Internal clock formulation of quantum mechanics

Przemysław Małkiewicz National Centre for Nuclear Research, Warszawa

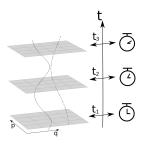
Virtual Institute of Astroparticle physics

Sept 29, 2017, Warsaw-Paris

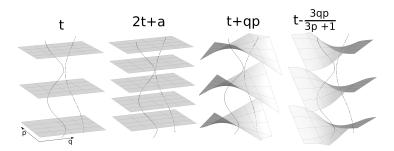
Outline

- 1. Definition of internal clock
- 2. Internal clock in quantisation
- 3. Properties of new quantum mechanics
- 4. Limit of ordinary quantum mechanics
- 5. Properties of semiclassical dynamics

Internal clock



contact manifold M_C = phase space $\times \mathbb{R}$

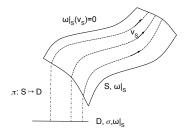


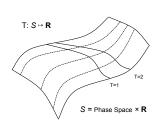
Internal clock

$$N \cdot H(q^i, p_j) = 0 \tag{1}$$

$$N \cdot H(q^i, p_j) = p^1 + h(q^1, q^2, p_2, q^3, p_3, \dots)$$
 (2)

$$(q^k, p_k), \quad k = 2, 3, \dots, \quad t \equiv q^1, \quad h(t, q^k, p^k)$$
 (3)
HUGE ambiguity!





Canonical formalism

Canonical transformations $(q^I, p_I, t) \mapsto (\bar{q}^I, \bar{p}_I)$:

$$\omega_{\mathcal{C}} = \mathrm{d}q^{I}\mathrm{d}p_{I} - \mathrm{d}t\mathrm{d}h = \mathrm{d}\bar{q}^{I}\mathrm{d}\bar{p}_{I} - \mathrm{d}t\mathrm{d}\bar{h} \tag{4}$$

Pseudocanonical transformations $(q^I, p_I, t) \mapsto (\bar{q}^I, \bar{p}_I, \bar{t})$:

$$\omega_{\mathcal{C}} = \mathrm{d}q^{I}\mathrm{d}p_{I} - \mathrm{d}t\mathrm{d}h = \mathrm{d}\bar{q}^{I}\mathrm{d}\bar{p}_{I} - \mathrm{d}\bar{t}\mathrm{d}\bar{h} \tag{5}$$

Note the definition of the symplectic form as $\omega_{\mathcal{C}}|_{t}$.

Clock transformations form a group \mathcal{G}_{clock} with canonical transformations \mathcal{G}_{can} as its normal subgroup \Rightarrow fibre bundle $\pi: \mathcal{G}_{clock} \to \mathcal{T}$ over the space of internal clocks \mathcal{T} with canonical transformations \mathcal{G}_{can} as a fibre.

Canonical formalism

Let us consider a section:

$$\sigma: \mathcal{T} \ni t \mapsto (q, p, t) \in \mathcal{G}_{clock}$$
 (6)

such that

 $C_I(t,q,p)$ is a Dirac observable $\Leftrightarrow C_I(\bar{t},\bar{q},\bar{p})$ is a Dirac observable (i.e. a conserved quantity)

Specify the section σ by means of 2n+1 algebraic equations:

$$\overline{t}=\overline{t}(t,q,p),\ C_I(t,q,p)=C_I(\overline{t},\overline{q},\overline{p}),\ I=1,\dots,2n$$

Example

Consider the contact form:

$$\omega_C = \mathrm{d}q\mathrm{d}p - \mathrm{d}t\mathrm{d}\mathbf{H}, \ \mathbf{H} = \frac{p^2}{2}, \ (q,p) \in \mathbb{R}^2, \ t \in \mathbb{R}$$
 (7)

Dirac observables are

$$C_1(q, p, t) = p, \quad C_2(q, p, t) = q - pt$$
 (8)

and the special pseudocanonical transformation is given by

$$\bar{t} = t + D(q, p), \ \bar{p} = p, \ \bar{q} = q - pD(q, p),$$
 (9)

The contact form reads now:

$$\omega_{\mathcal{C}} = \mathrm{d}\bar{q}\mathrm{d}\bar{p} - \mathrm{d}\bar{t}\mathrm{d}\mathbf{H}, \quad \mathbf{H} = \frac{\bar{p}^2}{2}, \quad (\bar{q}, \bar{p}) \in \mathbb{R}^2, \quad \bar{t} \in \mathbb{R}$$
 (10)

Quantisation of all clock-frames

Quantisation is assumed to be a linear map of the form

$$f(q, p, t) \mapsto \hat{A}_f := \int_{t=const} \mathrm{d}q \mathrm{d}p \ f(q, p, t) M(q, p),$$
 (11)

where M(q,p) is a family of bounded operators on $\mathcal H$ such that $\int \mathrm{d}q\mathrm{d}p\ M(q,p)=\mathbb{I}_{\mathcal H}.$ E.g. for the "canonical prescription",

$$M(q,p) = \mathbf{D}(q,p)2\mathcal{P}\mathbf{D}^{\dagger}(q,p), \quad \mathbf{D}(q,p) = e^{i(p\hat{Q}-q\hat{P})}$$
 (12)

For all choices of internal clock assign to Dirac observables the same quantum representation on a fixed \mathcal{H} .

Quantisation of all observables in all internal clocks is completely fixed by the Dirac observables' representation.

Properties of quantised clock-frames

0) Any physical state is represented by a unique vector

$$|\Psi\rangle\in\mathcal{H}$$

1) Any Dirac observable, $C(q,p,t)=C(\bar{q},\bar{p},\bar{t})$, is promoted to a unique operator

$$C \mapsto \hat{C}, \ \Psi(c) := \langle \phi_c | \Psi \rangle \in L^2(sp(\hat{C}), dc)$$

2) For any dynamical observable, $D(q, p, t) = \bar{D}(\bar{q}, \bar{p}, \bar{t})$, the respective operator depend son the choice of internal clock

$$D \mapsto \hat{D} \quad \text{and} \quad \bar{D} \mapsto \hat{\bar{D}} \neq \hat{D}$$

$$\Psi(d) := \langle \phi_d | \Psi \rangle \in L^2(sp(\hat{D}), dd)$$

3) There is a unique Schrödinger equation

$$i\partial_{\tau}|\Psi\rangle = \hat{C}|\Psi\rangle, \quad \{\tau\} \in \mathcal{T},$$

and thus, the evolution is independent of the choice of clock.

Example

$$\omega_C = \mathrm{d}q\mathrm{d}p - \mathrm{d}t\mathrm{d}\mathbf{H}, \ \mathbf{H} = \frac{p^2}{2}, \ (q,p) \in \mathbb{R}^2, \ t \in \mathbb{R}$$
 (13)

$$t = \overline{t} + D(\overline{q}, \overline{p}), \quad p = \overline{p}, \quad q = \overline{q} - \overline{p}D(\overline{q}, \overline{p}).$$
 (14)

Quantisation of $p\mapsto \hat{P}$ is unique and of q is ambiguous,

$$q \mapsto Sym[\hat{Q} - \hat{P}D(\hat{Q}, \hat{P})]. \tag{15}$$

Example

Set $D(\bar{q}, \bar{p}) = \bar{q}\bar{p}$. Then in momentum repr.:

$$q\mapsto i(1+p^2)rac{\partial}{\partial p}+ip,\;\;|q
angle=rac{e^{-iqrctan(p)}}{\sqrt{\pi}\sqrt{p^2+1}},\;\;q=2n+\mu$$

Fix
$$\Psi(p) = \langle p|\Psi\rangle = (\pi\sigma)^{-1/4}e^{-\frac{1}{2\sigma}(p-p_0)^2}e^{-ix_0p}$$
. What is $|\langle p|\Psi\rangle|^2$?

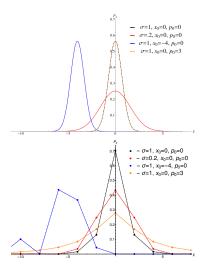


Figure: Probability distribution $P_q=|\langle q|\Psi\rangle|^2$ of position eigenvalues for the state $|\Psi\rangle$ in the clock t (on the left) and in the clock $\bar{t}=t-\bar{q}\bar{p}$ (on the right). The clock transformation turns the real spectrum into a discrete one.

Limit of ordinary QM: internal observer

Let the entire system be the product of **system** and **observer**:

$$(q_s, p_s, q_o, p_o) \in \mathbb{R}^4, \quad t \in \mathbb{R}, \tag{16}$$

$$\omega = \omega_s + \omega_o, \quad \omega_i = \mathrm{d}q_i \mathrm{d}p_i - \mathrm{d}t \mathrm{d}H_i, \quad H_i = \frac{p_i^2}{2}, \quad i = s, o$$

Let the clock transformation involve **observer** only:

$$t \mapsto \bar{t} = t + D(q_o, p_o). \tag{17}$$

observer: $\omega_o|_{\bar{t}} \neq \omega_o|_t$,

system:
$$\omega_s|_{\bar{t}} = \omega_s|_{t+\Delta(t)}, \quad \Delta(t) = D(q_s(t), p_s(t))$$

t- and \bar{t} -frames of quantum **system** are related by $U=e^{-\frac{i\Delta}{2}P^2}$:

Clock t	$Clock\; \bar{t} = t + \Delta(t)$
$ ho_s\mapsto \hat{P}$	$p_s\mapsto \hat{P}$
$q_s \mapsto \hat{Q}$	$q_{s}\mapsto \hat{Q}-\Delta(t)\hat{P}$
$ \Psi angle\mapsto \Psi(q)=\langle q \Psi angle$	$ig \ket{\Psi}\mapstoarphi(q)=ra{q}U^\dagger\ket{\Psi}ig $
$i\partial_t\psi(q)=\hat{H}\psi(q)$	$i\partial_{\overline{t}}arphi(q)=\hat{H}arphi(q)$

Semiclassical dynamics Spacetime $\mathcal{M} = \mathbb{T}^3 \times \mathbb{R}$:

$$ds^{2} = -N^{2}dt^{2} + q^{2}[(dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}].$$

with a perfect fluid, $p = w\rho$, w < 1.

The Hamiltonian constraint:

$$\omega = \mathrm{d}\mathbf{g}\mathrm{d}\mathbf{p} + \mathrm{d}\mathbf{T}\mathrm{d}\mathbf{p}_{\mathsf{T}}.$$

 $N \cdot C^0 = p_T + \frac{c_w^2}{24}p^2, \quad q > 0,$

where (q, p) - isotropic geometry, (T, p_T) - perfect fluid.

 C^0 is solved by removing p_T . The contact reads:

C° is solved by removing
$$p_T$$
. The contact reads

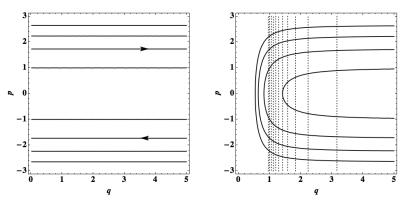
The canonical formalism of a free particle on the half-line.

(18)

(19)

(20)

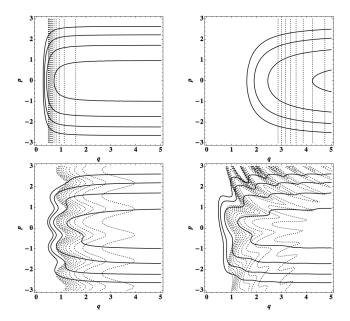
Semiclassical dynamics



Left: classical trajectories, $H = p^2$.

Right: semiclassical trajectories, $H_{sem} = p^2 + \hbar^2 \frac{K}{a^2}$.

Semiclassical dynamics



Conclusions

- ▶ We choose an internal clock and make transformations thereof the SYMMETRY of the canonical formalism
- ► In internal clock formulation quantum states admit an unambiguous non-dynamical interpretation and many dynamical interpretations, but...
- ... the ordinary formulation is regained as a special case with an internal observer
- ... unambiguous predictions for semiclassical dynamics are possible.

Works

- P. Małkiewicz, A. Miroszewski, Internal clock formulation of quantum mechanics, Phys. Rev. D 96 (2017) 046003
- 2. P. Małkiewicz, What is dynamics in quantum gravity?, Class. Quantum Grav. 34 (2017) 205001
- 3. P. Małkiewicz, Clocks and dynamics in quantum models of gravity, Class. Quantum Grav. 34 (2017) 145012
- P. Małkiewicz, Multiple choices of time in quantum cosmology, Class. Quantum Grav. 32 (2015) 135004