Internal clock formulation of quantum mechanics
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Internal clock

contact manifold Mc = phase space x R
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Internal clock
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HUGE ambiguity!
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Canonical formalism
Canonical transformations (q', p;, t) — (g, p):

we = dg'dp, — dtdh = dg'dp; — dtdh (4)

Pseudocanonical transformations (¢', p;, t) — (g, by, t):
we = dq'dp; — dtdh = dg'dp; — didh (5)

Note the definition of the symplectic form as we¢|:.

Clock transformations form a group Gocx With canonical
transformations G, as its normal subgroup = fibre bun-
dle m: Geock — T over the space of internal clocks 7 with
canonical transformations G.,, as a fibre.




Canonical formalism

Let us consider a section:

o:T>t—(q,p,t) € Gelock (6)

such that

Ci(t,q, p) is a Dirac observable < C(t, g, p) is a Dirac ob-
servable (i.e. a conserved quantity)

Specify the section o by means of 2n + 1 algebraic equations:

t= E(ta qap)a Cl(tvqap) = Cl(fvc_hﬁ)a =0 g 20




Example

Consider the contact form:

2
we = dgdp — dtdH, H:%, (g.p) €R%, teR (7)

Dirac observables are

Ci(q.p,t) =p, Cq,p,t)=q—pt (8)

and the special pseudocanonical transformation is given by

t=t+D(q,p), p=p, §=q—pD(q,p), (9)

The contact form reads now:

=2
we = dGdp — didH, H:%, (3,5) €R?, TeR  (10)



Quantisation of all clock-frames

Quantisation is assumed to be a linear map of the form

f(q,p,t) — Ar = / dqdp f(q, p,t)M(q, p), (11)

t=const

where M(gq, p) is a family of bounded operators on H such that
[ dgdp M(q,p) =1y. E.g. for the “canonical prescription”,

M(q, p) = D(g,p)2PD'(q,p), D(q,p) =P~ (12)

For all choices of internal clock assign to Dirac observables
the same quantum representation on a fixed .

Quantisation of all observables in all internal clocks is
completely fixed by the Dirac observables’ representation.



Properties of quantised clock-frames
0) Any physical state is represented by a unique vector

W) e H

1) Any Dirac observable, C(q, p,t) = C(g, p, t), is promoted to a
unique operator

Cr &, V(c):= (¢c|W) € 12(sp(C),dc)

2) For any dynamical observable, D(q, p, t) = D(§, p, t), the
respective operator depend son the choice of internal clock

DsD and D D#D
V(d) = (¢a|¥) € L*(sp(D), dd)
3) There is a unique Schrodinger equation
oWy =CIv), {r}eT,

and thus, the evolution is independent of the choice of clock.



Example

2
we = dqdp — dtdH, H:%, (.p) €R% teR  (13)

t=1+D(3,p), p=p. q=3—pD(G,p) (14)
Quantisation of p — P is unique and of g is ambiguous,
q— Sym[Q — PD(Q, P)]. (15)

Set D(g,p) = gp. Then in momentum repr.:

. b ) e—iqarctan(p)
g i(1+p°)o- +ip,

op !<7>=—\/7_r s

Fix W(p) = (p|W) = (mo) V4e 2 (PP0)e=i0P What is
{qlw)[??

qg=2n+p
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Figure: Probability distribution Py = |(g|¥)|? of position eigenvalues for the state
|[W) in the clock t (on the left) and in the clock t =t — gp (on the right). The clock
transformation turns the real spectrum into a discrete one.



Limit of ordinary QM: internal observer

Let the entire system be the product of system and observer:

(ds; Ps; dos Po) € R, tER, (16)
p?
W= wWs + Wo, wj=dgqg;dp; —dtdH,, H,':?’, I=s,0
Let the clock transformation involve observer only:
t = t=t+ D(qo,po)- (17)

observer: wo|; # wolt,

system: ws|y = WS‘t-&-A(t), A(t) = D(qs(t), ps(t))

t- and t-frames of quantum system are related by U = e~ 2P
Clock t Clock t =t + A(t)
ps — P ps — P
qs'_>© QSHQ_A(t)Is

W) = W(q) = (qlV¥) | W) = ¢(q) = (qUT|V)
i0r(q) = HY(q) i0rp(q) = Ho(q)




Semiclassical dynamics
Spacetime M = T3 x R:

ds? = —N2dt? + g2[(dx1)? + (dx?)? + (dx3)2].

with a perfect fluid, p = wp, w < 1.
The Hamiltonian constraint:
2

N-C0= —w 0
pr+24p, q>0,

w=dqgdp+dTdpr,
where (g, p) - isotropic geometry, (T, p7) - perfect fluid.

CO is solved by removing p7. The contact reads:

c2

w|co_g = dgdp — d TdH, H_2—‘Z p2.

The canonical formalism of a free particle on the half-line.

(18)



Semiclassical dynamics
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Left: classical trajectories, H = p?.
Right: semiclassical trajectories, Hsemy = p° + h2§.



Semiclassical dynamics
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Conclusions

» We choose an internal clock and make transformations thereof
the SYMMETRY of the canonical formalism

» In internal clock formulation quantum states admit an
unambiguous non-dynamical interpretation and many
dynamical interpretations, but. ..

» .. .the ordinary formulation is regained as a special case with
an internal observer

» ...unambiguous predictions for semiclassical dynamics are
possible.
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