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Background

[What is pam? How do we measure it! Why is it interesting?]




Background | What is the local dark matter density?
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Background | How can we measure the local DM density?

|. Local measure:

Pdm
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Background | How can we measure the local DM density?

|. Local measure:

Pdm

2. Global measure:

Pdm,ext
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Background | How can we measure the local DM density?

|. Local measure:
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Background | How can we measure the local DM density?

|. Local measure:

Pdm

2. Global measure:

Pdm,ext
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Background | Why measure the local dark matter density?

|. Halo shape ...

Pdm < Pdm, ext Pdm = Pdm, ext

Prolate Oblate/dark disc
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Background | Why measure the local dark matter density!?

2. Detecting dark matter

* Big tub of inert material
* Deep underground
* Wait for rare event

* Need to know very local phase
space distribution
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Background | Why measure the local dark matter density!?

2. Detecting dark matter

* Big tub of inert material
* Deep underground
* Wait for rare event

* Need to know very local phase
space distribution
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Background | Why measure the local dark matter density!?

2. Detecting dark matter

* Big tub of inert material
* Deep underground
* Wait for rare event

* Need to know very local phase
space distribution

d>v
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Particle physics | Astrophysics
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Background | The need for simulations

|.Plab 7 Pdm (< 1kpc)
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Background | The need for simulations

|.Plab 7 Pdm (< 1kpc)

...........................................................................................................

he Milky Way disc
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Background | The need for simulations

|.Plab 7 Pdm (< 1kpc)
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he Milky Way disc
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Background | The need for simulations
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Background | The need for simulations

|.Plab 7 Pdm (< 1kpc)

Solar system is a million times smaller
than this!

he Milky Way disc
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Background | The need for simulations

|.Plab 7 Pdm (< 1kpc)

Solar system is a million times smaller

than this!
MW
Hydro
~ DM onl
B o1 S e —
he Milky Way disc
2.Need f(Vv,1)
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Simulations | “DM-only” simulations
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Simulations | “DM-only” simulations | Fine structure

* Unresolved substructure | not likely important
[Vogelsberger et al. 2009; Zemp et al. 2009; Kamionkowski et al. 2008]

* Unresolved streams | not likely important
[Vogelsberger et al. 201 |; Fantin et al. 201 1]

* Solar system | not likely important
[Peter 2009]
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Simulations | “DM-only” simulations | Fine structure

* Unresolved substructure | not likely important
[Vogelsberger et al. 2009; Zemp et al. 2009; Kamionkowski et al. 2008]

* Unresolved streams | not likely important
[Vogelsberger et al. 201 |; Fantin et al. 201 1]

* Solar system | not likely important
[Peter 2009]

Pdm = Plab

~600 light years ~metres
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Simulations | The importance of baryons
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Simulations | The importance of baryons

Shape change
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Simulations | The importance of baryons

Shape change
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Dark discs

Lake 1989; Read et al. 2008/9
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Simulations | The importance of baryons

Shape change
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Simulations | Dark discs

Stellar disc

ERIS | Guedes et al. 201 |
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Stellar disc
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Simulations | Dark discs

Stellar disc

0. ®©.06 © 06 06 .06 06 0 6 0 06 0 0 06 0 0 0 0 0 0 0 0 0 O 0 0 O 0 0 0 0 0 0 0o o o

ERIS | Guedes et al. 201 |




Simulations | Dark discs
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Simulations | Dark discs

Late Planar Merger [LPM]
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Simulations | Dark discs
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Simulations | Dark discs
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Simulations | Dark discs

Quiescent [Q]
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Measurement

[ Pdm; the local halo shape;and the MW’s dark disc]




Measurement | Theory

Bahcall 1989; Garbari et al.2011/12
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Measurement | Theory
of
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Bahcall 1989; Garbari et al.2011/12
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Measurement | Theory

df /
dt 9,

Steady state

Bahcall 1989; Garbari et al.2011/12
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Vo .
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Measurement | Theory

df /
dt 9,

Steady state

Bahcall 1989; Garbari et al.2011/12

0 = + v
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But! hard to measure f(r,v)
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Measurement | Theory

i _ . Nf 0

i oY o V%

Steady state  But! hard to measure f(r, v)

Moments =
Jeans equations

Bahcall 1989; Garbari et al.2011/12
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Measurement | Theory
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Measurement | Theory
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Measurement | Theory

aif NS 0f
dt_o_ﬁ_l_v o Vo
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Measurement | Mock data
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Measurement | Mock data
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Measurement | Mock data
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Measurement | Mock data
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Measurement | Mock data
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Measurement | Real data

Need a good tracer:

Read 2014
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Measurement | Real data

Need a good tracer:

e Well mixed = equilibrium
e Well populated = good statistics (at high z!)

e Volume complete (helpful)
e Velocity data (v;)

e Good distances

Read 2014
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Measurement | Real data

Need a good tracer:

e Well mixed = equilibrium
e Well populated = good statistics (at high z!)

e Volume complete (helpful)
e Velocity data (v;)

e Good distances

a) 2000 stars

Volume Complete
[Kuijken & Gilmore 1989]

Read 2014
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Measurement | Real data

Need a good tracer:

e Well mixed = equilibrium
e Well populated = good statistics (at high z!)

e Volume complete (helpful)
e Velocity data (v;)

e Good distances

a) 2000 stars b) 10,000 stars

Volume Complete Complex SF
[Kuijken & Gilmore 1989] [Zhang et al. 2013]

Read 2014
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Measurement | Historic measures
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Measurement | Historic measures
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Measurement | Historic measures

FIRST ATTEMPT AT A THEORY OF THE ARRANGEMENT
AND MOTION OF THE SIDEREAL SYSTEM!

By J. C. KAPTEYN?
ABSTRACT

First attempt at a general theory of the distribution of masses, forces, and velocities in
the stellar system.—(1) Distribution of stars. Observations are fairly well represented, at
least up to galactic lat. 70° if we assume that the equidensity surfaces are similar
ellipsoids of revolution, with axial ratio 5.1, and this enables us to compute quite
readily (2) the gravitational acceleration at various points due to suck a system, by sum-
ming up the effects of each of ten ellipsoidal shells, in terms of the acceleration due
to the average star at a distance of.a parsec. The fofal number of stars is taken as
47.4X10%. (3) Random and rotational velocities. The nature of the equidensity
surfaces is such that the stellar-system cannot be in a steady state unless there is a
general rotational motion around the galactic polar axis, in addition to a random
motion analogous to the thermal agitation of a gas. In the neighborhood of the
axis, however, there is no rotation, and the behavior is assumed to be like that of a
gas at uniform temperature, but with a gravitational acceleration (Gn) decreasing
with the distance p. Therefore the density A is assumed to obey the barometric law:
Gn=—u*(6A/0p)/A; and taking the mean random velocity # as 10.3 km/sec., the
author finds that (4) the mean mass of the stars decreases from 2.2 (sun=1) for shell IT
to 1.4 for shell X (the outer shell), the average being close to 1.6, which is the value
independently found for the average mass of both components of visual binaries. In
the galactic plane the resultant acceleration—gravitational minus centrifugal—is
again put equal to —#2(8A/8p)/A, 4 is taken to be constant and the average mass
is assumed to decrease from shell to shell as in the direction of the pole. The angular
velocities then come out such as to make the linear rotational velocities about constant
and equal to 19.5 km/sec. beyond the third shell. If now we suppose that part of the

Read 2014 stars are rotating one way and part the other, the relative velocity being 39 km/sec.,
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Measurement | Historic measures
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Gr]='——u2(5A/5p) /A a,nd takmg the mean random veloc1ty # as 1o. 3 km/sec., the
Mbmmmu)‘thmsﬂms stz slecreases from 2.2 (sun= :[) for shell IT
to 1.4 for shell X (the outer shell), the average being close to 1.6, which is the value
independently found for the average mass of both components of visual binaries. In
the galactic plane the resultant acceleration—gravitational minus centrifugal—is
again put equal to —#*(84/dp)/A, 4% is taken to be constant and the average mass
is assumed to decrease from shell to shell as in the direction of the pole. The angular
velocities then come out such as to make the linear rotational velocities about constant
and equal to 19.5 km/sec. beyond the third shell. If now we suppose that part of the
stars are rotating one way and part the other, the relative velocity being 39 km/sec.,
we have a quantitative explanation of the phenomenon of star-streaming, where
the relative velocity is also in the plane of the Milky Way and about 40 km/sec. It is
1nc1denta,]ly suggested that when the theory 1s perfected it may be possible to deter-
mine the amount of dark matter from its gravitational effect. (5) The chief defects
of the theory are: That the equidensity surfaces assumed do not agree with the actual
surfaces, which tend to become spherical for the shorter distances; that the position
of the center of the system is not the sun, as assumed, but is probab int
some 650 parsecs away in the direction galactic long. 77°, lat. —: \ age
mass of the stars was assumed to be the same in all shells in d o'l ula
for the variation of Gy with p on the basis of which the variati = - 3 135S
from shell to shell and the constancy of the rotational velocity v o nce
either the assumption or the conclusions are wrong; and that no \ een
made between stars of different types.

1. Equidensity surfaces supposed to be simila In

Mount Wilson Contrzbutzon No. 1883 a provisional derivation was

Read . 4 o :
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Measurement | Historic measures

- Itis
incidentally suggested that when the theory is perfected it may be possible to deter-
mine the amount of dark matter from its gravitational effect.

Read 2014
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Measurement | Historic measures

- Itis
incidentally suggested that when the theory is perfected it may be possible to deter-
mine the amount of dark matter from its gravitational effect.

Read 2014
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Measurement | Comparison of recent measures

0.10 | ' TR = | u = Y=

= 5 it 57

B 2 @ 5 -

0.08 [~ = - s

i 2 &

— - 5 -

™ B -+ : 7

'v  0.06[_ .§ - -

- E ' —

= ol :

- 0.04r ]

£ 0.02 Pamext (Igcco et al. 2011) g . -

< [ 5 © E

% 3 -

| S S § .

O’OO = ':‘.. ................................................ : ....................................................................... 5 —

—0.02 L | | | i ]
2020

Read 2014

Thursday, June 4, 2015



Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures
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Measurement | Comparison of recent measures

A new compilation of >

Component X;[M o pe™] Reference
> HI 12.0+ 4.0 Kalberla & Dedes (2008)
> H, 3.0+ 1.5 Flynn et al. (2006)
2 Warm gas 2.0x1 Flynn et al. (2006)
> 30+ 1 Bovy et al. (2012)
e 7.2+£0.7 Flynn et al. (2006)

Db 54.2 +4.9 This compilation

Read 2014
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Measurement | Comparison of recent measures

A new compilati

Component ;|

Reference

ZHI 12.0
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Measurement | Comparison of recent measures

A new compilati

Component ;| Reference

> 4.0  Kalberla & Dedes (2008)
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Measurement | Comparison of recent measures

A new compilati

Component ;| Reference
4.0  Kalberla & Dedes (2008)
- 1.5 Flynn et al. (2006)
0+1 Flynn et al. (2006)
> 30+ 1 Bovy et al. (2012)
e 7.2 4+0.7 Flynn et al. (2006)
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Measurement | Comparison of recent measures

A new compilati

Component ;|
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2 30

1
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Flynn et al. (2006)

T'his compilation

Thursday, June 4, 2015



Measurement | The dark disc
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Measurement | The future

Previous missions could measure Sun
stellar distances with an accuracy of
10% only up to 100 parsecs*
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Measurement | Fh&future
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Measurement | The futu re \

parallax and ultra-precise "\‘ ' % Gaia will measure

in the distances and ‘proper’ st 5 proper motions
roughout much of the Milky \ : accurate to 1 kilometre
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The accreted
‘dark disc’




The accreted disc | A chemodynamic template

Pop

MW
Dsph

LMC

Ruchti, Read et al. 2014
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The accreted disc | A chemodynamic template
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The accreted disc | A chemodynamic template

Born in dwarf or outer disc

Pop

MW
Dsph

LMC

Ruchti, Read et al. 2014
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The accreted disc | A chemodynamic template
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The accreted disc | The Gaia-ESO survey

* Medium resolution (R~18,000) GIRAFFE data.

* S/N > 20.

* Only Milky Way field stars (e.g. no clusters etc.).

e 3015 stars with distances; proper motions + radial
velocities.

e Calculate [E./FE., J./J.|for each star assuming a
simple Galactic model.

Ruchti, Read et al. in prep.2014/15
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The accreted disc | The Gaia-ESO survey
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The accreted disc | The Gaia-ESO survey

[Fe/H]

Ruchti, Read et al. in prep.2014/15
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The accreted disc | The Gaia-ESO survey
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Conclusions

® Latest constraints on Pdm [assuming ¥, = 55 My, pc 2 ]:

pam = 0.3370G75 GeVem™  pay, = 0.25 £ 0.09 GeV cm ™
[volume complete; G12*; R14] [SDSS; Z13]

® Comparing these with the rotation curve implies a near-spherical MW
halo at ~8kpc, little dark disc, and a quiescent merger history.

® Ve have searched for stars accreted along with the dark disc, finding
none so far; this supports the “quiescent MW" scenario.

® Gaia will move us into the realm of truly precise measurements of the
local dark matter [and baryonic] density.
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