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Things should be made simple, but not simpler



I apologize if the title suggests that GR is a wrong theory. This

talk should be interpreted as a diagnostic on the state of art of

GR.

Next year we commemorate the 100-th aniversary of the publi-

cation of the General Relativity theory.

Is it time for a revision of its fundamental principles?

I think it is a restricted theory if we admit the Lagrangian de-

scription of classical mechanics.



• According to GR, Spacetime is a (pseudo)Riemannian metric

space.

• The motion of a test particle (point particle) follows a geodesic

on spacetime.

• There are no spinless elementary particles in nature. The

concept of Spin appeared in the next decade when G.R. was

already established.

• The above statement is about the motion of an unexistant

object.



• There has been an abusive use of the point particle model

for describing experiments which always involve spinning par-

ticles.

• Difraction, tunneling, formation of bound pairs of electrons,

are features not described by the point particle model.

• These features are contemplated in a classical description of

spinning particles.



Kinematical theory of spinning particles.
Three fundamental principles:

• Restricted Relativity Principle. Gravity is discarded as a pos-
sible interaction.

• Variational formalism. Lagrangian description.

• Atomic Principle. Definition of elementary particle.

It is a complete formalism for describing elementary spinning par-
ticles. All spinning models can be quantized. There is a unique
classical model which satisfies Dirac’s equation when quantized.
Published by Kluwer in 2001.



Classical electron structure in the center of mass frame.



The next step was to analyze the behavior of the spinning elec-

tron under a gravitational interaction.

The boundary variables manifold in the variational formalism for

a spinning particle is larger than spacetime. (It is a homogeneous

space of the Poincaré group).

The boundary variables manifold for a spinless point particle is

spacetime. It is the metric of this manifold which is modified by

gravity.

This manifold for any mechanical system is always a metric

space. It is a Finsler metric space.



General Relativity is a restricted theory in two aspects:

• It assumes that spacetime is a (pseudo)Riemannian metric

space when it is a Finsler metric space under EM interactions,

for the point particle.

• Since there are no spinless particles in nature, the manifold

whose geometry is modified by gravity must be larger than

spacetime.



Classical Point Particle physics is also a restricted theory:

• It assumes that the center of charge and center of mass of

an elementary particle are the same point. This assumption

suppress part of the spin content.

• The conclusions we can derive from restricted formalisms

cannot be used for the analysis of all forms of matter.

• We cannot use the point particle model for describing exper-

iments performed with spinning particles.



Variational formalism or geodesic statement

The variational formalism of any Lagrangian system can always

be interpreted as a Geodesic statement on the manifold of its

boundary variables (Kinematical space X).

But this manifold X is not a Riemannian space but rather a

metric Finsler space.



Some References:

H. Rund, The differential geometry of Finsler spaces,

Springer-Verlag, Berlin 1959.

H. Rund, The Hamilton-Jacobi theory in the calculus of varia-

tions,

Robert Krieger Pub. Co. , Huntington N.Y. 1973.

G.S. Asanov, Finsler geometry, Relativity and Gauge theories,

Reidel Pub. Co., Dordrecht 1985.



Any Lagrangian mechanical system of n degrees of freedom qi,

A[q(t)] =
∫ t2

t1
L(t, qi, q

(1)
i )dt, q

(1)
i = dqi/dt.

between the initial state x1 ≡ (t1, qi(t1)) and final state x2 ≡
(t2, qi(t2)) on the X manifold.



X is the (n + 1)-th dimensional manifold spanned by the time
t and the n degrees of freedom qi. If instead of describing the
evolution in terms of time we express the evolution in parametric
form t(τ), qi(τ) in terms of some arbitrary evolution parameter
τ , then dqi/dt = dqi/dτ dτ/dt = q̇i/ṫ, where now ˙ ≡ d/dτ .

The variational approach will be written as∫ t2

t1
L(t, qi, qi

(1))dt =
∫ τ2

τ1
L(t, qi, q̇i/ṫ)ṫdτ =

∫ τ2

τ1
L̃(x, ẋ)dτ, L̃ = Lṫ.

But now the Lagrangian L̃ is independent of the evolution pa-
rameter τ and it is a homogeneous function of first degree of
the derivatives ẋ,

L̃ =
∂L̃

∂ẋi
ẋi = Fi(x, ẋ)ẋ

i,



L̃2 is a positive definite homogeneous function of second degree

of the derivatives ẋ,

L̃2 =
1

2

∂2L̃2

∂ẋi∂ẋj
ẋiẋj = gij(x, ẋ)ẋ

iẋj,

the Fi and gij are computed from L̃ and L̃2 by

Fi(x, ẋ) =
∂L̃

∂ẋi
, gij(x, ẋ) =

1

2

∂2L̃2

∂ẋi∂ẋj
= gji.

The Fi(x, ẋ) and gij(x, ẋ) are homogeneous functions of zeroth

degree of the derivatives ẋ, and therefore functions of the time

derivatives of the degrees of freedom qi.



Between the allowed boundary states x1 and x2, since L̃2 > 0, the

gij(x, ẋ) represent the coefficients of a positive definite metric.

The variational problem can be written as∫ τ2

τ1
L̃(x, ẋ)dτ =

∫ τ2

τ1

√
L̃2(x, ẋ)dτ =

∫ τ2

τ1

√
gij(x, ẋ)ẋ

iẋjdτ =

=
∫ x2

x1

√
gij(x, ẋ)dx

idxj =
∫ x2

x1
ds,

where ds is the arc length on the X manifold with respect to the

metric gij.

This metric is velocity dependent, and therefore the metric space

X is a Finsler space.



The variational statement of the dynamics of any me-
chanical system is always equivalent to a geodesic
problem on the X manifold with a Finsler metric,
which can be explicitely constructed by taking the sec-
ond order partial derivatives of the L̃2.



Examples of homogeneous Lagrangians (Point particle)

Nonrelativistic

L =
1

2
m

(
dr

dt

)2
, L̃ = Lṫ =

1

2
m

(
ṙ

ṫ

)2
ṫ =

1

2
m
ṙ2

ṫ
.

Relativistic

L = −mc
√
c2 − (dr/dt)2, L̃ = Lṫ = −mc

√
c2ṫ2 − ṙ2

Both are homogeneous functions of first degree of ALL DERIVA-

TIVES of the boundary variables x0 = ct and r. L̃2 is a homo-

geneous function of second degree.



Finsler metrics (Point particle on spacetime X)

(a) Free motion L̃0 = −mc
√
ẋ20 − ṙ2, L̃2

0 = gµνẋµẋν. The metric
is

gµν =
1

2

∂2L̃2
0

∂ẋµ∂ẋν
= m2c2ηµν, ηµν = diag(1,−1,−1,−1)



(b)Motion under a constant magnetic field. The Lagrangian

L̃B = −mc
√
ẋ20 − ṙ2 + eBxẏ.

we get the Lorentz force dynamical equation

dp

dt
= eu×B.

The metric of spacetime becomes, with k = eB/mc,

g00 = 1+
kxu2uy

(c2 − u2)3/2
, g11 = −1+

kxuy

(c2 − u2)3/2

(
c2 − u2y − u2z

)
,

g22 = −1+ k2x2 +
kxuy

(c2 − u2)3/2

(
3c2 − 3u2x − 2u2y − 3u2z

)
,

g33 = −1+
kxuy

(c2 − u2)3/2

(
c2 − u2x − u2y

)
,



g01 = −
kxcuxuy

(c2 − u2)3/2
, g02 = −

kxc

(c2 − u2)3/2
(c2 − u2x − u2z),

g03 = −
kxcuyuz

(c2 − u2)3/2
, g12 =

kxux

(c2 − u2)3/2

(
c2 − u2x − u2z

)
,

g13 =
kx

(c2 − u2)3/2
uxuyuz, g23 =

kxuz

(c2 − u2)3/2

(
c2 − u2x − u2z

)
,

metric coefficients are functions of the variable x, and of the

velocity of the particle. If the velocity is negligible with respect

to c, they become

g00 = 1, g11 = −1, g22 = −1+ k2x2, g33 = −1,

vanishing the remaining ones, and since the dependence on the

velocity has dissapeared the metric has been transformed into a

Riemannian metric.



These metric coefficients represent a Riemannian spacetime, and
therefore the dynamics is described by a restricted Lagrangian
L̃R, quadratic in the derivatives,

L̃2
R = m2c2(c2ṫ2 − ṙ2) + e2B2x2ẏ2, (1)

such that when compared with L̃B we have an additional term

L̃2
B = L̃2

R − 2emcBxẏ

√
c2ṫ2 − ṙ2.

From the restricted Lagrangian L̃R in a Riemannian spacetime,
the force acting on the point particle is not longer the Lorentz
force.

From the complete Lagrangian, the Lorentz force dynamical
equations are

dux

dt
=

1

γ(u)
kcuy,

duy

dt
= −

1

γ(u)
kcux,

duz

dt
= 0.



From the restricted Lagrangian L̃R, the geodesic equations are

dux

dt
= kcuy (1− kxuy/c) ,

duy

dt
= −kcux (1− kxuy/c) ,

duz

dt
= 0,

which reduce to the previous ones in the u/c → 0 limit.

If we accept that the electromagnetic force is the

Lorentz force, then spacetime is a Finsler metric space.

Spacetime is Riemannian only in the low velocity ap-
proach.



(c)Motion under a constant gravitational field
L̃g = L̃0 +mg · rṫ, The dynamical equations are

dp

dt
= mg

The Finsler metric from L̃2
g is

g00 = 1+
(
g · r
c2

)2
−

c(2c2 − 3u2)

(c2 − u2)3/2

(
g · r
c2

)
,

gii = −1+
c(c2 − u2 + u2i )

(c2 − u2)3/2

(
g · r
c2

)
, i = 1,2,3

g0i = −
u2ui

(c2 − u2)3/2

(
g · r
c2

)
, i = 1,2,3,

gij =
cuiuj

(c2 − u2)3/2

(
g · r
c2

)
, i ̸= j = 1,2,3.



The low velocity limit is

g00 =
(
1−

g · r
c2

)2
, gii = −

(
1−

g · r
c2

)
, i = 1,2,3,

where the g00 component is the same as the corresponding com-

ponent of the Rindler metric corresponding to a noninertial ac-

celerated observer or to the presence of a global uniform gravi-

tational field, in General Relativity.

They satisfy

g00 = (gii)
2 .



(d) Relativistic point particle under a Newtonian potential.

L̃N = L̃0 +
GmM

cr
cṫ.

Dynamical equations are

dp

dt
= −

GmM

r3
r,

independent of the mass of the particle.

The Finsler metric from L̃2
N is

g00 = 1+
(
GM

c2r

)2
−

c(2c2 − 3u2)

(c2 − u2)3/2

(
GM

c2r

)
,

gii = −1+
c(c2 − u2 + u2i )

(c2 − u2)3/2

(
GM

c2r

)
, i = 1,2,3,



g0i = −
u2ui

(c2 − u2)3/2

(
GM

c2r

)
, i = 1,2,3,

gij =
cuiuj

(c2 − u2)3/2

(
GM

c2r

)
, i ̸= j = 1,2,3

It is a Finsler metric, which in the case of low velocities only the

diagonal components survive

g00 =

(
1−

2GM

c2r
+

G2M2

c4r2

)
=
(
1−

GM

c2r

)2
.

If the last term G2M2/r2c4 is considered negligible, it is the g00
coefficient of Schwarzschild’s metric. The

gii = −
(
1−

GM

c2r

)
, i = 1,2,3,

are different than in the Schwarzschild case. In any case we see

that the nonvanishing coefficients, in the low velocity limit, they



satisfy

g00 = (gii)
2 ,

as in the previous example.



If we call Rs = 2GM/c2 Schwarzschild’s radius, the curvature

scalar R and Einstein’s tensor Gµν are:

R =
R2
s

r(2r −Rs)3
, Gtt =

3R2
s

8r3(2r −Rs)
, Grr =

(24r − tRs)Rs

4r2(2r −Rs)2
,

Gθθ =
(Rs − 3r)Rs

(2r −Rs)2
, Gϕϕ =

(Rs − 3r)Rs sin2 θ

(2r −Rs)2

it is not a vacuum solution of E.E., and Einstein tensor is related

to the gravitational potential of the mass M .



Z. Chang and X. Li,

Modified Newton’s gravity in Finsler spaces as a possible alter-

native to dark matter hypothesis.

gr-qc/arXiv:0806.2184

A modified Newton’s gravity is obtained as the weak field approx-

imation of the Einsteins equation in Finsler space. It is found that

a specified Finsler structure makes the modified Newtons gravity

equivalent to the modified Newtonian dynamics (MOND). In the

framework of Finsler geometry, the flat rotation curves of spiral

galaxies can be deduced naturally without invoking dark matter.



For a point particle, and in a special relativity framework, electro-

magnetism transforms the flat metric of spacetime into a Finsler

metric of the form

L̃2
0 = ηµν ẋ

µẋν ⇒ L̃2
EM = gµν(x, ẋ)ẋ

µẋν,

The proposal of General Relativity is that the motion of a point

particle in a gravitational field is a geodesic of

L̃2
0 = ηµν ẋ

µẋν ⇒ L̃2
g = gµν(x)ẋ

µẋν,

the metric independent of the derivatives ẋi.[First Restriction]

In the spirit of unification of all interactions we should also as-

sume that gravity would produce a Finslerian metric rather than

a Riemannian one.



There are no spinless elementary particles

This means that an elementary particle has a boundary space X

larger than spacetime because it has more degrees of freedom.

Electromagnetism (and gravity?) modifies the Finsler metric of

this manifold X.

Gravitation must be described as a Finsler metric theory on a

boundary space X larger than spacetime.[Second Restriction]



Without any statement about general covariance
or about the source of the gravitational field, (if
we assume that classical mechanics is described
in a Variational formalism), it could be inter-
preted that General Relativity when considered
as a gravitational theory of spacetime with a
(pseudo)Riemannian metric, is a low velocity limit
of a theory of gravitation of spinless matter.



Conclusions

General Relativity could be considered to be a re-
stricted low velocity theory of gravitation of spin-
less matter.

arXiv: 1203.4076



Thank you for your attention



The Lagrangian of a point particle in an EM field is

L̃EM = L̃0 − eAµ(x)ẋ
µ

With

pµ =
mẋµ√
ẋ20 − ṙ2

, p0 =
H

c
=

mc√
1− u2/c2

, pi = −
mui√

1− u2/c2
,

The Finslerian metric associated to the EM field is

gµν(x, ẋ) = m2c2ηµν + e2Aµ(x)Aν(x) + e(pµAν + pνAµ) + eAσẋ
σ∂pµ

∂ẋν



Classical theory of elementary particles

Matter has inertia and therefore it has a Center of Mass (CM).

Matter interacts and therefore it has a Center of Charge (CC).

Classical Physics considers that both points are exactly the same.!!!

Classical spinning particles have a CC and CM which are different

points.



If both points are different, physics leads to a unique solution:

Only a relativistic treatment is allowed.

It suffices to describe the motion of the CC.

The CC has to be moving at the speed of light.

This matches with Dirac’s formalism in the quantum case.

De Broglie was right, elementary matter has a natural frequency,

the frequency of the motion of the CC around the CM.



If we consider that they are different, several physical effects can

be described which are hidden in the restricted approach:

• Tunneling

• Formation of bound pairs of electrons



Different spin observables

J = r×p+S, o bien J = q×p+SCM , o bien J = k×p+Sk.

The dynamics under some external force F , applied at the CC r

dp

dt
= F ,

dJ

dt
= r × F



dS

dt
= p×u,

dSCM

dt
= (r− q)×F ,

dSk

dt
= (r− k)×F + p×

dk

dt
SCM is conserved if r = q. If it is not conserved it means that
r ̸= q

S is the equivalent to Dirac’s spin observable.

SCM is equivalent to BMT spin observable.

Conclusions

Classical Point Particle Physics is a restricted the-
ory because all known matter is made from spin-
ning particles.


