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COSMOLOGICAL INFLATION

Naively, inflation is a proposal (cosmological paradigm) about the existence of
a “short” but “fast” (exponential, or de-Sitter-type) accelerated grow of the scale
factor a(t) in the early Universe since 10−36 s until 10−32 s, before the radiation-
dominated era (Starobinsky, Guth, Linde, around 1981):

••
a (t) > 0

• There is the significant (indirect) evidence for the inflation because of:
(i) the correct prediction of CMB fluctuations and anisotropy (2006 Nobel prize),
(ii) the inflationary origin of the large scale structure: inflation can amplify quantum
fluctuations that can be the seeds of the formation of structure. It gives us the
possibility of testing the inflationary scenario.

• Inflation also solves the problems of the OLD Standard Cosmology.
• However, the detailed mechanism of inflation is still unknown.
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Inflationary solution of Hot Big Bang problems

no need for infinite
density

all scales grow
exponentially,
including the radius of
the 3-sphere
the Universe becomes
exponentially flat

any two particles are
at exponentially large
distances
no heavy relics
no traces of previous
epochs!

no particles in
post-inflationary
Universe
to solve entropy
problem we need
post-inflationary
reheating
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Inflationary solution of Hot Big Bang problems
Temperature
fluctuations
δT/T ∼ 10−5

Universe is uniform!

δρ/ρ ∼ 10−5
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Models of inflation

• chaotic inflation • natural inflation • hybrid inflation

• Higgs inflation • Starobinsky inflation • hilltop inflation

• modular inflation • Coleman-Weinberg inflation

• supergravity inflation • brane inflation • warm inflation

• tachyon inflation • SUSY breaking inflation • K-inflation

• string moduli inflation • and many more!

Our approach: is based on the gravitational origin of inflation, by using only
gravitational interactions. It distinguishes the Starobinsky (or R2-inflation) as the
only (basic) model of inflation. I will explain why.



Within LCDM model – precisely know DM relic density:
Wcdm h2=0.1193+/- 0.0014   (PLANCK – 1502.01589)

Dark matter postulated in 30’s (Zwicky) – 80 years later we know very little 
about DM
It has gravitational interactions (galaxies – rotation curves- galaxy clusters -
Xray, gravitational lensing)
No electromagnetic interactions,
It is cold (or maybe warm) and collisionless (or not)

0.3-0.4 GeV/cm^3

must be stable (or meta-stable)



T. Tait



Leaves us	with a	lot	of	
possibilities for	dark matter

- A	new	particle?	Composite DM?	Mass	scale?	(Meta)stability!

- WIMPs – long	time	favorite : good	theoretical motivation, 
typical annihilation	cross-section	leads	to	correct	relic density

- WIMPs :	however, no observational evidence despite extensive
direct and indirect searches on colliders and in space

- GIMPs (Gravitationally Interacting Massive Particles) and
- Non-particle Dark Matter as Primordial Black Holes!



Plan of talk

• Starobinsky (modified) gravity for inflation and quintessence
• Extension of the Starobinsky model in modified gravity for PBH
• PBH production and induced GW in the extended model
• Inflation and PBH production in Starobinsky supergravity
• Spontaneous high-scale SUSY breaking, dark energy and MSSM
• Higgs mass and dark matter
• Conclusion
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Modified gravity

• Modified gravity theories are generally-covariant non-perturbative exten-
sions of Einstein-Hilbert gravity theory by the higher-order terms. These terms
are irrelevant in the Solar system but are relevant in the high-curvature regimes
(inflation, black holes) or for large cosmological distances (dark energy).
• A modified gravity action has the higher-derivatives and generically suffers

from Ostrogradsky instability and ghosts. However, there are exceptions. For ex-
ample, in the modified gravity Largrangian quadratic in the spacetime curvature,
the only ghost-free term is given by R2 with a positive coefficient. It leads to the
Starobinsky model (1980) of modified gravity with the action

SStar. = α
∫

d4x
√−gR2 +

M2
Pl

2

∫
d4x

√−gR , α ≡ M2
Pl

12M2
,

with the single dimensionless parameter α, where MPl = 1/
√
8πGN ≈ 2.4 ×

1018 GeV, and the spacetime signature is (−,+,+,+, ).
4



On a possible origin of EH term

from classically scale-invariant gravity (Buchbinder 1986, Einhorn, Jones 2015)

S =
∫

d4x
√−g

[
αR2 + ξφ2R− 1

2
(∂φ)2 − λφ4

]

that can undergo a phase transition (dimensional transmutation) due to quantum
(radiative) corrections, known as the Coleman-Weinberg mechanism of sponta-
neous symmetry breaking (1973). It leads to a massive scalar field φ that can be
identified with dilaton or Higgs field with a non-vanishing VEV in the effective ac-
tion UV-fixed point, as can be demonstrated perturbatively (in 1 loop). Therefore,
both the Planck mass and the EH term are also generated with

1

2
M2

Pl = ξ 〈φ〉2 ,

though it cannot be served as a full UV-completion of EH or Starobinsky gravity.



Starobinsky attaractor solution

• In a flat FLRW universe ds2 = −dt2 + a2
(
dx21 + dx22 + dx23

)
, the EoM

read

2HḦ −
(
Ḣ
)2

+H2
(
6Ḣ +M2

)
= 0 , where H = ȧ/a .

Using an ansatz in the form of left Painlevé series H(t) =
∑k=p
k=−∞ ck(t0− t)k,

we find

H(t) =
M2

6
(t0 − t) +

1

6(t0 − t)
− 4

9M2(t0 − t)3
+

146

45M4(t0 − t)5

− 11752

315M6(t0 − t)7
+O

(
(t0 − t)−9

)
valid for M(t0− t) � 1. This solution is an attractor, it does not have a movable
singularity and describes (formally) eternal inflation up to t→ −∞.
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Starobinsky model of inflation

• In the high-curvature regime, the EH term can be ignored and the pure
R2-action becomes scale-invariant.
• In the the slow roll-approximation with

∣∣∣Ḧ∣∣∣ � ∣∣∣HḢ∣∣∣ and
∣∣∣Ḣ∣∣∣ � H2,

H(t) ≈
(
M2

6

)
(t0 − t) .

This solution spontaneously breaks the scale invariance of the R2-gravity and
implies an existence of the Nambu-Goldstone boson called scalaron.
• Scalaron is the physical (scalar) excitation of the higher-derivative gravity.

It can be revealed by rewriting the Starobinsky action into the quintessence form
by the field redefinition (Legendre-Weyl transform)

ϕ =

√
3

2
MPl lnF

′(χ) and gµν → 2

M2
Pl

F ′(χ)gµν , χ = R ,

K.-I. Maeda (1989)

Scale invariance in Jordan frame  = Shift symmetry in Einstein frame !



which leads to

S[gµν, ϕ] =
M2

Pl

2

∫

d4x
√
−gR−

∫

d4x
√
−g

[

1
2g

µν∂µϕ∂νϕ+ V (ϕ)
]

,

with the potential V (ϕ) = 3
4M

2
PlM

2
[

1− exp

(

−
√

2
3ϕ/MPl

)]2
≡ V0[1 − y]2,

suitable for describing slow-roll inflation with scalaron ϕ as the inflaton of mass

m due to the infinite plateau of the positive height ≈ V0 for y ≪ 1.

• The UV cutoff is ΛUV = MPl (Hertzberg, 2010). The higher-order cur-

vature terms are suppressed by powers of H2/M2
Pl relative to Starobinsky. A

string theory derivation of the Starobinsky inflation is unknown.

• The inverse transform from quintessence to F(R) gravity reads

R =

( √
6

MPl

dV

dϕ
+

4V

M2
Pl

)

e

√

2
3ϕ/MPl , F =

( √
6

MPl

dV

dϕ
+

2V

M2
Pl

)

e
2

√

2
3ϕ/MPl .



Starobinsky model (1980) and CMB measurements (2020)

The very simple Starobinsky model of inflation is in excellent agreement with the

current CMB measurements (Planck, BICEP/Keck).

A duration of inflation is usually measured by the e-foldings number

N =

∫ tend

t∗
H(t)dt ≈ 1

M2
Pl

∫ ϕ∗

ϕend

V

V ′dϕ .

The standard slow roll parameters are defined by

εsr(ϕ) =
M2

Pl

2

(

V ′

V

)2

and ηsr(ϕ) = M2
Pl

(

V ′′

V

)

.
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The amplitude of scalar (curvature) perturbations at the horizon crossing with

the pivot scale k∗ = 0.05 Mpc−1 is determined by the WMAP normalization,

As =
V 3
∗

12π2M6
Pl(V∗

′)2
=

3M2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)

≈ 1.96 · 10−9

that implies no free parameters in the Starobinsky model,

M ≈ 3 · 1013 GeV or
M

MPl
≈ 1.3 · 10−5 , and H ≈ O(1014) GeV .

The CMB measurements give the tilt of scalar perturbations ns ≈ 1 + 2ηsr −
6εsr ≈ 0.9649 ± 0.0042 (68%CL) and restrict the tensor-to-scalar ratio as

r ≈ 16εsr < 0.032 (95%CL). The Starobinsky inflation gives r ≈ 12/N2 ≈
0.003 and ns ≈ 1− 2/N , with the best fit at N ≈ 55. The prediction is r=3(1-n_s)^2
and it is the main target for the LiteBIRD and Simons Observatory projects.  

No free parameters but still  two  predictions!



Starobinsky inflation and Swampland Conjectures

about consistency with quantum gravity by pure thoughts aimed to discriminate
between EFT (Vafa, Palti, Valenzuela et al., from 2018).

• No exact global symmetries in quantum gravity: Starobinsky inflation merely
implies the approximate scale invariance for limited field values.

• No de Sitter and no eternal inflation: the Starobinsky infinite plateau is
destabilized by any higher-order terms beyondR2 in the gravitational EFT, which
are certainly present there.

• Weak gravity Conjecture means gravity is the weakest force, e.g., against
electromagnetic force: during inflation there may be no charged particles yet
(they appeared during reheating and after inflaton decay). Also, in the Einstein
frame, inflation was due to the inflaton force (from the inflaton potential).

8



Power spectrum of perturbations

Primordial scalar perturbations (ζ) and tensor perturbations g (primordial GW)

are defined by a perturbed FLRW metric,

ds2 = dt2 − a2(t)
(

δij + hij(~r)
)

dxidxj , i, j = 1,2,3 ,

where

hij(~r) = 2ζ(~r)δij +
∑

b=1,2

g(b)(~r)e
(b)
ij (~r) , H =

da/dt

a
,

in terms of a local basis e(b) with e
i(b)
i = 0, g

(b)
,j e

j(b)
i = 0, e

(b)
ij eij(b) = 1.

The primordial spectrum Pζ(k) of scalar (density) perturbations is defined by the

2-point correlation function of scalar perturbations,
〈

δζ(x)

ζ

δζ(y)

ζ

〉

=

∫

d3k

k3
eik·(x−y)Pζ(k)

P0
.

9



For instance, the observed CMB power spectrum is described by the Harrison-

Zeldovich fit,

PHZ
ζ (k) ≈ 2.21+0.07

−0.08 × 10−9
(

k

k∗

)ns−1

with the pivot scale k∗ = 0.05 Mpc−1. In the slow-roll (SR) approximation,

relevant for inflation, one finds

Pζ =
H2

8M2
Plπ

2

(

1

εsr

)

.

Therefore, it is possible to generate a large peak (enhancement) in the power

spectrum by engineering ǫsr → 0, called the ultra-slow-roll (USR) regime or the

PBH production mechanism based a near-inflection point in the potential. This

implies the double inflation scenario (SR → USR → SR) with two plateaus in the

potential V (ϕ) and in the Hubble function H(t). Warning: USR is not SR !

A large peak means large density perturbations that later gravitationally collapse to PBH !



USR regime

To study the SR and USR regimes, we introduce the Hubble flow functions

ε(t) = − Ḣ

H2
, η(t) = εH − ε̇H

2HεH
.

During the USR regime, the function ε(t) drops to very low values, whereas the
function η(t) goes from nearly zero to (−6) and back.
A standard (numerical) procedure for computing the power spectrum Pζ(k) of
scalar perturbations depending upon scale (co-moving wavenumber) k = 2π/λ

is based on the Mukhanov-Sasaki (MS) equation. The SR approximation in
single-field inflation gives the simple formula Pζ = H2

8π2M2
PlεH

. We found that

the difference between our numerical solutions to the MS equation and those
derived from the SR formula is very small.
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PBH masses

PBH may be formed by gravitational collapse of large density perturbations (Carr,

Hawking, 1974). The masses of PBH can be estimated from given peaks (power

spectrum enhancement) as follows (Pi, Sasaki, 2017):

MPBH ≃
M2

Pl

H(tpeak)
exp

[

2(Ntotal −Npeak) +
∫ ttotal

tpeak
ε(t)H(t)dt

]

that is very sensitive to the value of ∆N = Ntotal − Npeak, while the integral

gives a sub-leading correction. Increasing ∆N leads to decreasing the tilt ns of

CMB, which limits ∆N by 20 from above. On the other hand, ∆N cannot be too

small when MPBH have to exceed the Hawking (black hole) evaporation limit of 
1015 g, which restricts ∆N from below (above 13).

After fine-tuning parameters in our model, we obtained the PBH masses in the
asteroid-size range between 1017 g and 1021 g. Compare M⊙ ≈ 2 · 1033 g.

16

Our model of inflation and PBH production is displayed on the next slide.



  PBH production in the modified Starobinsky model of inflation

We propose the modified Appleby-Battye-Starobinsky (ABS) model (2010) of

F(R) gravity for that purpose, defined by the smooth F -function

F(R) = (1− g1)R+ gEAB ln







cosh
(

R
EAB

− b
)

cosh(b)





+
R2

6M2
− δ

R4

48M6
,

where g1 = −g tanh b, g ≈ 2.25 and b ≈ 2.89, 0 < δ < 4 · 10−6, and

EAB =
R0

2g ln(1 + e2b)
with R0 ≈ 3M2, M ∼ 10−5MPl .

It is consistent with Starobinsky inflation and CMB measurements, has no ghosts

(F ′(R) > 0, F ′′(R) > 0), and the corresponding inflaton potential has two

plateaus, leading to a large peak in the power spectrum. The last term can be

interpreted as a quantum correction.
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Consistency with CMB, and PBH masses

Demanding:

(i) a large enhancement (peak) in the power spectrum by the factor of 107

against the CMB level of 10−9,

(ii) consistency with the latest CMB measurements,

ns = 0.9649 ± 0.0042 (wi
1

th
5

in 1σ) and r < 0.032, and

(iii) PBH masses beyond 10 g,

we found ∆N must be restricted between 17 and 22 e-folds, while the total du-

ration of inflation is between 54 and 66 e-folds.

The possible range of the parameter δ is
1

b
7
etween 1.

2

02 · 10−8 and 8.74 · 10−8.

      The PBH masses found are between 10 g and 10 1 g, i.e. of the asteroid-size

masses.
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Numerical results 

1
8

   Potential and dynamics



Numerical results 

1
8

    Hubble flow parameters and power spectrum



Comparison of our results from  the Mukhanov-Sasaki equation 
 for perturbations and from the slow-roll approximation formula



Energy density of PBH induced GW

The present-day GW density function ΩGW in the 2nd order with respect to 
perturbations is given by (Espinosa, Racco, Riotto, 2018)

ΩGW(k)

Ωr
=

cg

72

∫ 1√
3

− 1√
3

dd
∫ ∞

1√
3

ds





(s2 − 1
3)(d

2 − 1
3)

s2 + d2





2

× Pζ(kx)Pζ(ky)
(

I2c + I2s
)

,

where the constant cg ≈ 0.4 in the SM, and Ωr = 8.6 · 10−5 according to the

present CMB temperature.

The variables (x, y) are related to the integration variables (s, d) as

x =

√
3

2
(s+ d) , y =

√
3

2
(s− d) .
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The functions Ic and Is of x(s, d) and y(s, d) are (Espinosa, Racco, Riotto,

2018)

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s− 1) ,

Is = −36
s2 + d2 − 2

(s2 − d2)2

[

s2 + d2 − 2

s2 − d2
ln

∣

∣

∣

∣

∣

d2 − 1

s2 − 1

∣

∣

∣

∣

∣

+2

]

.

In our models, ΩGW(k) ∼ 10−6PR
2(k). Frequencies of PBH-induced GW are

simply related to PBH masses as (De Luca, Franciolini, Riotto, 2020)

f ≈ 5.7

(

M⊙
MPBH

)1/2

10−9 Hz

that implies ∼ 10−3 Hz in our models, cf. NANOGrav GW frequences of 3 to 400 nHz.



Intermediate Summary of the 1st Part

• The Starobinsky model of inflation in 4D is defined by

SStar.[gµν] = α
∫

d4x
√−gR2 +

M2
Pl

2

∫
d4x

√−gR , α ≡ M2
Pl

12M2
,

with Minf . ∼ 10−5MPl, α ∼ 109, H ∼ 1014 GeV and R ∼ 12H2.
• in good agreement with CMB observables (As, ns, r), and ΛUV ∼MPl.
• is equivalent to quintessence (Einstein frame) with the inflaton potential

V (ϕ) =
3

4
M2

PlM
2
[
1− exp

(
−
√

2
3ϕ/MPl

)]2
• V -flatness during inflation is due to scale invariance of the R2 action,
• EH-term can be generated by radiative corrections a la Coleman-Weinberg,
• it is single-large-field inflation model with inflaton field values φ ∼MPl,



• the higher-order curvature terms (beyond Starobinsky) are in powers of
H2/M2

Pl ∼ 10−8; no control of their coefficients but CMB observations imply
those terms to be sub-leading during inflation,
• via modifying F(R)-function or V (φ), it is possible to generate large

scalar perturbations at lower scales, leading to PBH production with masses
MPBH > 1015 g, while keeping good agreement with CMB,
• the scenario is SR-USR-SR with two plateaus; the mechanism is via a

near-inflection point in V (φ) leading to a large (x107) peak in the power spec-
trum, with the PBH masses in the asteroid-window between 1017 g and 1021 g,
• fine-tuning of some parameters in modified F(R) or V (φ) is necessary.



Modified supergravity

Modified supergravity is the (old-minimal) N = 1 local SUSY extension of the
(R+ αR2) gravity. Manifest SUSY is achieved by using curved superspace. A
generic action is given by a sum of D-type and F-type terms,

S =
∫
d4xd4θE−1N(R, R̄) +

[∫
d4xd2Θ2EF(R) + h.c

]
,

where the covariantly chiral superfield R has the spacetime scalar curvature R
among its field component. See also Dalianis, Farakos, Kehagias, Riotto, Unge
(2015).
The Starobinsky inflation scale H ∼ 1014 GeV (close to the GUT scale) is the
scale where SUSY is expected to play a significant role.
The F-term can be included into the D-term (except a constant). We distinguish
them by collecting the R-symmetry preserving terms in the N -potential, and the
R-symmetry violating terms in the F-potential.

22
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Field content of modified supergravity

• vierbein eaµ, gravitino ψµ, complex scalar X, and real vector bµ,

• form the irreducible (off-shell) supergravity multiplet with linearly realized
SUSY and closed SUSY algebra,

• the fields (X, bµ) are known as the ”auxiliary” fields of the old-minimal
supergravity (in the textbooks),

• but in modified supergravity (the higher-derivative field theory beyond su-
pergravity textbooks) all these ”auxiliary” fields become physical (propagating).

• There are 4 physical scalars in modified supergravity: scalaron ϕ, complex
scalar X and D̂µbµ/M with the nearly equal effective masses of the order M .

23



 Embedding Starobinsky model

Expand the functions N and F in Taylor series and keep only a few leading terms, 
(MPl = 1),

N =
12

M2
RR− ξ

2
(RR)2 , F = α+3βR ,

with real parameters M and ξ, and complex parameters α and β.
• The chiral superfields R and E read

R = X +Θ
(
−1

6σ
mσnψmn − iσmψmX − i

6ψmb
m
)
+

+Θ2
(
− 1

12R− i
6ψ

mσnψmn − 4XX − 1
18bmb

m+ i
6∇mb

m+

+ 1
2ψmψ

mX + 1
12ψmσ

mψnb
n − 1

48ε
abcd(ψaσbψcd+ ψaσbψcd)

)
,

2E = e
[
1 + iΘσmψm+Θ2(6X − ψmσ

mnψn)
]
,

• The standard supergravity is reproduced when N = 0 and F = −3R.
• Starobinsky inflation is realized when α = 0, β = −3, and M equals to

             the scalaron mass, and dynamics of (X,b) is suppressed (ξ>0 is needed).
24
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Effective two-scalar field Lagrangian

In the notation
M4ξ

144
≡ ζ and |X| ≡ M

2
√
6
σ ,

where σ is the radial part of the complex scalar X, after ignoring its angular part 
together with bm = 0 f o r  s i m p l i c i t y , the bosonic part of the 
Lagrangian in our model takes the form

e−1L =
1

2
f(R, σ)− 1

2(1− ζσ2)(∂σ)2 − U ,

where we have the specific functions dictated by modified supergravity,

f(R, σ) =
(
1+ 1

6σ
2 − 11

24ζσ
4
)
R+

1

6M2
(1− ζσ2)R2 ,

U =
1

2
M2σ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
.

25
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(Standard) transfer to Einstein frame in field components

After introducing the auxiliary field χ and rewriting the Lagrangian as

e−1L = 1
2 [fχ(R− χ) + f ]− 1

2(1− ζσ2)(∂σ)2 − U ,

where fχ ≡ ∂f
∂χ and in f ≡ f(χ, σ), R was replaced by χ, varying w.r.t. χ gives

back the initial Lagrangian. On the other hand, after Weyl rescaling,

gmn → f−1
χ gmn , e→ f−2

χ e , efχR → eR− 3
2ef

−2
χ (∂fχ)

2 ,

with

fχ = A+Bχ A ≡ 1+ 1
6σ

2 − 11
24ζσ

4 , B ≡ 1

3M2
(1− ζσ2) ,

in terms of the canonically normalized scalaron ϕ defined by

fχ = exp
[√

2
3ϕ

]
, χ = 1

B


e
√

2
3ϕ − A


 , f =

1

2B


e2

√
2
3ϕ − A2


 , 

the Lagrangian in Einstein frame takes the form

e−1L = 1
2R− 1

2(∂ϕ)
2 − 1

2(1− ζσ2)e
−
√

2
3ϕ(∂σ)2 − V ,

26



whose two-field scalar potential reads

V =
1

4B


1−Ae

−
√

2
3ϕ


2

+ e
−2
√

2
3ϕU =

=
3M2

4(1− ζσ2)


1− e

−
√

2
3ϕ − σ2

6

(
1− 11

4 ζσ
2
)
e
−
√

2
3ϕ


2

+
M2

2
e
−2
√

2
3ϕσ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
.

When σ2 > 1/ζ, the scalar σ becomes a ghost. However, when approaching
σ2 = 1/ζ, the scalar potential becomes singular, so that it would take the infinite
amount of energy to turn σ into a ghost (assuming its starting value in the region
σ2 < 1/ζ).
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Scalar potential in Einstein frame

V =
1

4B
(1− Ax)2+x2U , e

−
√

2
3ϕ ≡ x ,



A = 1+ 1

6σ
2 − 11

24ζσ
4 ,

B = 1
3M2(1− ζσ2) ,

U = M2

2 σ2
(
1− 1

6σ
2 + 3

8ζσ
4
)
.

The scalar potential on the left with ζ = 1/54 ≈ 0.019 and three Minkowski 
minima; on the right with ζ = 0.027, a single Minkowski minimum at σ = 0 and 
two inflection points. In both cases M = 1.
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Two-field scalar Lagrangian

takes the form of a non-linear sigma-model (NLSM) minimally coupled to gravity,

e−1L = 1
2R− 1

2GAB∂φ
A∂φB − V ,

where φA = {ϕ, σ}, A = 1,2, and the NLSM target space metric is given by

GAB =


1 0

0 (1− ζσ2)e
−
√

2
3ϕ




With the FLRW spacetime metric gmn = diag(−1, a2, a2, a2) the EoM read

ϕ̈+3Hϕ̇+
1√
6
(1− ζσ2)e

−
√

2
3ϕσ̇2 + ∂ϕV = 0 ,

σ̈+3Hσ̇ − ζσσ̇2

1− ζσ2
−
√

2
3ϕ̇σ̇+

e

√
2
3ϕ

1− ζσ2
∂σV = 0 ,
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hyperbolic geometry: of negative curvature 

s i m i l a r  t o  h y b r i d  i n f l a t i o n 



Superfield transfer to Einstein matter-coupled supergravity

After introducing the Lagrange multiplier superfield T as (Terada and SVK, 2013)

L =
∫
d2Θ2E

{
−1

8(D2 − 8R)N(S,S) + F(S) + 6T(S−R)
}
+h.c. ,

varying the Lagrangian w.r.t. the T gives back the original Lagrangian. On the 
other hand, the Lagrangian can be rewritten to the form

L =
∫
d2Θ2E

{
3
8(D2 − 8R)

[
T+T− 1

3N(S,S)
]
+ F(S) + 6TS

}
+h.c.

that can be put into the standard form in supergravity,

L =
∫
d2Θ2E

[
3
8(D2 − 8R)e−K/3 +W

]
+h.c. ,

where the Kähler potential K takes the no-scale supergravity form

K = −3 log(T+T− Ñ) , Ñ ≡ SS− 3
2ζ(SS)

2 ,

30

but the modified supergravity origin of K and W becomes hidden.
See also  Ellis, Nanopoulos and Olive (2013);  first observed by Cecotti (1987).

T is inflaton superfield, 
S is goldstino superfield



Production of primordial black holes (PBH) in inflation

One needs large curvature fluctuations (>10^6 of CMB)!

• gravitational instabilities induced by scalar fields,

• bubble collisions from first order phase transitions,

• critical topological defects, such as cosmic strings and domain walls.

PBH formation due to amplification of the power spectrum (large peak) of scalar 
perturbations via tachyonic instabilities of the scalar fields present in modified 
supergravity, during multi-field inflation. This mechanism is different from the 
standard mechanism of PBH formation in single-field models of inflation with 
a near-inflection point in the inflaton scalar potential.
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and collapse of large density fluctuations,

There are many proposals in the literature:

and many more !



Isocurvature pumping mechanism during inflation

• decompose perturbations into adiabatic Qa (along inflationary trajectory)
and isocurvature Qs (orthogonal to inflationary trajectory);

•
••
Qa +3H

•
Qa +ΩQa = f̂(d/dt)(ωQs) ,

••
Qs +3H

•
Qs +m

2
sQs = 0

• When
••
Qs≈ 0, we find the solution Qs ≈ exp

[
− ∫

dt
m2
s

3H2

]
• when the isocurvature mass m2

s < 0 at the critical point, we get the exp-
amplification of Qs;  since Qa are sourced by Qs in EoM, we also get an exp-
amplification of Qa when the inflationary trajectory has a sharp turn [Palma, Syp-

sas, Zenteno (2020); Fumagalli, Renaux-Petel, Ronayne, Witkwoski (2020)];
• after the critical point m2

s > 0 again, the isocurvature modes get sup-
pressed and, hence, no over-amplification (and no PBH overproduction): [Gundhi, 
Steinwachs, Ketov (2021).
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Straightforward generalizations toward PBH

Adding the next-order terms to the modified supergravity potentials yields

N =
12

M2
|R|2 − 72

M4
ζ|R|4 − 768

M6
γ|R|6 ,

F = −3R+
3
√
6

M
δR2 .

The corresponding Lagrangian in Einstein frame reads

e−1L = 1
2R−1

2(∂ϕ)
2−3M2

2 Be
−
√

2
3ϕ(∂σ)2− 1

4B


1− Ae

−
√

2
3ϕ


2

−e−2
√

2
3ϕU ,

where the functions A,B,U are given by

A = 1− δσ+ 1
6σ

2 − 11
24ζσ

4 − 29
54γσ

6 ,

B =
1

3M2
(1− ζσ2 − γσ4) ,

U = M2

2 σ2
(
1+ 1

2δσ − 1
6σ

2 + 3
8ζσ

4 + 25
54γσ

6
)
.
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Aldabergenov, Addazi, Ketov, 2020



The scalar potential of the gamma-model, delta =0
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The solution, trajectory, Hubble function, e-foldings, and slow roll parameters



Power spectrum at ∆N2 = 10 for various values of γ
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Power spectrum at γ = 0.1 (left) and γ = 1 (right) with changing ∆N2
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PBHs masses in the γ-model

The mass of PBH created by late-inflation overdensities was estimated by Pi, 
Zhang, Huang and Sasaki in arXiv:1712.09896:

MPBH � M2
Pl

H(tpeak)
exp

[
2(Nend −Npeak) +

∫ t60
tpeak

ε(t)H(t)dt

]
,

where tpeak is the time when the perturbation corresponding to the power spec-
trum peak (kpeak) exits the horizon, whereas t60 is the time when k60 exits the
horizon (the beginning of observable inflation). By using this equation, we 
estimated the values of MPBH for various values of ∆N2 in our model:

∆N2 10 20 23 26

MPBH, g 108 1016 1019 1021

ns 0.96 0.95 0.945 0.94
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The PBH  density  fraction in the models with γ=1, δ=0, ΔN_2=22.45 (solid 
line), and δ=0.58 , ΔN_2=23.36 (dotted line). In both cases  f_total=1.  
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The density of stochastic gravitational waves induced by the power spectrum 
enhancement in the our supergravity models (solid+dashed+dotted black curves) 
against the expected sensitivity curves of the space-based GW interferometers.
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Minimal No-scale Supergravity I

is obtained by identifying the inflaton superfield T with the goldstino superfield S
(Terada, SVK, 2014). The scalar potential in supergravity reads (MPl = 1)

VSUGRA = eG
[
G,T

(
G,T T̄

)−1
G,T̄ − 3

]

where G = K + ln |W |2. For example, when K = −3 ln(T + T̄ ) and W =

W0T
3, one gets V = 0, while SUSY can be broken along a flat direction.

Spontaneous SUSY breaking occurs when 〈FT 〉 
= 0 with m3/2 =
〈
eG/2

〉
.

Then goldstino is eaten up by gravitino (the well known super-Higgs mechanism).
To realize inflation with V > 0, one can add a stabilizing term as (Pallis, 2023)

K = −p ln
[
T + T̄ + ξ2(T + T̄ − 2v)4

]
with the new parameters (p, ξ, v).
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Minimal No-scale Supergravity II

The superpotential is fixed by demanding no-scale (V = 0) in the absence of
the stabilizing term (ξ = 0). It yields

W =W1 +W2, W1,2 = m1,2T
q1,2, q1,2 =

1

2

(
p±√

3p
)
,

with mass scalesm1,2. Them1 is identified with the inflation scale ∼ 1013 GeV,
and m2 is identified with the dark energy (c.c.) scale ∼ 10−3 eV.
The stabilizing term breaks no-scale, leading to a positive potential, selects the
vacuum with 〈T 〉 = v, and stabilizes the inflationary trajectory along T = T̄ by
giving a mass O(minf) to sinflaton (phase of T ). Good solutions (without branch
cuts) arise for integer powers q1,2. For instance, q1,2 = (3,9) for p = 12.
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Minimal No-scale Supergravity, PBH and MSSM

The remaining parameters can be tuned as ξ ≈ 1.6 and v ≈ 0.25 to get a near-
inflection point in the effective single-field inflaton potential (Pallis, 2023).

Spontaneous high-scale SUSY breaking takes place with m3/2 ∼ 1011 GeV.

The MSSM can be added to the minimal no-scale supergravity at the high scale

by modifying the superpotential and the Kähler potential, W → W + WMSSM

and K → K + KMSSM, where

WMSSM = hαβγΦαΦβΦγ + µHuHd , Φα = (Q, L, dc, uc, ec, Hd, Hu) ,

and KMSSM =
∑

α |Φα|2. The EFT is then obtained by the RGE renormaliz-

ing the parameters (hαβγ, µ) by the factor 〈T 〉−p/2 and leading to soft SUSY

breaking terms after decoupling of supergravity in the limit MPl → ∞, consis-

tently with the observed Higgs mass MH = (125.15± 0.25) GeV.
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High-scale SUSY breaking, MSSM and Higgs mass

HSM = Hu sin β+H
†
d cos β , λSUSY = 1

4

(
g21 + g22

)
cos2 2β ,

mH = (125.15 ± 0.25) GeV , mt = (173.134 ± 0.76) GeV ,

imply via the MSSM 2-loop RGE (Giudice, Strumia, 2014)

m3/2 ≤ O(1012) GeV and tan β ∼ O(1) ,
as well as stability of the EW vacuum. However, SUSY cannot be responsible

for the hierarchy mH/MPl ∼ 10−16, cf. the cosmological constant fine-tuning 
of 10−120.
• Baryogenesis via non-thermal leptogenesis can be activated, cf. Jeong,

Kamada, Starobinsky, Yokoyama (2023) for Starobinsky inflation+supermassive 
RH Majorana neutrinos.
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In the gravity decoupling limit, soft SUSY breaking terms ensure stability.



Conclusion I

• Our approach is motivated by modified gravity and supergravity, leads to
viable inflation, efficient PBH production and induced GW, and can be consis-
tently connected to MSSM and SM.

• The PBH masses are possible in the window from 1017 g to 1021 g, in all
our models. Those PBH may form (the whole or part of) current dark matter.

• The PBH-induced GW may be detectable by the future space-based grav-
itational interferometers (LISA, DECIGO, TianQin, Taiji) with mHz frequency.

• The near-inflection mechanism of PBH production can be employed in the
minimal no-scale supergravity with the stabilizing term and viable single-large-
field inflation.
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This is different from multi-field inflation and PBH: SUSY2023 in UK.



Conclusion II

• Unification of inflation and PBH production with high-scale SUSY break-
ing, MSSM and dark energy (tiny c.c.) is possible in the minimal no-scale super-
gravity in agreement with the known Higgs mass and the (meta)stable EW scale
(λH ≥ 0). There is no Polonyi problem and no overproduction problem but no
SUSY explanation for the scale hierarchy (fine tuning).

• After inflation, inflaton decays into other particles (gravitinos, etc.), while
heavy LSP gravitinos with the mass of O(1011) GeV is also a candidate for dark 
matter (Addazi, Khlopov, SVK, 2017). In our model, Treh ∼ 107 GeV.

• PBH production during inflation in supergravity leads to the significant
constraints on the parameters of high-energy particle physics and strong pre-
dictions: (i) high-scale SUSY breaking, (ii) PBH & gravitino DM, (iii) the MSSM
mixing angle, tanβ ≈ 1, etc.
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Main message to take home

• CMB (Planck) observations ⇒ flat inflaton potential ⇒ R2-inflation

• Starobinsky (R+ αR2) supergravity ⇒ Dark Matter as PBH and LSP

• Universal reheating mechanism via transfer to Einstein frame ⇒
super-heavy fermions (gravitino, sterile neutrinos)

• Renormalization from inflation scale to electro-weak scale ⇒ Minimal
SUSY Standard Model ⇒ massive active neutrinos via seasaw

High-scale SUSY and SUGRA may solve ALL phenomenological problems!
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Thank You for Your Attention!



Conclusion
BLACK HOLES AS LINK BETWEEN MICRO AND MACRO PHYSICS
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[Bernard Carr]

Black Holes as a Link between Micro and Macro Physics
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Figure 2: Left: the Higgs mass as a function of the SUSY scale m̃ , with a degenerate spectrum of

superparticles. We vary the Higgs-stop coupling At in such a way as to obtain minimal Mh (lower

lines) and maximal Mh (upper lines) at fixed tan β = {1, 2, 4, 50}. The bands around the extremal

solid lines are obtained from 1σ variations of α3(MZ ) (thinner band in gray) and Mt (larger band

in color). The green horizontal band indicates the measured Higgs mass. Right: same as in the

left plot, for a split spectrum with gaugino and higgsino masses set to 1 TeV and with At = 0.

From "Higgs Mass and Unnatural Supersymmetry" arXiv:1407.4081 [hep-ph],
by E. Bagnaschi, G. F. Giudice, P. Slavich and A. Strumia (TH CERN), page 19
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Figure 4: Left: Regions in the ( ̃m, tan β) plane that reproduce the observed Higgs mass for High-

Scale SUSY. The black solid line gives the prediction for Xt = 0, mass-degenerate superparticles,

and central values for the SM parameters. The light-blue band shows the effect of superparticle

thresholds by varying the supersymmetric parameters M1, M2, M3, mQi , mUi , mDi , mEi , mLi and 
µ randomly by up to a factor 3 above or below the scale m̃, and At within the range allowed

by vacuum stability. The dark-blue band corresponds to mass-degenerate superparticles, but

includes a 1σ variation in Mt. Right: Same as the left plot for the case of Split SUSY. The

gaugino and higgsino masses are all set to 1 TeV, and At = 0. The dot-dashed curve corresponds

to the EW tuning condition in the case of universal scalar masses at the GUT scale.

From "Higgs Mass and Unnatural Supersymmetry" arXiv:1407.4081 [hep-ph],
by E. Bagnaschi, G. F. Giudice, P. Slavich and A. Strumia (TH CERN), page 17




