A Fresh Look at Galactic Cosmic Rays

Michael Kachelrieß

NTNU, Trondheim

with M.Bouyahiaoui, G.Giacinti, A.Neronov, D.Semikoz

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Outline

Outline of the talk

- Introduction: CR propagation
 - Standard diffusion approach
 - Trajectory approach
 - Consequences of anisotropic diffusion

2–3 Myr local SN

- Primaries: breaks, non-universality
- Secondaries: positron excess, antiprotons, B/C
- Anisotropy

Vela and the CR knee

- Living in the Local Bubble
- CR fluxes
- Neutrinos

Conclusions

3

4 2 5 4 2 5

Introduction: CR propagation

- Extragalactic UHECRs:
 - use model for Galactic Magnetic Field
 - calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- ② Galactic CR, low energies:
 - CRs as relativistic fluid
 - use effective diffusion picture
 - connection to GMF only indirect

Introduction: CR propagation

- Extragalactic UHECRs:
 - use model for Galactic Magnetic Field
 - calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- Galactic CR, low energies:
 - CRs as relativistic fluid
 - use effective diffusion picture
 - connection to GMF only indirect

3/28

CR propagation

Propagation in turbulent magnetic fields:

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$

4/28

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

CR propagation

Propagation in turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

all fluctuations between $l_{\rm max}$ and $\sim R_L/10$ have to be included \Rightarrow makes trajectory approach computationally very expansive

・ 何 ト ・ ヨ ト ・ ヨ ト

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 - \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$

• injection spectrum $dN_p/dE \propto E^{-\delta}$ modified to $dN_p/dE \propto E^{-\delta-\beta}$

- 3

ヘロト ヘヨト ヘヨト

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$

- \bullet injection spectrum $dN_p/dE \propto E^{-\delta}$ modified to $dN_p/dE \propto E^{-\delta-\beta}$
- spectrum of secondaries $dN_s/dE \propto E^{-\delta-\beta-\delta}$
- ratio $N_s/N_p \propto E^{-\delta}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5/28

Standard diffusion approach:

Standard diffusion approach:

- effective approach invites for simplications:
- often $D_{ij}(E, \mathbf{x}) \rightarrow D(E)$, $\partial_t = 0$, etc.

э

イロト イヨト イヨト

Standard diffusion approach:

- effective approach invites for simplications:
- often $D_{ij}(E, \mathbf{x}) \rightarrow D(E)$, $\partial_t = 0$, etc.
- good approximation for many "average" quantities: $I_{\gamma}(E), \ldots$
- how important are deviations, local effects?

・ 何 ト ・ ヨ ト ・ ヨ ト

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.

b 4 To b

< 1 k

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- as preparation, let's calculate diffusion tensor in pure, isotropic turbulent magnetic field

A E N A E N

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 一型

• asymptotic value is ~ 50 smaller than standard value

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right]$$

< 47 ▶

A B A A B A

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + (R_{\rm L}/L_0)^2 \right]$$

for
$$\alpha = 5/3$$

with $L_0 \simeq L_c/(2\pi)$

Michael Kachelrieß (NTNU Trondheim)

A Fresh Look at Galactic Cosmic Rays

• for isotropic diffusion:

for
$$\alpha = 5/3$$

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + \dots \right] \propto B^{-1/3}$$

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + \dots \right] \propto B^{-1/3}$$

gives correct escape time $au \simeq H^2/2D$ with $D = f(D_\parallel, D_\perp, ...)$

but which effects do we miss?

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$

< □ > < □ > < □ > < □ > < □ > < □ >

3

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \Rightarrow D_{\parallel} \gg D_{\perp}$

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- \Rightarrow anisotropic CR propagation

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- \Rightarrow anisotropic CR propagation
- $\Rightarrow D_{\parallel} \sin^2 \vartheta$ reduces grammage

9/28

- anisotropic turbulence
- dominance of regular field, $B_{\rm rms}=\eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- \Rightarrow anisotropic CR propagation
- $\Rightarrow D_{\parallel} \sin^2 \vartheta$ reduces grammage
- \Rightarrow relative importance of single sources is changed

(4) (日本)

- 3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

How smooth is the CR sea?

• contribution of a single source:

$$I(E) \simeq \frac{c}{4\pi} \frac{Q(E)}{V(t)}$$

with

$$V(t) \simeq \pi^{3/2} D_{\perp}^{1/2} D_{\parallel} t^{3/2}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

How smooth is the CR sea?

• contribution of a single source:

$$I(E) \simeq \frac{c}{4\pi} \frac{Q(E)}{V(t)}$$

with

$$V(t) \simeq \pi^{3/2} D_{\perp}^{1/2} D_{\parallel} t^{3/2}$$

• isotropic diffusion: at $E_* = 10 \text{ TeV}$ and $D_* \equiv D_{\perp} = D_{\parallel} = 5 \times 10^{29} \text{cm}^2/\text{s}$ $E_*^{2.8} I(E_*) \simeq \frac{1}{100} E_*^{2.8} I_{\text{obs}}(E_*)$

How smooth is the CR sea?

• contribution of a single source:

$$I(E) \simeq \frac{c}{4\pi} \frac{Q(E)}{V(t)}$$

with

$$V(t) \simeq \pi^{3/2} D_{\perp}^{1/2} D_{\parallel} t^{3/2}$$

• isotropic diffusion: at $E_* = 10 \text{ TeV}$ and $D_* \equiv D_\perp = D_\parallel = 5 \times 10^{29} \text{cm}^2/\text{s}$ $E_*^{2.8} I(E_*) \simeq \frac{1}{100} E_*^{2.8} I_{\text{obs}}(E_*)$

- anisotropic diffusion in JF model with $\eta=0.25\Rightarrow D_{\parallel}\simeq 5D_{*}$ and $D_{\perp}\simeq D_{*}/500$
 - $\Rightarrow\,$ volume is reduced by $500/\sqrt{5}\simeq 200$
 - \Rightarrow single source can dominate observed flux at 10 TeV

Consequences of anisotropic propagation:

 $\Rightarrow\,$ local sources contribute strongly, if d_{\perp} is small

 \Rightarrow local sources are surpressed, if d_{\perp} is large

The p, \bar{p}, e^+, e^- fluxes:

Signatures of a young, local single source:

- ullet secondary ar p and e^+ flux have same shape as p
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio for fixed grammage
 - \bar{p}/p ratio fixed by source age \Rightarrow age is predicted
 - e^+ flux is fixed, break should be consistent with age
 - ▶ relative ratio of \bar{p} and e^+ depends only on their Z factors: $R = F_{e^+}/F_{\bar{p}} \simeq 1.8$ for $\alpha = 2.6$

- 4 回 ト 4 ヨ ト 4 ヨ ト

- 34

Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2–3 Myr old source

Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2-3 Myr old source
- 2-3 Myr SN explains anomalous ⁶⁰Fe sediments
- SNe connected to Local Bubble

[Ellis+ '96,...] [Schulreich '17,...]
Signatures of a young, local single source:

- secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2-3 Myr old source
- 2-3 Myr SN explains anomalous ⁶⁰Fe sediments
- SNe connected to Local Bubble
- what about other CR puzzles?
 - breaks? rigidity dependence?
- B/C consistent? Electrons?
- anisotropy?

[Ellis+ '96,...]

[Schulreich '17,...]

Local source: nuclei fluxes

• same shape of rigidity spectra $F_A(\mathcal{R})$ for all nuclei A

э

Local source: nuclei fluxes

- same shape of rigidity spectra $F_A(\mathcal{R})$ for all nuclei A
- relative normalisation of "local source" $F^{(1)}(\mathcal{R})$ and "average" $F^{(2)}(\mathcal{R})$ varies,

$$F_A(\mathcal{R}) = C_A^{(1)} F^{(1)}(\mathcal{R}) + C_A^{(2)} F^{(2)}(\mathcal{R})$$

3

Local source: nuclei fluxes

 \Rightarrow explains breaks and variation of rigidity spectra

14 / 28

Local source: Secondary nuclei and B/C

• "local" grammage is fixed by positrons

A E N A E N

< 47 ▶

э

Local source: Secondary nuclei and B/C

- "local" grammage is fixed by positrons
- local source gives plateau in B/C

э

Local source: Secondary nuclei and B/C

- "local" grammage is fixed by positrons
- local source gives plateau in B/C

Local source: Electrons

Anisotropies

Dipole anisotropy: phase

Michael Kachelrieß (NTNU Trondheim) APC, 7. December '18

Dipole anisotropy: amplitude

• if only turbulent field:

diffusion = isotropic random walk = free quantum particle

• number density is Gaussian with $\sigma^2=2DT$

$$\delta_i = \frac{3D_{ij}}{c} \frac{\nabla_j n}{n} = \frac{3R}{2T} = 5 \times 10^{-4} \frac{R}{200 \text{pc}} \frac{2 \text{Myr}}{T}$$

- if only turbulent field: diffusion = isotropic random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 2DT$

$$\delta_i = \frac{3D_{ij}}{c} \frac{\nabla_j n}{n} = \frac{3R}{2T} = 5 \times 10^{-4} \frac{R}{200 \text{pc}} \frac{2 \text{Myr}}{T}$$

- if only turbulent field: diffusion = isotropic random walk = free quantum particle
- number density is Gaussian with $\sigma^2=2DT$

$$\delta_i = \frac{3D_{ij}}{c} \frac{\nabla_j n}{n} = \frac{3R}{2T} = 5 \times 10^{-4} \frac{R}{200 \text{pc}} \frac{2 \text{Myr}}{T}$$

- 2 options:
 - old, nearby source dominating flux
 - young, nearby source (dominating?) flux, suppression: $D_{ij} \propto B_i B_j$ not aligned to ∇n

- if only turbulent field: diffusion = isotropic random walk = free quantum particle
- number density is Gaussian with $\sigma^2=2DT$

$$\delta_i = \frac{3D_{ij}}{c} \frac{\nabla_j n}{n} = \frac{3R}{2T} = 5 \times 10^{-4} \frac{R}{200 \text{pc}} \frac{2 \text{Myr}}{T}$$

- 2 options:
 - old, nearby source dominating flux
 - young, nearby source (dominating?) flux, suppression: $D_{ij} \propto B_i B_j$ not aligned to ∇n
- what happens for general fields?

18/28

Anisotropy of a single source: only turbulent field

Michael Kachelrieß (NTNU Trondheim)

Anisotropy of a single source: plus regular

• regular field changes n(x), but keeps it Gaussian

• ∇n and D_{ii} are not misaligned

 \Rightarrow no change in δ , no suppression

Dipole anisotropy

20 / 28

Dipole anisotropy

- suggests low-energy cutoff \Rightarrow source is off-set
- same cutoff responsible for breaks in spectra

[[]Savchenko, MK, Semikoz '15]

Dipole anisotropy

[Savchenko, MK, Semikoz '15]

• for flip in phase: 2.nd source

Dipole anisotropy: phase flip

Michael Kachelrieß (NTNU Trondheim)

Dipole anisotropy: phase flip

Vela SNR

- SNR with $T = 11.000 \,\mathrm{yr}$ and $R = 270 \,\mathrm{pc}$
- Erlykin & Wolfendale: Vela $E_{\max} \leftrightarrow \mathsf{CR}$ knee

э

Vela SNR

- SNR with $T = 11.000 \,\mathrm{yr}$ and $R = 270 \,\mathrm{pc}$
- Erlykin & Wolfendale: Vela $E_{\max} \leftrightarrow \mathsf{CR}$ knee
- anisotropic diffusion: Sun & Vela connected by field line

Local & Loop I superbubble

Michael Kachelrieß (NTNU Trondheim) A Fresh Look at Galactic Cosmic Rays

Local & Loop I superbubble

E 6 4 E 6

< 47 ▶

Local & Loop I superbubble

wall traps particles; acts as a screen

< 47 ▶

In 1 Te

э

Flux from Vela in Local Superbubble: suppression

Flux from Vela in Local Superbubble: protons

< 47 ▶

-

Flux from Vela in Local Superbubble: Fe+Mg+si

< 1[™] >

Flux from Vela in Local Superbubble: total

 \Rightarrow two local sources dominate Galactic CR flux above 200 GeV

A (10) N (10) N (10)

IceCube events: Soft "low-energy" spectrum?

25 / 28

Neutrinos

Cascade limit: $\alpha = 2.1$

Cascade limit: $\alpha = 2.3$

Cascade limit: $\alpha = 2.5$

Cascade limit:

APC, 7. December '18 26 / 28

э
Sources in Local & Loop I superbubble

Sources in Local & Loop I superbubble

Michael Kachelrieß (NTNU Trondheim) A Fresh Look at Galactic Cosmic Rays APC, 7. December '18 27/28

Sources in Local & Loop I superbubble

э

< 一型

Single source: anisotropy

- dipole formula $\delta = \frac{3R}{2T}$ holds universally in quasi-gaussian regime
- plateau of δ and phase flip point to dominance of 2 single sources
- 2 Source with $T \sim 2 3$ Myr and $R \sim 200$ pc:
 - consistent explanation of \bar{p} and e^+ fluxes, breaks and B/C
 - consistent with ⁶⁰Fe

Vela

- reproduces fluxes of groups of CR nuclei
- shape consistent with knee
- source of soft neutrino component?
- Iocal geometry of GMF is important: Local Bubble and Loop I

- Single source: anisotropy
 - dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - plateau of δ and phase flip point to dominance of 2 single sources
- 2 Source with $T \sim 2 3$ Myr and $R \sim 200$ pc:
 - consistent explanation of \bar{p} and e^+ fluxes, breaks and B/C
 - consistent with ⁶⁰Fe

Vela

- reproduces fluxes of groups of CR nuclei
- shape consistent with knee
- source of soft neutrino component?
- Iocal geometry of GMF is important: Local Bubble and Loop I

28/28

- Single source: anisotropy
 - ► dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - plateau of δ and phase flip point to dominance of 2 single sources
- 2 Source with $T \sim 2 3$ Myr and $R \sim 200$ pc:
 - \blacktriangleright consistent explanation of \bar{p} and e^+ fluxes, breaks and ${\sf B}/{\sf C}$
 - consistent with ⁶⁰Fe

Vela

- reproduces fluxes of groups of CR nuclei
- shape consistent with knee
- source of soft neutrino component?
- Iocal geometry of GMF is important: Local Bubble and Loop I

- Single source: anisotropy
 - dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - plateau of δ and phase flip point to dominance of 2 single sources
- 2 Source with $T \sim 2 3$ Myr and $R \sim 200$ pc:
 - \blacktriangleright consistent explanation of \bar{p} and e^+ fluxes, breaks and ${\sf B}/{\sf C}$
 - consistent with ⁶⁰Fe
- Vela
 - reproduces fluxes of groups of CR nuclei
 - shape consistent with knee
 - source of soft neutrino component?
- Iocal geometry of GMF is important: Local Bubble and Loop I