \kappa_{*}^{2}} \int \stackrel{\circ}{\boldsymbol{\mathcal { R }}}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)-\frac{1}{2} \int(\bar{\psi} \boldsymbol{\gamma} \wedge \star \stackrel{\circ}{\boldsymbol{D}} \psi-\stackrel{\circ}{\boldsymbol{D}} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi) \\
& +\frac{1}{2 \kappa_{*}^{2}} \int \mathcal{K}_{a m} \wedge \mathcal{K}^{m}{ }_{b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)-\frac{1}{8} \int \mathcal{K}^{a b} \wedge \star \bar{\psi}\left\{\boldsymbol{\gamma}, \gamma_{a b}\right\} \psi \tag{17}
\end{align*}
$$

[^0]
Einstein-Cartan Theory coupled with fermions

Equations of motion within the Cartan's formalism

$$
\begin{align*}
& \delta \mathbf{e}^{a}: \tag{18}\\
& \delta \boldsymbol{\mathcal { \omega }}^{a b}{ }_{a b}-\frac{1}{2} \eta_{a b} \mathcal{R}=\kappa_{*}^{2} \tau_{a b} \tag{19}\\
& \delta \bar{\psi} \mathcal{T}_{a}{ }^{b}{ }_{c}-2 \mathcal{T}_{[a} \delta_{c]}^{b}=-\frac{\kappa_{*}^{2}}{2} \bar{\psi} \gamma_{a}{ }^{b}{ }_{c} \psi \gamma^{a}{ }^{\circ}{ }_{a} \psi+\frac{1}{4} \mathcal{K}_{a b c} \gamma^{a b c} \psi=0 \tag{20}
\end{align*}
$$

Solving the algebraic Eq. (19) we obtain

$$
\begin{equation*}
\mathcal{K}_{a b c}=-\frac{\kappa_{*}^{2}}{4} \bar{\psi} \gamma_{a b c} \psi \tag{21}
\end{equation*}
$$

for the contorsion tensor. Replacing it back into the initial action, leads to the D-dimensional effective theory

$$
\begin{equation*}
S=\stackrel{\circ}{S}_{\mathrm{gr}}+\stackrel{\circ}{S}_{\psi}+\frac{\kappa_{*}^{2}}{32} \int d^{D} x e \bar{\psi} \gamma_{a b c} \psi \bar{\psi} \gamma^{a b c} \psi \tag{22}
\end{equation*}
$$

Einstein-Cartan Theory coupled with fermions

- In the $D=4$ case, we have the identity

$$
\begin{equation*}
\bar{\psi} \gamma_{a b c} \psi=\imath \epsilon_{a b c d} \bar{\psi} \gamma^{d} \gamma_{5} \psi \tag{23}
\end{equation*}
$$

where $\gamma_{5}=\imath \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$. Defining $J_{5}^{a}=\imath \bar{\psi} \gamma^{a} \gamma_{5} \psi$ and $\boldsymbol{J}_{5}=J_{5}^{a} \boldsymbol{e}_{a}$, the torsion-induced four-fermion interaction in 4-dimensions is

$$
\begin{equation*}
S=\stackrel{\circ}{S}_{\mathrm{gr}}+\stackrel{\circ}{S}_{\psi}-\frac{3 \kappa^{2}}{16} \int \boldsymbol{J}_{5} \wedge \star \boldsymbol{J}_{5} \tag{24}
\end{equation*}
$$

Since $\kappa^{2} \sim 10^{-36} \mathrm{GeV}^{-2}$ in 4-dimensions, the torsion-induced four-fermion interaction is highly suppressed in such scenario.

Gauge invariance

- An invariant $S U(N)$ gauge theory is obtained from the transformations

$$
\begin{equation*}
\psi \rightarrow e^{\imath \theta^{A}(x) T_{A}} \psi \quad \text { and } \quad \mathcal{D} \psi \rightarrow e^{\imath \theta^{A}(x) T_{A}} \mathcal{D} \psi \tag{25}
\end{equation*}
$$

where T_{A} are the generators of the $S U(N)$ Lie group. ${ }^{3}$ The fermionic covariant derivative includes gauge fields $\mathcal{B}=T_{A} \mathcal{B}_{\mu}^{A} d x^{\mu}$ as

$$
\begin{equation*}
\mathcal{D} \psi=\mathbf{d} \psi+\frac{1}{4} \boldsymbol{\omega}^{a b} \gamma_{a b} \psi+\imath g \mathcal{B} \psi=\boldsymbol{D} \psi+\imath g \boldsymbol{\mathcal { B }} \psi . \tag{26}
\end{equation*}
$$

The transformation of the covariant derivative in Eq. (25) is guaranteed if the gauge field transforms as an $S U(N)$ connection

$$
\begin{equation*}
\mathcal{B}_{\mu}^{A} \rightarrow \mathcal{B}_{\mu}^{A}-f_{M N}^{A} \theta^{M} \mathcal{B}_{\mu}^{N}-\frac{1}{g} \partial_{\mu} \theta^{A} \tag{27}
\end{equation*}
$$

[^1]
Strong CP problem

- Addition of the θ-term to the QCD Lagrangian

$$
\begin{equation*}
\mathscr{L}_{\mathrm{QCD}} \supset-\theta \frac{\alpha_{s}}{2 \pi} \operatorname{Tr}(\boldsymbol{G} \wedge \boldsymbol{G}) \tag{28}
\end{equation*}
$$

Strong CP problem

Limits on the neutron's electric dipole moment $\rightarrow \theta \leq 10^{-10}$

Peccei and Quinn solution (1977)

- Extra $U(1)_{A}$ symmetry, spontaneously broken at $\sim \Lambda_{E W}$.
- Axion coupled to Pontryagin density, i.e. $\sim \phi(x) \operatorname{Tr}[\boldsymbol{G} \wedge \boldsymbol{G}]$.
- Promote $\theta \rightarrow \theta(x) \sim \theta+\phi(x) / f_{\phi}$ with $\langle\phi\rangle=-f_{\phi} \theta$.
- Perturbations around $\langle\phi\rangle$ gives a CP-even $a(x) \operatorname{Tr}[\boldsymbol{G} \wedge \boldsymbol{G}]$.

Axions in gravity with torsion

- Motivation: QFT in background geometry
- $S U(N) \times U(1)$ gauge invariant action coupled with fermions

$$
\begin{align*}
S=\frac{1}{2 \kappa_{*}^{2}} \int \boldsymbol{\mathcal { R }}_{a b} \wedge \star\left(\mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)+\frac{1}{2} \int(\bar{\psi} \boldsymbol{\gamma} \wedge \star \boldsymbol{\mathcal { D }} \psi-\boldsymbol{\mathcal { D }} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi) \\
-\frac{1}{2} \int \boldsymbol{F} \wedge \star \boldsymbol{F}-\int \operatorname{Tr}[\boldsymbol{G} \wedge \star \boldsymbol{G}]-\theta \frac{\alpha_{s}}{2 \pi} \int \operatorname{Tr}[\boldsymbol{G} \wedge \boldsymbol{G}] \tag{29}
\end{align*}
$$

- Duncan et.al: Nucl.Phys.B387,215 (1992)
- Impose the classical conservation $\mathbf{d} \star \mathcal{S}=0$, where $\star \mathcal{S}=\mathbf{e}^{a} \wedge \mathcal{T}_{a}$, at quantum level through

$$
\begin{equation*}
\mathcal{Z}=\int \prod_{\varphi} \mathcal{D} \varphi \mathcal{D} \mathcal{S} e^{\imath S[\varphi, \mathcal{S}]} \int \mathcal{D} \phi e^{\imath \int \phi \mathbf{d} \star \mathcal{S}} \tag{30}
\end{equation*}
$$

Axions in gravity with torsion

- Mielke and Sánchez: Phys.Rev.D73,043521 (2006)
- Argue the appearance of $\mathbf{d} \mathcal{S} \wedge \mathbf{d} \mathcal{S}$ in the axial anomaly.
- Modified axial-current by the addition of Chern-Simons-type terms

$$
\star \hat{\boldsymbol{J}}_{5}=\star \boldsymbol{J}_{5}+\frac{\alpha_{\mathrm{em}} \bar{Q}^{2}}{\pi} \boldsymbol{C}_{F F}+\frac{\alpha_{s} N_{q}}{2 \pi} \boldsymbol{C}_{G G}+\frac{N_{f}}{8 \pi^{2}}\left(\boldsymbol{C}_{R R}+\boldsymbol{\mathcal { S }} \wedge \mathbf{d} \boldsymbol{\mathcal { S }}\right) .
$$

- The conservation of the modified axial-current occurs when $\mathcal{S} \sim \mathbf{d} \phi$, where ϕ is a pseudo-scalar potential.
- Mercuri: Phys.Rev.Lett.103,081302 (2009)
- Divergent Nieh-Yan term in the $U(1)_{A}$ rotated fermionic measure. ${ }^{4}$
- Add to the action (29) the topological Nieh-Yan density, i.e.

$$
S \rightarrow S+\beta \int\left(\mathcal{T}^{a} \wedge \mathcal{T}_{a}-\mathcal{R}_{a b} \wedge \mathbf{e}^{a} \wedge \mathbf{e}^{b}\right)=S+\beta \int \mathbf{d}\left(\mathbf{e}^{a} \wedge \mathcal{T}_{a}\right)
$$

- Promote the BI parameter to be a field, i.e. $\beta \rightarrow \beta(x)$ and absorb the divergence by means of renormalized $\beta(x)$.

[^2]
Axions in gravity with torsion

- Integrating out the torsion in either of these approaches leads to ${ }^{5}$

$$
S_{\mathrm{eff}}=S_{0}+S_{\theta}-\frac{1}{2 f_{\Phi}^{2}} \int \boldsymbol{J}_{5} \wedge \star \boldsymbol{J}_{5}-\frac{1}{2} \int \mathbf{d} \Phi \wedge \star \mathbf{d} \Phi+\frac{1}{f_{\Phi}} \int \Phi \mathbf{d} \star \boldsymbol{J}_{5} .
$$

- Either approach gives a vanishing Nieh-Yan density.
- Replacing the axial anomaly

$$
\begin{equation*}
\mathbf{d} \star \boldsymbol{J}_{5}=-\frac{\alpha_{\mathrm{em}} \bar{Q}^{2}}{\pi} \boldsymbol{F} \wedge \boldsymbol{F}-\frac{\alpha_{s} N_{q}}{2 \pi} \operatorname{Tr}[\boldsymbol{G} \wedge \boldsymbol{G}]-\frac{N_{f}}{8 \pi^{2}} \dot{\mathcal{R}}^{a b} \wedge \dot{\mathcal{R}}_{a b} \tag{31}
\end{equation*}
$$

gives the explicit form of the effective theory ${ }^{6}$

$$
\begin{aligned}
S_{\mathrm{eff}} & =S_{0}-\frac{1}{2 f_{\Phi}^{2}} \int \boldsymbol{J}_{5} \wedge \star \boldsymbol{J}_{5}-\frac{\alpha_{\mathrm{em}} \bar{Q}^{2}}{\pi f_{\Phi}} \int \Phi \boldsymbol{F} \wedge \boldsymbol{F}-\frac{1}{2} \int \mathbf{d} \Phi \wedge \star \mathrm{~d} \Phi \\
& -\frac{1}{8 \pi^{2}} \int\left(\Theta+\frac{N_{f}}{f_{\Phi}} \Phi\right) \dot{\mathcal{R}}^{a b} \wedge \dot{\mathcal{R}}_{a b}-\frac{\alpha_{s}}{2 \pi} \int\left(\theta+\frac{N_{q}}{f_{\Phi}} \Phi\right) \operatorname{Tr}[\boldsymbol{G} \wedge \boldsymbol{G}]
\end{aligned}
$$

${ }^{5}$ We have defined $S_{0}=\stackrel{\circ}{S}_{\mathrm{gr}}+\stackrel{\circ}{S}_{\psi}+S_{\mathrm{gk}}, f_{\Phi}=\kappa^{-1} \sqrt{8 / 3}$ and $\Phi=4 / 3 f_{\Phi}^{-1} \vartheta$, where $\vartheta=\beta, \phi$.
${ }^{6} N_{f}$: number of fermionic flavors, N_{q} : number of quarks and $\bar{Q}^{2}=\sum_{f} Q_{f}^{2}$.

Axions in gravity with torsion

Parameters

	$M_{P l} \sim 10^{18}[\mathrm{GeV}]$	$M_{*} \sim 10^{4}[\mathrm{GeV}]$	$M_{*} \sim 10^{2}[\mathrm{GeV}]$
$f_{\Phi}[\mathrm{GeV}]$	10^{18}	10^{4}	10^{2}
$m_{a}[\mathrm{keV}]$	10^{-15}	10^{-1}	10
$\Gamma_{a \rightarrow \gamma \gamma}[\mathrm{keV}]$	10^{-101}	10^{-32}	10^{-19}

- Torsion-descended axions as the dominant dark matter content ${ }^{7}$

$$
\begin{equation*}
r \leq 1.6 \times 10^{-9} \tag{32}
\end{equation*}
$$

[^3]
Conclusions and outlook

- Einstein-Cartan + fermions \rightarrow four-fermion interaction.
- Suitable modifications to such a theory solves the strong CP problem.
- Rather different motivations for the torsion-descended axions leads to the same effective theory.
- The axionic phenomenology is characterized only by the gravitational scale.
- Torsion-descended axions might be dark matter candidates.

Outlook

- Study their role in extra-dimensional scenarios.
- Include them in more general theories of gravitation.

Thank you!

[^0]: ${ }^{1} D=4+n$ and the sum over the fermionic flavour is assumed.
 2
 ${ }^{2} \gamma_{a_{1} \ldots a_{n}} \equiv \gamma_{\left[a_{1}\right.} \ldots \gamma_{\left.a_{n}\right]}$.

[^1]: ${ }^{3}$ They satisfy the Lie algebra $\left[T_{A}, T_{B}\right]=\imath f_{A B}{ }^{C} T_{C}$.

[^2]: ${ }^{4}$ Chandía \& Zanelli Phys.Rev.D55, 7580 (1997).

[^3]: ${ }^{7}$ M. Lattanzi \& S. Mercuri Phys.Rev.D81, 125015.

