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Abstract

This article presents the description of the internal spaces of fermion and boson fields in d-dimensional 
spaces, with the odd and even “basis vectors” which are the superposition of odd and even products of oper-
ators γ a . While the Clifford odd “basis vectors” manifest properties of fermion fields, appearing in families, 
the Clifford even “basis vectors” demonstrate properties of the corresponding gauge fields. In d ≥ (13 + 1)

the corresponding creation operators manifest in d = (3 + 1) the properties of all the observed quarks and 
leptons, with the families included, and of their gauge boson fields, with the scalar fields included, making 
several predictions. The properties of the creation and annihilation operators for fermion and boson fields 
are illustrated on the case d = (5 + 1), when SO(5, 1) demonstrates the symmetry of SU(3) × U(1).
© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The standard model (corrected with the right-handed neutrinos) has been experimentally con-
firmed without raising any severe doubts so far on its assumptions, which, however, remain 
unexplained.
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The standard model assumptions have several explanations in the literature, mostly with sev-
eral new, not explained assumptions. The most popular are the grand unifying theories ([1–5]
and many others).

In a long series of works ([6–9], and the references therein) the author has found, together with 
the collaborators ([10–14,23] and the references therein), the phenomenological success with the 
model named the spin-charge-family theory with the properties:
a. The internal space of fermions are described by the “basis vectors” which are superposition 
of odd products of anti-commuting objects (operators)1 γ a (in the sense {γ a, γ b}+ = 2ηab), 
Sect. 2.1, in d = (13 +1)-dimensional space [13,14]. Correspondingly the “basis vectors” of one 
Lorentz irreducible representation in internal space of fermions, together with their Hermitian 
conjugated partners, anti-commute, fulfilling (on the vacuum state) all the requirements for the 
second quantized fermion fields ([10,14] and references therein).
a.i. The second kind of anti-commuting objects, γ̃ a , Sect. 2.1, equip each irreducible represen-
tation of odd “basis vectors” with the family quantum number [13,10].
a.ii. Creation operators for single fermion states — which are tensor products, ∗T , of a finite 
number of odd “basis vectors” appearing in 2

d
2 −1 families, each family with 2

d
2 −1 members, and 

the (continuously) infinite momentum/coordinate basis applying on the vacuum state [13,14] — 
inherit anti-commutativity of “basis vectors”. Creation operators and their Hermitian conjugated 
partners correspondingly anti-commute.
a.iii. The Hilbert space of second quantized fermion field is represented by the tensor products, 
∗TH

, of all possible numbers of creation operators, from zero to infinity [14], applying on a vac-
uum state.
a.iv. Spins from higher dimensions, d > (3 + 1), described by the eigenvectors of the superposi-
tion of the Cartan subalgebra Sab, Table 4, manifest in d = (3 +1) all the charges of the standard 
model quarks and leptons and antiquarks and antileptons.
b. In a simple starting action, Eq. (1), massless fermions carry only spins and interact with only 
gravity — with the vielbeins and the two kinds of spin connection fields (the gauge fields of mo-
menta, of Sab = i

4 (γ aγ b − γ bγ a) and of S̃ab = 1
4 (γ̃ aγ̃ b − γ̃ bγ̃ a), respectively2). The starting 

action includes only even products of γ a’s and γ̃ a’s ([14] and references therein).
b.i. Gravity — the gauge fields of Sab , ((a, b) = (5, 6, ...., d)), with the space index m =
(0, 1, 2, 3) — manifest as the standard model vector gauge fields [11], with the ordinary gravity 
included ((a, b) = (0, 1, 2, 3)).
b.ii. The scalar gauge fields of S̃ab, and of some of the superposition of Sab, with the space in-
dex s = (7, 8) manifest as the scalar Higgs and Yukawa couplings [9,14,23], determining mass 
matrices (of particular symmetry) and correspondingly the masses of quarks and leptons and of 
the weak boson fields after (some of) the scalar fields with the space index (7, 8) gain constant 
values.
b.iii. The scalar gauge fields of S̃ab and of Sab with the space index s = (9, 10, ..., 14)

and (a, b) = (5, 6, ...., d) offer the explanation for the observed matter/antimatter asymmetry 
[8,9,12,14] in the universe.
c. The theory predicts at low energy two groups with four families. To the lower group of four 
families the so far observed three belong [32–38], and the stable of the upper four families, the 

1 According to Eq. (6) {γ a, γ b}+ = 2ηab are anticommuting unless a = b.
2 If no fermions are present, the two kinds of spin connection fields are uniquely expressible by the vielbeins.
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N.S. Mankoč Borštnik Nuclear Physics B 994 (2023) 116326
fifth family of (heavy) quarks and leptons, offers the explanation for the appearance of dark mat-
ter. Due to the heavy masses of the fifth family quarks, the nuclear interaction among hadrons of 
the fifth family members is very different than the ones so far observed [35,38].
d. The theory offers a new understanding of the second quantized fermion fields, as mentioned 
in a. and it is explained in Refs. [13,14], it also enables a new understanding of the second quan-
tization of boson fields which is the main topics of this article [16,15], both in even dimensional 
spaces.

d.i. The Clifford odd “basis vectors” appear in 2
d
2 −1 families, each family having 2

d
2 −1 mem-

bers. Their Hermitian conjugated partners appear in a separate group, Sect. 2.

d.ii. The Clifford even “basis vectors” appear in two groups, each with 2
d
2 −1 ×2

d
2 −1 members 

with their Hermitian conjugated partners within the same group. One group of the Clifford even 
“basis vectors” transform, when applying algebraically on the Clifford odd “basis vector”, this 
Clifford odd “basis vector” into other members of the same family. The other group of the Clif-
ford even “basis vectors” transform, when being applied algebraically by the Clifford odd “basis 
vector”, this Clifford odd “basis vector” into the same member of another family; in agreement 
with the action, Eq. (1).
d.iii. In odd dimensional spaces, d = (2n + 1), the properties of Clifford odd and Clifford even 
“basis vectors” differ essentially from their properties in even dimensional spaces, resembling 
the ghosts needed to make the contributions of the Feynman diagrams finite [18].

The theory seems very promising to offer a new insight into the second quantization of 
fermion and boson fields and to show the next step beyond the standard model.

The more work is put into the theory, the more phenomena the theory can explain.
Other references used a different approach by trying to make the next step with Clifford alge-

bra to the second quantized fermion, which might also be a boson field [39,40].
Let us present a simple starting action of the spin-charge-family theory ([14] and the refer-

ences therein) for massless fermions and anti-fermions which interact with massless gravitational 
fields only; with vielbeins (the gauge fields of momenta) and the two kinds of spin connection 
fields, the gauge fields of the two kinds of the Lorentz transformations in the internal space of 
fermions, of Sab and S̃ab, in d = 2(2n + 1)-dimensional space

A =
∫

ddx E
1

2
(ψ̄ γ ap0aψ) + h.c. +∫

ddx E (α R + α̃ R̃) ,

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα ,

p0a = f α
ap0α + 1

2E
{pα,Ef α

a}− ,

R = 1

2
{f α[af βb] (ωabα,β − ωcaα ωc

bβ)} + h.c. ,

R̃ = 1 {f α[af βb] (ω̃abα,β − ω̃caα ω̃c
bβ)} + h.c. . (1)
2

3
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Here3 f α[af βb] = f αaf βb − f αbf βa . The vielbeins, f a
α , and the two kinds of the spin con-

nection fields, ωabα (the gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab), manifest in 
d = (3 + 1) as the known vector gauge fields and the scalar gauge fields taking care of masses of 
quarks and leptons and antiquarks and antileptons and of the weak boson fields [11,8,9,12].4

The action, Eq. (1), assumes two kinds of the spin connection gauge fields, due to two kinds 
of the operators: γ a and γ̃ a . Let be pointed out that the description of the internal space of 
bosons with the Clifford even “basis vectors” offers as well two kinds of the Clifford even “basis 
vectors”, as presented in d.ii.

In Sect. 2 the Grassmann and the Clifford algebras are explained, Subsect. 2.1, and creation 
and annihilation operators described as tensor products of the “basis vectors” offering an expla-
nation of the internal spaces of fermion (by the Clifford odd algebra) and boson (by the Clifford 
even algebra) fields and the basis in ordinary space.

In Subsect. 2.2, the “basis vectors” are introduced and their properties presented in even and 
odd-dimensional spaces, Subsects. 2.2.1, Subsect. 2.2.2, respectively.

In Subsect. 2.3, the properties of the Clifford odd and even “basis vectors” are demonstrated 
in the toy model in d = (5 + 1).

In Subsect. 2.4, the properties of the creation and annihilation operators for the second quan-
tized fermion and boson fields in even dimensional spaces are described.

Sect. 3 presents what the reader could learn new from this article.
In App. B, the answers of the spin-charge-family theory to some of the open questions of the 

standard model are discussed.
In App. C, some useful formulas and relations are presented.
In App. D one irreducible representation (one family) of SO(13, 1), group, analysed with 

respect to SO(3, 1), SU(2)I , SU(2)II , SU(3), and U(1), representing “basis vectors” of quarks 
and leptons and antiquarks and antileptons is discussed.

App. A, suggested by the referee, illustrates on the simplest case d = (3 +1) (and d = (1 +1); 
which offers only one “family” of fermions, d = (3 + 1) has two families) the properties of the 
Clifford odd and Clifford even “basis vectors” describing the internal spaces of fermion and 
boson fields, explaining in a pedagogical way in details their construction, manifestation of anti-
commutativity (in the fermion case) and commutativity (in the boson case) of the tensor product 
of the “basis vectors” and the basis in ordinary space-time.

The referee suggested also several footnotes.

3 f α
a are inverted vielbeins to ea

α with the properties ea
αf α

b = δa
b, ea

αf β
a = δ

β
α , E = det(ea

α). Latin indices 
a, b, .., m, n, .., s, t, .. denote a tangent space (a flat index), while Greek indices α, β, .., μ, ν, ..σ, τ, .. denote an Ein-
stein index (a curved index). Letters from the beginning of both the alphabets indicate a general index (a, b, c, .. and 
α, β, γ, ..), from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m, n, .. and μ, ν, ..), indexes 
from the bottom of the alphabets indicate the compactified dimensions (s, t, .. and σ, τ, ..). We assume the signature 
ηab = diag{1, −1, −1, · · · , −1}.

4 Since the multiplication with either γ a ’s or γ̃ a ’s changes the Clifford odd “basis vectors” into the Clifford even 
objects, and even “basis vectors” commute, the action for fermions can not include odd numbers of γ a ’s or γ̃ a ’s, what 
the simple starting action of Eq. (1) does not. In the starting action γ a ’s and γ̃ a ’s appear as γ 0γ ap̂0a or as γ 0γ c Sabωabc

and as γ 0γ c S̃abω̃abc .
4
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2. Creation and annihilation operators for fermions and bosons in even and odd 
dimensional spaces

Refs. [6,10,13,8,14] describe the internal space of fermion fields by the superposition of odd 
products of γ a in even dimensional spaces (d = 2(2n + 1), or d = 4n). In any even dimensional 
space there appear 2

d
2 −1 members of each irreducible representation of Sab, each irreducible 

representation representing one of 2
d
2 −1 families, carrying quantum numbers determined by S̃ab. 

Their Hermitian conjugated partners appear in a separate group (not reachable by either Sab or 
S̃ab). Since the tensor products, ∗T , of these Clifford odd “basis vectors” and basis in ordinary 
momentum or coordinate space, applying on the vacuum state, fulfil the second quantization 
postulates for fermions [19–21], it is obvious that the 2

d
2 −1 × 2

d
2 −1 anti-commuting Clifford 

odd “basis vectors”, together with their Hermitian conjugated partners, transferring their anti-
commutativity to creation and annihilation operators, explain the second quantization postulates 
of Dirac for fermions and their families [13].

There are, however, the same number of the Clifford even “basis vectors”, which obviously 
commute, transferring their commutativity to tensor products, ∗T , of the Clifford even “basis 
vectors” and basis in ordinary momentum or coordinate space.

We shall see in what follows that the Clifford even “basis vectors” appear in two groups, each 
with 2

d
2 −1 × 2

d
2 −1 members. The members of each group have their Hermitian conjugated part-

ners within the same group. As we shall see, one group transforms a particular family member of 
a Clifford odd “basis vector” into other members of the same family, keeping the family quantum 
number unchanged. The second group transforms a particular family member of a Clifford odd 
“basis vector” into the same member of another family [15]. We shall see that the Clifford even 
“basis vectors” of each of the two groups has, in even dimensional spaces, the properties of the 
gauge boson fields of the corresponding Clifford odd “basis vectors”: One group with respect to 
Sab , the other with respect to S̃ab.

The properties of the Clifford odd and the Clifford even “basis vectors” in odd dimensional 
spaces, d = (2n + 1), differ essentially from their properties in even dimensional spaces, as 
we shall review Ref. [18] in Subsect. 2.2.2. Although anti-commuting, the Clifford odd “basis 
vectors” manifest properties of the Clifford even “basis vectors” in even dimensional spaces. And 
the Clifford even “basis vectors”, although commuting, manifest properties of the Clifford odd 
“basis vectors” in even dimensional spaces.

2.1. Grassmann and Clifford algebras

This part is a short overview of several references, cited in Ref. ([14], Subsects. 3.2, 3.3), also 
appearing in Ref. [17,13,18].

The internal spaces of anti-commuting or commuting second quantized fields can be described 
by using either the Grassmann or the Clifford algebras [6,14].

In Grassmann d-dimensional space there are d anti-commuting (operators) θa , and d anti-
commuting operators which are derivatives with respect to θa, ∂

∂θa
,

{θa, θb}+ = 0 , { ∂
,

∂ }+ = 0 ,

∂θa ∂θb

5
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{θa,
∂

∂θb

}+ = δab , (a, b) = (0,1,2,3,5, · · · , d) . (2)

Making a choice [12]

(θa)† = ηaa ∂

∂θa

, leads to (
∂

∂θa

)† = ηaaθa , (3)

with ηab = diag{1, −1, −1, · · · , −1}.
θa and ∂

∂θa
are, up to the sign, Hermitian conjugated to each other. The identity is the self 

adjoint member of the algebra. The choice for the following complex properties of θa

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) , (4)

correspondingly requires { ∂
∂θa

}∗ = ( ∂
∂θ0

, ∂
∂θ1

, − ∂
∂θ2

, ∂
∂θ3

, − ∂
∂θ5

, ∂
∂θ6

, ..., − ∂
∂θd−1

, ∂
∂θd

).

There are 2d superposition of products of θa , the Hermitian conjugated partners of which are 
the corresponding superposition of products of ∂

∂θa
.

There exist two kinds of the Clifford algebra elements (operators), γ a and γ̃ a , expressible 
with θa’s and their conjugate momenta pθa = i ∂

∂θa
[6], Eqs. (2), (3),

γ a = (θa + ∂

∂θa

) , γ̃ a = i (θa − ∂

∂θa

) ,

θa = 1

2
(γ a − iγ̃ a) ,

∂

∂θa

= 1

2
(γ a + iγ̃ a) , (5)

offering together 2 · 2d operators: 2d are superposition of products of γ a and 2d of γ̃ a . It is 
easy to prove if taking into account Eqs. (3), (5), that they form two anti-commuting Clifford 
subalgebras, {γ a, γ̃ b}+ = 0, Refs. ([14] and references therein)

{γ a, γ b}+ = 2ηab = {γ̃ a, γ̃ b}+ ,

{γ a, γ̃ b}+ = 0 , (a, b) = (0,1,2,3,5, · · · , d) ,

(γ a)† = ηaa γ a , (γ̃ a)† = ηaa γ̃ a . (6)

While the Grassmann algebra offers the description of the “anti-commuting integer spin sec-
ond quantized fields” and of the “commuting integer spin second quantized fields” [13,14], the 
Clifford algebras which are superposition of odd products of either γ a’s or γ̃ a’s offer the de-
scription of the second quantized half integer spin fermion fields, which from the point of the 
subgroups of the SO(d − 1, 1) group manifest spins and charges of fermions and antifermions 
in the fundamental representations of the group and subgroups, Table 4.

The superposition of even products of either γ a’s or γ̃ a’s offer the description of the com-
muting second quantized boson fields with integer spins (as we can see in [16,15] and shall see 
in this contribution) which from the point of the subgroups of the SO(d − 1, 1) group manifest 
spins and charges in the adjoint representations of the group and subgroups.

The following postulate, which determines how does γ̃ a operate on γ a , reduces the two Clif-
ford subalgebras, γ a and γ̃ a , to one, to the one described by γ a [10,6,9,12]

{γ̃ aB = (−)B i Bγ a} |ψoc >, (7)

with (−)B = −1, if B is (a function of) odd products of γ a’s, otherwise (−)B = 1 [10], the 
vacuum state |ψoc > is defined in Eq. (15) of Subsect. 2.2.
6
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After the postulate of Eq. (7) it follows:
a. The Clifford subalgebra described by γ̃ a’s looses its meaning for the description of the internal 
space of quantum fields.
b. The “basis vectors” which are superposition of odd or even products of γ a’s obey the postu-
lates for the second quantized fields for fermions or bosons, respectively, Sect. 2.2.
c. It can be proven that the relations presented in Eq. (6) remain valid also after the postulate of 
Eq. (7). The proof is presented in Ref. ([14], App. I, Statement 3a).
d. Each irreducible representation of the Clifford odd “basis vectors” described by γ a’s are 
equipped by the quantum numbers of the Cartan subalgebra members of S̃ab, chosen in Eq. (8), 
as follows

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab = i (θa ∂

∂θb

− θb ∂

∂θa

) . (8)

After the postulate of Eq. (7) no vector space of γ̃ a’s needs to be taken into account for the 
description of the internal space of either fermions or bosons, in agreement with the observed 
properties of fermions and bosons. Also the Grassmann algebra is reduced to only one of the 
Clifford subalgebras. The operator γ̃ a will from now on be used to describe the properties of 
fermion “basis vectors”, determining by S̃ab = i

4 (γ̃ aγ̃ b − γ̃ bγ̃ a) the “family” quantum numbers 
of the irreducible representations of the Lorentz group in internal space of fermions, Sab, and the 
properties of bosons “basis vectors” determined by Sab = Sab + S̃ab . We shall see that while the 
fermion “basis vectors” appear in “families”, the boson “basis vectors” have no “families” and 
manifest properties of the gauge fields of the corresponding fermion fields. In App. A the case of 
d = (3 + 1) is discussed.

γ̃ a’s equip each irreducible representation of the Lorentz group (with the infinitesimal gen-
erators Sab = i

4 {γ a, γ b}−) when applying on the Clifford odd “basis vectors” (which are su-

perposition of odd products of γ a′s ) with the family quantum numbers (determined by S̃ab =
i
4 {γ̃ a, γ̃ b}−).

Correspondingly the Clifford odd “basis vectors” (they are the superposition of odd products 
of γ a’s) form 2

d
2 −1 families, with the quantum number f , each family has 2

d
2 −1 members, m. 

They offer the description of the second quantized fermion fields.
The Clifford even “basis vectors” (they are the superposition of even products of γ a’s) have 

no families, as we shall see in what follows, but they do carry both quantum numbers, f and m, 
offering the description of the second quantized boson fields as the gauge fields of the second 
quantized fermion fields. The generators of the Lorentz transformations in the internal space of 
the Clifford even “basis vectors” are Sab = Sab + S̃ab .

Properties of the Clifford odd and the Clifford even “basis vectors” are discussed in the fol-
lowing subsection.

2.2. “Basis vectors” of fermions and bosons in even and odd dimensional spaces

This subsection is a short overview of similar sections of several articles of the author, like [17,
15,18,13].
7
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After the reduction of the two Clifford subalgebras to only one, Eq. (7), we only need to 
define “basis vectors” for the case that the internal space of second quantized fields is described 
by superposition of odd or even products γ a’s.5

Let us use the technique which makes “basis vectors” products of nilpotents and projectors [6,
10] which are eigenvectors of the (chosen) Cartan subalgebra members, Eq. (8), of the Lorentz 
algebra in the space of γ a’s, either in the case of the Clifford odd or in the case of the Clifford 
even products of γ a’s.

There are in even-dimensional spaces d
2 members of the Cartan subalgebra, Eq. (8). In odd-

dimensional spaces there are d−1
2 members of the Cartan subalgebra.

One finds in even dimensional spaces for any of the d2 Cartan subalgebra member, Sab apply-

ing on a nilpotent 
ab

(k) or on projector 
ab[k]

ab

(k): = 1

2
(γ a + ηaa

ik
γ b) , (

ab

(k))2 = 0 ,

ab[k]: = 1

2
(1 + i

k
γ aγ b) , (

ab[k])2 = ab[k], (9)

the relations

Sab
ab

(k)= k

2

ab

(k) , S̃ab
ab

(k)= k

2

ab

(k) ,

Sab
ab[k]= k

2

ab[k] , S̃ab
ab[k]= −k

2

ab[k] , (10)

with k2 = ηaaηbb ,6 demonstrating that the eigenvalues of Sab on nilpotents and projectors ex-
pressed with γ a differ from the eigenvalues of S̃ab on nilpotents and projectors expressed with 
γ a , so that S̃ab can be used to equip each irreducible representation of Sab with the “family” 
quantum number.7

We define in even d the “basis vectors” as algebraic, ∗A, products of nilpotents and projectors 
so that each product is an eigenvector of all d

2 Cartan subalgebra members, Eq. (8). Fermion 
“basis vectors” are (algebraic, ∗A) products of an odd number of nilpotents; each of them is the 
eigenvector of one of the Cartan subalgebra members, and the rest of the projectors; again is each 
projector the eigenvector of one of the Cartan subalgebra members. The boson “basis vectors” 
are (algebraic, ∗A) products of an even number of nilpotents and the rest of the projectors. (In 
App. A, the reader can find concrete examples.)

It follows that the Clifford odd “basis vectors”, which are the superposition of odd products 
of γ a , must include an odd number of nilpotents, at least one, while the superposition of even
products of γ a , that is Clifford even “basis vectors”, must include an even number of nilpotents 
or only projectors.

5 In Ref. [14], the reader can find in Subsects. (3.2.1 and 3.2.2) definitions for the “basis vectors” for the Grassmann 
and the two Clifford subalgebras, which are products of nilpotents and projectors chosen to be the eigenvectors of the 
corresponding Cartan subalgebra members of the Lorentz algebras presented in Eq. (8).

6 Let us prove one of the relations in Eq. (10): Sab
ab
(k)= i

2 γ aγ b 1
2 (γ a + ηaa

ik
γ b) = 1

22 {−i(γ a)2γ b +i(γ b)2γ a ηaa

ik
} =

1
2

ηaaηbb

k
1
2 {γ a + k2

ηbbik
γ b}. For k2 = ηaaηbb the first relation follows.

7 The reader can find the proof of Eq. (10) also in Ref. [14], App. (I).
8
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We shall see that the Clifford odd “basis vectors” have properties appropriate to describe the 
internal space of the second quantized fermion fields while the Clifford even “basis vectors” have 
properties appropriate to describe the internal space of the second quantized boson fields.

Taking into account Eq. (6) one finds

γ a
ab

(k) = ηaa
ab[−k], γ b

ab

(k)= −ik
ab[−k], γ a

ab[k]= ab

(−k), γ b
ab[k]= −ikηaa

ab

(−k) ,

γ̃ a
ab

(k) = −iηaa
ab[k], γ̃ b

ab

(k)= −k
ab[k], γ̃ a

ab[k]= i
ab

(k), γ̃ b
ab[k]= −kηaa

ab

(k) ,

ab

(k)

†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab[k] ,

ab[k]
†

= ab[k] , (
ab[k])2 = ab[k] , ab[k] ab[−k]= 0 . (11)

More relations are presented in App. C.
The relations in Eq. (11) demonstrate that the properties of “basis vectors” which include 

an odd number of nilpotents, differ essentially from the “basis vectors”, which include an even 
number of nilpotents.

One namely recognizes:

i. Since the Hermitian conjugated partner of a nilpotent 
ab

(k)

†

is ηaa
ab

(−k) and since neither Sab

nor S̃ab nor both can transform odd products of nilpotents to belong to one of the 2
d
2 −1 members 

of one of 2
d
2 −1 irreducible representations (families), the Hermitian conjugated partners of the 

Clifford odd “basis vectors” must belong to a different group of 2
d
2 −1 members of 2

d
2 −1 families.

Since Sac transforms 
ab

(k) ∗A

cd

(k′) into 
ab[−k] ∗A

cd

[−k′], while S̃ac transforms 
ab

(k) ∗A

cd

(k′) into 
ab[k]

∗A

cd

[k′] it is obvious that the Hermitian conjugated partners of the Clifford even “basis vectors” 
must belong to the same group of 2

d
2 −1× 2

d
2 −1 members. Projectors are self-adjoint.

ii. Since odd products of γ a anti-commute with another group of odd products of γ a , the Clifford 
odd “basis vectors” anti-commute, manifesting in a tensor product, ∗T , with the basis in ordinary 
space (together with the corresponding Hermitian conjugated partners) properties of the anti-
commutation relations postulated by Dirac for the second quantized fermion fields.8 The creation 
and annihilation operators, which include the internal space of fermions and bosons described by 
“basis vectors”, the anti-commutativity or commutativity of which determine properties of the 
“basis vectors”, fulfil the postulates of the second quantized fermion and boson fields. Basis of 
ordinary space commute as presented in Eq. (31). App. A discuses the creation and annihilation 
operators.

The Clifford even “basis vectors” correspondingly fulfil, in a tensor product, ∗T , with the 
basis in ordinary space, the commutation relations for the second quantized boson fields.
iii. The Clifford odd “basis vectors” have all the eigenvalues of the Cartan subalgebra members 
equal to either ± 1

2 or to ± i
2 .

The Clifford even “basis vectors” have all the eigenvalues of the Cartan subalgebra members 
Sab = Sab + S̃ab equal to either ±1 and zero or to ±i and zero.

8 So far, we multiply nilpotents and projectors, or products of nilpotents and projectors forming “basis vectors”, among 
themselves. With the tensor product, ∗T , we include the basis in ordinary space.
9
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In odd-dimensional spaces the “basis vectors” can not be products of only nilpotents and 
projections. As we shall see in Subsect. 2.2.2, half of “basis vectors” can be chosen as products 
of nilpotents and projectors, the rest can be obtained from the first half by the application of S0d

on the first half.
We shall demonstrate, shortly overviewing [18], that the second half of the “basis vectors” 

have unusual properties: The Clifford odd “basis vectors” have properties of the Clifford even 
“basis vectors”, the Clifford even “basis vectors have properties of the Clifford odd “basis vec-
tors”.

2.2.1. Clifford odd and even “basis vectors” in even d
Let us define Clifford odd and even “basis vectors” as products of nilpotents and projectors in 

even-dimensional spaces.

a. Clifford odd “basis vectors”

This part overviews several papers with the same topic ([14,18] and references therein).
The Clifford odd “basis vectors” must be products of an odd number of nilpotents, and the rest, 

up to d
2 , of projectors, each nilpotent and each projector must be the “eigenstate” of one of the 

members of the Cartan subalgebra, Eq. (8), correspondingly are the “basis vectors” eigenstates 
of all the members of the Lorentz algebra: Sab’s determine 2

d
2 −1 members of one family, S̃ab’s 

transform each member of one family to the same member of the rest of 2
d
2 −1 families.

Let us call the Clifford odd “basis vectors” b̂m†
f , if it is the mth membership of the family f . 

The Hermitian conjugated partner of b̂m†
f is called b̂m

f (= (b̂
m†
f )†.

Let us start in d = 2(2n + 1) with the “basis vector” b̂1†
1 which is the product of only nilpo-

tents, all the rest members belonging to the f = 1 family follow by the application of S01, S03, 
. . . , S0d , S15, . . . , S1d, S5d . . . , Sd−2d . They are presented on the left-hand side. Their Hermitian 
conjugated partners are presented on the right-hand side. The algebraic product mark ∗A among 
nilpotents and projectors is skipped.

d = 2(2n + 1) ,

b̂
1†
1 = 03

(+i)
12

(+)
56

(+) · · · d−1d

(+) , b̂1
1 = 03

(−i)
12

(−) · · · d−1d

(−) ,

b̂
2†
1 = 03[−i] 12[−] 56

(+) · · · d−1d

(+) , b̂2
1 = 03[−i] 12[−] 56

(−) · · · d−1d

(−) ,

· · · · · ·
b̂

2
d
2 −1†

1 = 03[−i] 12[−] 56
(+) · · · d−3d−2[−] d−1d[−] , b̂

2
d
2 −1†

1 = 03[−i] 12[−] 56
(−)

78[−] · · · d−3d−2[−] d−1d[−] ,

· · · , · · · . (12)

In d = 4n the choice of the starting “basis vector” with maximal number of nilpotents must 
have one projector

d = 4n ,

b̂
1†
1 = 03

(+i)
12

(+) · · · d−1d[+] , b̂1
1 = 03

(−i)
12

(−) · · · d−1d[+]
b̂

2†
1 = 03[−i] 12[−] 56

(+) · · · d−1d[+] , b̂2
1 = 03[−i] 12[−] 56

(−) · · · d−1d[+] ,

· · · , · · · ,
10
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b̂
2

d
2 −1†

1 = 03[−i] 12[−] 56
(+) · · · d−3d−2[−] d−1d[+] , b̂2

d
2 −1

1 = 03[−i] 12[−] 56
(−) · · · d−3d−2[−] d−1d[+] ,

· · · , · · · . (13)

The Hermitian conjugated partners of the Clifford odd “basis vectors” b̂m†
1 , presented in Eq. (13) 

on the right-hand side, follow if all nilpotents 
ab

(k) of b̂m†
1 are transformed into ηaa

ab

(−k).

For either d = 2(2n + 1) or for d = 4n all the 2
d
2 −1 families follow by applying S̃ab’s on all 

the members of the starting family. (Or one can find the starting b̂1†
f for all families f and then 

generate all the members b̂m
f from b̂1†

f by the application of Sab on the starting member.)
It is not difficult to see that all the “basis vectors” within any family, as well as the “basis 

vectors” among families, are orthogonal; that is, their algebraic product is zero. The same is true 
within their Hermitian conjugated partners. Both can be proved by the algebraic multiplication 
using Eqs. (11), (47).

b̂
m†
f ∗A b̂

m‘†
f ‘ = 0 , b̂m

f ∗A b̂m‘
f ‘ = 0 , ∀m,m′, f, f ‘ . (14)

When we choose the vacuum state equal to

|ψoc >=
2

d
2 −1∑

f =1

b̂m
f ∗A

b̂
m†
f |1 >, (15)

for one of members m, which can be anyone of the odd irreducible representations f it follows 
that the Clifford odd “basis vectors” obey the relations

b̂m
f ∗A

|ψoc > = 0. |ψoc >,

b̂
m†
f ∗A

|ψoc > = |ψm
f >,

{b̂m
f , b̂m′

f ‘}∗A+|ψoc > = 0. |ψoc >,

{b̂m†
f , b̂

m′†
f ‘ }∗A+|ψoc > = 0. |ψoc >,

{b̂m
f , b̂

m′†
f ‘ }∗A+|ψoc > = δmm′

δff ‘|ψoc >, (16)

while the normalization < ψoc|b̂m†
f ∗A b̂

m†
f ∗A |ψoc >= 1 is used and the anti-commutation 

relation mean {b̂m†
f , b̂m′†

f ‘ }∗A+ = b̂
m†
f ∗A b̂

m′†
f ‘ + b̂

m′†
f ‘ ∗A b̂

m†
f .

If we write the creation and annihilation operators for fermions as the tensor, ∗T , products 
of “basis vectors” and the basis in ordinary space, the creation and annihilation operators fulfil 
Dirac’s anti-commutation postulates since the “basis vectors” transfer their anti-commutativity to 
creation and annihilation operators; the ordinary basis namely commute as presented in Eqs. (31), 
(32). Describing the internal space of fermions with the Clifford odd “basis vectors”, makes 
creation operators fulfilling the Dirac postulates for the second quantized fermion fields: No pos-
tulates are needed. The creation and annihilation operators for fermions and bosons are discussed 
in App. A, in the part with the title “Creation and annihilation operators”.

It turns out, therefore, that not only the Clifford odd “basis vectors” offer the description of 
the internal space of fermions, they explain the second quantization postulates for fermions as 
well.

Table 1, presented in Subsect. 2.3, illustrates the properties of the Clifford odd “basis vectors” 
on the case of d = (5 + 1).
11
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b. Clifford even “basis vectors”

This part proves that the Clifford even “basis vectors” are in even-dimensional spaces offering 
the description of the internal spaces of boson fields — the gauge fields of the corresponding 
Clifford odd “basis vectors”: It is a new recognition, offering a new understanding of the second 
quantized fermion and boson fields [15].

The Clifford even “basis vectors” must be products of an even number of nilpotents and the 
rest, up to d

2 , of projectors; each nilpotent and each projector is chosen to be the “eigenstate” of 
one of the members of the Cartan subalgebra of the Lorentz algebra, Sab = Sab + S̃ab , Eq. (8). 
Correspondingly the “basis vectors” are the eigenstates of all the members of the Cartan subal-
gebra of the Lorentz algebra.

The Clifford even “basis vectors” appear in two groups, each group has 2
d
2 −1× 2

d
2 −1 mem-

bers. The members of one group can not be reached from the members of another group by either 
Sab’s or S̃ab’s or both.

Sab and S̃ab generate from the starting “basis vector” of each group all the 2
d
2 −1× 2

d
2 −1

members. Each group contains the Hermitian conjugated partner of any member; 2
d
2 −1 members 

of each group are products of only (self adjoint) projectors.
Let us call the Clifford even “basis vectors” iÂm†

f , where i = (I, II ) denotes the two groups 
of Clifford even “basis vectors”, while m and f determine membership of “basis vectors” in any 
of the two groups, I or II .

d = 2(2n + 1)

I Â1†
1 = 03

(+i)
12

(+) · · · d−1d[+] , II Â1†
1 = 03

(−i)
12

(+) · · · d−1d[+] ,

I Â2†
1 = 03[−i] 12[−] 56

(+) · · · d−1d[+] , II Â2†
1 = 03[+i] 12[−] 56

(+) · · · d−1d[+] ,

I Â3†
1 = 03

(+i)
12

(+)
56

(+) · · · d−3d−2[−] d−1d

(−) , II Â3†
1 = 03

(−i)
12

(+)
56

(+) · · · d−3d−2[−] d−1d

(−) ,

. . . . . .

d = 4n

I Â1†
1 = 03

(+i)
12

(+) · · · d−1d

(+) , II Â1†
1 = 03

(−i)
12

(+) · · · d−1d

(+) ,

I Â2†
1 = 03[−i] 12[−i] 56

(+) · · · d−1d

(+) , II Â2†
1 = 03[+i] 12[−i] 56

(+) · · · d−1d

(+) ,

I Â3†
1 = 03

(+i)
12

(+)
56

(+) · · · d−3d−2[−] d−1d[−] , II Â3†
1 = 03

(−i)
12

(+)
56

(+) · · · d−3d−2[−] d−1d[−]
. . . . . . (17)

There are 2
d
2 −1 × 2

d
2 −1 Clifford even “basis vectors” of the kind I Âm†

f and there are 2
d
2 −1

× 2
d
2 −1 Clifford even “basis vectors” of the kind II Âm†

f .
Table 1, presented in Subsect. 2.3, illustrates properties of the Clifford odd and Clifford even 

“basis vectors” on the case of d = (5 + 1). Looking at this case it is easy to evaluate properties 
of either even or odd “basis vectors”. We shall discuss in this subsection the general case by 
carefully inspecting properties of both kinds of “basis vectors”.

The Clifford even “basis vectors” belonging to two different groups are orthogonal due to the 
fact that they differ in the sign of one nilpotent or one projector, or the algebraic product of a 
12
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member of one group with a member of another group gives zero according to the first two lines 

of Eq. (47): 
ab

(k)
ab[k]= 0, 

ab[k] ab

(−k)= 0, 
ab[k] ab[−k]= 0.

I Âm†
f ∗A

II Âm†
f = 0 = II Âm†.f ∗A

I Âm†
f . (18)

The members of each of these two groups have the property

iÂm†
f ∗A

iÂm′†
f ‘ →

{
iÂm†

f ‘ , i = (I, II )

or zero .
(19)

For a chosen (m, f, f ‘) there is only one m′ (out of 2
d
2 −1) which gives nonzero contribution.

Two “basis vectors”, iÂm†
f and iÂm′†

f ′ , the algebraic product, ∗A, of which gives non zero 

contribution, “scatter” into the third one iÂm†
f ‘ , for i = (I, II ).

Let us treat a particular case in d = 2(2n + 1)-dimensional internal space, like:

I Âm†
f

= 03
(+i)

12
(+)

56
(+) · · · d−3d−2

(+)
d−1d[+] ∗A

03[−i] 12[−] 56
(−) · · · d−3d−2

(−)
d−1d[+] → 03

(+i)
12

(+)
56[+] · · · d−3d−2[+] d−1d[+] , 

what follows if the first two lines of Eq. (47) are taken into account. The eigenvalues of the Cartan subal-

gebra members of 
03

(+i)
12

(+)
56

(+) · · · d−3d−2
(+)

d−1d[+] are (i, 1, 1, 1, . . . , 1, 0), of 
03[−i] 12[−] 56

(−) · · · d−3d−2
(−)

d−1d[+]
are (0, 0, −1, −1, . . . , −1, 0), and of 

03
(+i)

12
(+)

56[+] · · · d−3d−2[+] d−1d[+] are (i, 1, 0, 0, . . . , 0, 0). The sum of the 
Cartan subalgebra eigenvalues of the two scattered Clifford even “basis vectors” leads to the eigenvalues 
(i, 1, 0, 0, . . . , 0, 0) of the third Clifford even “basis vector”.

It remains to evaluate the algebraic application, ∗A, of the Clifford even “basis vectors” 
I,II Âm†

f on the Clifford odd “basis vectors” b̂m′†
f ‘ . One finds, taking into account Eq. (47), for 

I Âm†
f

I Âm†
f ∗A b̂

m′†
f ‘ →

{
b̂

m†
f ‘ ,

or zero .
(20)

For each I Âm†
f there are among 2

d
2 −1 × 2

d
2 −1 members of the Clifford odd “basis vectors” 

(describing the internal space of fermion fields) 2
d
2 −1 members, b̂m′†

f ‘ , fulfilling the relation of 

Eq. (20). All the rest (2
d
2 −1 × (2

d
2 −1 − 1)) Clifford odd “basis vectors” give zero contributions. 

Or equivalently, there are 2
d
2 −1 pairs of quantum numbers (f, m′) for which b̂m†

f ‘ �= 0.

Taking into account Eq. (47) one finds

b̂
m†
f ∗A

I Âm′†
f ‘ = 0 , ∀(m,m‘, f, f ‘) . (21)

Let us treat a particular case in d = 2(2n + 1)-dimensional space:

I Âm†
f

(≡ 03
(+i)

12
(+)

56
(+) · · · d−3d−2

(+)
d−1d[+] )∗A b̂

m′†
f ‘ (≡ 03

(−i)
12

(−)
56

(−) · · · d−3d−2
(−)

d−1d
(+) ) → b̂

m†
f ‘ (≡ 03[+i] 12[+] 56[+]

· · · d−3d−2[+] d−1d
(+) . The Sab (meaning S03, S12, S56, . . .Sd−1d ) say for the above case that the boson 

field with the quantum numbers (i, 1, 1, . . . , 1, 0) when “scattering” on the fermion field with the Car-
tan subalgebra quantum numbers (S03, S1,2, S56 . . . Sd−3d−2, Sd−1d ) = (− i

2 , − 1
2 , − 1

2 , . . . , − 1
2 , 12 ), and 

the family quantum numbers (− i , − 1 , − 1 , . . . , − 1 , 1 ) transfers to the fermion field its quantum numbers 
2 2 2 2 2

13
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(i, 1, 1, . . . , 1, 0), transforming fermion family members quantum numbers to ( i
2 , 12 , 12 , . . . , 12 , 12 ), leaving 

family quantum numbers unchanged.

Eqs. (20), (21) demonstrates that I Âm†
f , applying on b̂m′†

f ‘ , transforms the Clifford odd “basis 
vector” into another Clifford odd “basis vector” of the same family, transferring to the Clifford 
odd “basis vector” integer spins, or gives zero.

For “scattering” the Clifford even “basis vectors” II Âm†
f on the Clifford odd “basis vectors” 

b̂
m′†
f ‘ it follows

II Âm†
f ∗A b̂

m′†
f ‘ = 0 , ∀(m,m′, f, f ‘) , (22)

while we get

b̂
m†
f ∗A

II Âm′†
f ‘ →

{
b̂

m†
f “ ,

or zero .
(23)

For each b̂m†
f there are among 2

d
2 −1 × 2

d
2 −1 members of the Clifford even “basis vectors” (de-

scribing the internal space of boson fields), II Âm′†
f ‘ , 2

d
2 −1 members (with appropriate f ‘ and m′) 

fulfilling the relation of Eq. (23) while f “ runs over (1 − 2
d
2 −1).

All the rest (2
d
2 −1 × (2

d
2 −1 − 1)) Clifford even “basis vectors” give zero contributions.

Or equivalently, there are 2
d
2 −1 pairs of quantum numbers (f ′, m′) for which b̂m†

f and II Âm′†
f ‘

give non zero contribution.

Let us treat a particular case in d = 2(2n + 1)-dimensional space:

b̂
m†
f

(≡ 03
(−i)

12
(−)

56
(−) · · · d−3d−2

(−)
d−1d
(+) )∗A

II Âm‘†
f ‘ (≡ 03

(+i)
12

(+)
56

(+) · · · d−3d−2
(+)

d−1d[−] ) → b̂
m†
f ‘′(≡

03[−i] 12[−] 56[−]

· · · d−3d−2[−] d−1d
(+) ) When the fermion field with the Cartan subalgebra family members quantum num-

bers (S03, S12, S56 . . . Sd−3d−2, Sd−1d ) = (− i
2 , − 1

2 , − 1
2 , . . . , − 1

2 , 12 ) and family quantum numbers 
(S̃03, S̃12, S̃56 . . . S̃d−3d−2, S̃d−1d ) (− i

2 , − 1
2 , − 1

2 , . . . , − 1
2 , 12 ) “absorbs” a boson field with the Car-

tan subalgebra quantum numbers Sab (meaning S03, S12, S56, . . .Sd−1d ) equal to (i, 1, 1, . . . , 1, 0), the 
fermion field changes the family quantum numbers (S̃03, S̃12, S̃56 . . . S̃d−3d−2, S̃d−1d ) to ( i

2 , 12 , 12 , . . . ,
1
2 , 12 ), keeping family members quantum numbers unchanged.

Eqs. (22), (23) demonstrate that II Âm′†
f ′ , “absorbed” by b̂m†

f , transforms the Clifford odd 
“basis vector” into the Clifford odd “basis vector” of the same family member and of another 
family, or gives zero.

The Clifford even “basis vectors” offer the description of the internal space of the gauge fields 
of the corresponding fermion fields.

While the Clifford odd “basis vectors”, b̂m†
f , offer the description of the internal space of the 

second quantized anti-commuting fermion fields, appearing in families, the Clifford even “basis 
vectors”, I,II Âm†

f , offer the description of the internal space of the second quantized commuting 

boson fields, having no families and appearing in two groups. One of the two groups, I Âm†
f , 

transferring their integer quantum numbers to the Clifford odd “basis vectors”, b̂m†
f , changes the 

family members quantum numbers leaving the family quantum numbers unchanged. The second 
group, transferring their integer quantum numbers to the Clifford odd “basis vector”, changes the 
family quantum numbers leaving the family members quantum numbers unchanged.
14
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Both groups of Clifford even “basis vectors” manifest as the gauge fields of the corresponding 
fermion fields: One concerning the family members quantum numbers, the other concerning the 
family quantum numbers.

We shall discus properties of the Clifford even and odd “basis vectors” for d = (5 + 1)-
dimensional internal spaces in Subsect. 2.3 in more details.

2.2.2. Clifford odd and even “basis vectors” in d odd
Let us shortly overview properties of the fermion and boson “basis vectors” in odd dimen-

sional spaces, as presented in Ref. [18], Subsect. 2.2.
In even dimensional spaces the Clifford odd “basis vectors” fulfil the postulates for the second 

quantized fermion fields, Eq. (16), and the Clifford even “basis vectors” have the properties of 
the internal spaces of their corresponding gauge fields, Eqs. (19), (20), (23). In odd dimensional 
spaces, the Clifford odd and even “basis vectors” have unusual properties resembling properties 
of the internal spaces of the Faddeev–Popov ghosts, as we described in [18].

In d = (2n + 1)-dimensional cases, n = 1, 2, . . . , half of the “basis vectors”, 2
2n
2 −1 × 2

2n
2 −1, 

can be taken from the 2n-dimensional part of space, presented in Eqs. (12), (13), (17), (19).

The rest of the “basis vectors” in odd dimensional spaces, 2
2n
2 −1 × 2

2n
2 −1, follow if S0 2n+1

is applied on these half of the “basis vectors”. Since S0 2n+1 are Clifford even operators, they do 
not change the oddness or evenness of the “basis vectors”.

For the Clifford odd “basis vectors”, the 2
d−1

2 −1 members appearing in 2
d−1

2 −1 families and 
representing the part which is the same as in even, d = 2n, dimensional space are present on the 
left-hand side of Eq. (24), the part obtained by applying S0 2n+1 on the one of the left-hand side 
is presented on the right hand side. Below the “basis vectors” and their Hermitian conjugated 
partners are presented.

d = 2(2n + 1) + 1

b̂
1†
1 = 03

(+i)
12

(+)
56

(+) · · · d−2d−1
(+) , b̂

1†

2
d−1

2 −1+1
= 03[−i] 12

(+)
56

(+) · · · d−2d−1
(+) γ d ,

· · · · · ·
b̂

2
d−1

2 −1†
1 = 03[−i] 12[−] 56

(+) · · · d−2d−1[−] , b̂
d−1

2 −1†

2
d−1

2 −1+1
= 03

(+i)
12[−] 56

(+) · · · d−2d−1[−] γ d ,

· · · · · · ,

· · · ,

b̂1
1 = 03

(−i)
12

(−)
56

(−) · · · d−2d−1
(−) , b̂1

2
d−1

2 −1+1
= 03[+i] 12

(−)
56

(−) · · · d−2d−1
(−) γ d ,

· · · · · · . (24)

The application of S0d or S̃0d on the left-hand side of the “basis vectors” (and the Hermi-
tian conjugated partners of both) generate the whole set of 2 × 2d−2 members of the Clifford 
odd “basis vectors” and their Hermitian conjugated partners in d = (2n + 1)-dimensional space 
appearing on the left-hand side and the right-hand sides of Eq. (24).

It is not difficult to see that b̂m†

2
d−1

2 −1+k
and b̂m′

2
d−1

2 −1+k′
on the right-hand side of Eq. (24) obtain 

properties of the two groups (they are orthogonal to each other; the algebraic products, ∗A, of a 
member from one group, and any member of another group give zero) with the Hermitian con-
jugated partners within the same group; they have properties of the Clifford even “basis vectors” 
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from the point of view of the Hermiticity property: The operators γ a are up to a constant the 
self-adjoint operators, while S0d transform one nilpotent into a projector.

Sab do not change the Clifford oddness of b̂m†
f , and b̂m

f ; b̂m†
f remain to be Clifford odd objects, 

however, with the properties of boson fields.

Let us find the Clifford even “basis vectors” in odd dimensional space d = 2(2n + 1) + 1.

d = 2(2n + 1) + 1

IA1†
1 = 03

(+i)
12

(+)
56

(+) · · · d−2d−1[+] , IA1†

2
d−1

2 −1+1
= 03[−i] 12

(+)
56

(+) · · · d−2d−1[+] γ d ,

· · · · · ·
IA2

d−1
2 −1†

1 = 03[−i] 12[−] 56[−] · · · d−2d−1[+] , IA2
d−1

2 −1†

2
d−1

2 −1+1
= 03

(+i)
12[−] 56[−] · · · d−2d−1[+] γ d ,

· · · · · · ,

· · · · · ·
IIA1†

1 = 03
(−i)

12
(+)

56
(+) · · · d−2d−1[+] , IIA1†

2
d−1

2 −1+1
= 03[+i] 12

(+)
56

(+) · · · d−2d−1[+] γ d ,

· · · · · · . (25)

The right hand side of Eq. (24), although anti-commuting, is resembling the properties of the 
Clifford even “basis vectors” on the left hand side of Eq. (25), while the right-hand side of 
Eq. (25), although commuting, resembles the properties of the Clifford odd “basis vectors”, from 
the left hand side of Eq. (24): γ a are up to a constant the self adjoint operators, while S0d

transform one nilpotent into a projector (or one projector into a nilpotent). However, Sab do not 
change Clifford evenness of IAm†

f , i = (I, II ).

For illustration let me copy the special case for d = (4 + 1) from Subsect. 3.2.2. of Ref. [18].

d = 4 + 1

Clifford odd

b̂
1†
1 = 03

(+i)
12[+] , b̂

1†
2 = 03[+i] 12

(+) , b̂
1†
3 = 03[−i] 12[+] γ 5 , b̂

1†
4 = 03

(−i)
12

(+) γ 5 ,

b̂
2†
1 = 03[−i] 12

(−) , b̂
2†
2 = 03

(−i)
12[−] , b̂

2†
3 = 03

(+i)
12

(−) γ 5 , b̂
2†
4 = 03[+i] 12[−] γ 5 ,

b̂1
1 = 03

(−i)
12[+] , b̂1

2 = 03[+i] 12
(−) , b̂1

3 = 03[+i] 12[+] γ 5 , b̂1
4 = 03

(−i)
12

(−) γ 5 ,

b̂2
1 = 03[−i] 12

(+) , b̂2
2 = 03

(+i)
12[−] , b̂2

3 = 03
(+i)

12
(+) γ 5 , b̂2

4 = 03[−i] 12[−] γ 5 ,

Clifford even

IA1†
1 = 03[+i] 12[+] , IA1†

2 = 03
(+i)

12
(+) , IA1

3 = 03
(−i)

12[+] γ 5 , IA1
4 = 03[−i] 12

(+) γ 5 ,

IA2†
1 = 03

(−i)
12

(−i) , IA2†
2 = 03[−i] 12[−] , IA2

3 = 03[+i] 12
(−) γ 5 , IA2

4 = 03
(+i)

12[−] γ 5 ,

IIA1†
1 = 03[−i] 12[+] , IIA1†

2 = 03
(−i)

12
(+) , IIA1†

3 = 03
(+i)

12[+] γ 5 , IIA1†
4 = 03[+i] 12

(+) γ 5 ,

IIA2† = 03
(+i)

12
(−) , IIA2† = 03[+i] 12[−] , IIA2† = 03[−i] 12

(−) γ 5 , IIA2† = 03
(−i)

12[−] γ 5 . (26)
1 2 3 4
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It can clearly be seen that the left-hand side of the Clifford odd “basis vectors” and the right-hand side of 
the Clifford even “basis vectors”, although the former are the Clifford odd objects and the latter are Clifford 
even objects, have similar properties [18].

2.3. Example demonstrating properties of Clifford odd and even “basis vectors” for d = (5 + 1)

Subsect. 2.3 demonstrates the properties of the Clifford odd and even “basis vectors” in the 
special case when d = (5 + 1) to clear up the relations of the Clifford odd and even “basis 
vectors” to fermion and boson fields, respectively.

Table 1 presents the 64 (= 2d=6) “eigenvectors” of the Cartan subalgebra members of the 
Lorentz algebra, Sab and Sab, Eq. (8).

The Clifford odd “basis vectors” — they appear in 4 (= 2
d=6

2 −1) families, each family has 4
members — are products of an odd number of nilpotents, either of three or one. They appear 
in the group named odd I b̂

m†
f . Their Hermitian conjugated partners appear in the second group 

named odd II b̂m
f . Within each of these two groups the members are mutually orthogonal (which 

can be checked by using Eq. (47)); b̂m†
f ∗A b̂

m′†
f ‘ = 0 for all (m, m′, f, f ‘). Equivalently, b̂m

f ∗A

b̂m′
f ‘ = 0 for all (m, m′, f, f ‘). The “basis vectors” and their Hermitian conjugated partners are 

normalized as

< ψoc|b̂m
f ∗A b̂

m′†
f ‘ |ψoc >= δmm′

δff ‘ , (27)

since the vacuum state |ψoc >= 1√
2

d=6
2 −1

(
03[−i] 12[−] 56[−] + 

03[−i] 12[+] 56[+] + 
03[+i] 12[−] 56[+] +

03[+i] 12[+] 56[−]) is normalized to one: < ψoc|ψoc >= 1.
The more extended overview of the properties of the Clifford odd “basis vectors” and their 

Hermitian conjugated partners for the case d = (5 + 1) can be found in Ref. [14].

The Clifford even “basis vectors” are products of an even number of nilpotents — of ei-
ther two or none in this case. They are presented in Table 1 in two groups, each with 16 (=
2

d=6
2 −1 × 2

d=6
2 −1) members, as even I Am†

f and even II Am†
f . One can easily check, using 

Eq. (47), that the algebraic product IAm†
f ∗A

IIAm′†
f ‘ = 0 = IIAm†

f ∗A
IAm′†

f ‘ , ∀ (m, m′, f.f ‘), 
Eq. (18). An overview of the Clifford even “basis vectors” and their Hermitian conjugated part-
ners for the case d = (5 + 1) can be found in Ref. [15].

While the Clifford odd “basis vectors” are (chosen to be) left handed, �(5+1) = −1, their 
Hermitian conjugated partners have opposite handedness, Eq. (45) in App. C.9

While the Clifford odd “basis vectors” have half integer eigenvalues of the Cartan subalgebra 
members, Eq. (8), that is of S03, S12, S56 in this particular case of d = (5 + 1), the Clifford 
even “basis vectors” have integer spins, obtained by S03 = S03 + S̃03, S12 = S12 + S̃12, S56 =
S56 + S̃56.

Let us check what does the algebraic application, ∗A, of I Âm=1†
f =4 , for example, presented in 

Table 1 in the first line of the fourth column of even I , do on the Clifford odd “basis vector” 

9 Let us check the handedness of the chosen representation: �5+1b̂
1†
1 (≡ 03

(+i)
12[+] 56[+]) =√

(−1)5i3( 2 )3S03S12S56(
03

(+i)
12[+] 56[+]) = i423

3
i 1 1 (

03
(+i)

12[+] 56[+]) = −1(
03

(+i)
12[+] 56[+])).
i i 2 2 2
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Table 1
2d = 64 “eigenvectors” of the Cartan subalgebra of the Clifford odd and even algebras — the superposition of odd and 
even products of γ a ’s — in d = (5 +1)-dimensional space are presented, divided into four groups. The first group, odd I , 
is chosen to represent “basis vectors”, named b̂m†

f
, appearing in 2

d
2 −1 = 4 “families” (f = 1, 2, 3, 4), each “family” 

with 2
d
2 −1 = 4 “family” members (m = 1, 2, 3, 4). The second group, odd II , contains Hermitian conjugated partners 

of the first group for each family separately, b̂m
f

= (b̂
m†
f

)†. Either odd I or odd II are products of an odd number of 
nilpotents (one or three) and projectors (two or none). The “family” quantum numbers of b̂m†

f
, that is the eigenvalues 

of (S̃03, S̃12, S̃56), are for the first odd I group appearing above each “family”, the quantum numbers of the family 
members (S03, S12, S56) are written in the last three columns. For the Hermitian conjugated partners of odd I, presented 
in the group odd II, the quantum numbers (S03, S12, S56) are presented above each group of the Hermitian conjugated 
partners, the last three columns tell eigenvalues of (S̃03, S̃12, S̃56). The two groups with the even number of γ a ’s, even 
I and even II, each group has their Hermitian conjugated partners within its group, have the quantum numbers f , that 
is the eigenvalues of (S̃03, S̃12, S̃56), written above column of four members, the quantum numbers of the members, 
(S03, S12, S56), are written in the last three columns. To find the quantum numbers of (S03, S12, S56) one has to take 
into account that Sab = Sab + S̃ab .

“basis vectors” m f = 1 f = 2 f = 3 f = 4
(S̃03, S̃12, S̃56) → ( i

2 ,− 1
2 ,− 1

2 ) (− i
2 ,− 1

2 , 1
2 ) (− i

2 , 1
2 ,− 1

2 ) ( i
2 , 1

2 , 1
2 ) S03 S12 S56

odd I b̂
m†
f

1
03

(+i)
12[+] 56[+] 03[+i] 12[+] 56

(+)
03[+i] 12

(+)
56[+] 03

(+i)
12

(+)
56

(+) i
2

1
2

1
2

2 [−i](−)[+] (−i)(−)(+) (−i)[−][+] [−i][−](+) − i
2 − 1

2
1
2

3 [−i][+](−) (−i)[+][−] (−i)(+)(−) [−i](+)[−] − i
2

1
2 − 1

2
4 (+i)(−)(−) [+i](−)[−] [+i][−](−) (+i)[−][−] i

2 − 1
2 − 1

2

(S03, S12, S56) → (− i
2 , 1

2 , 1
2 ) ( i

2 , 1
2 ,− 1

2 ) ( i
2 ,− 1

2 , 1
2 ) (− i

2 ,− 1
2 ,− 1

2 ) S̃03 S̃12 S̃56

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂m
f

1 (−i)[+][+] [+i][+](−) [+i](−)[+] (−i)(−)(−) − i
2 − 1

2 − 1
2

2 [−i](+)[+] (+i)(+)(−) (+i)[−][+] [−i][−](−) i
2

1
2 − 1

2
3 [−i][+](+) (+i)[+][−] (+i)(−)(+) [−i](−)[−] i

2 − 1
2

1
2

4 (−i)(+)(+) [+i](+)[−] [+i][−](+) (−i)[−][−] − i
2

1
2

1
2

(S̃03, S̃12, S̃56) → (− i
2 , 1

2 , 1
2 ) ( i

2 ,− 1
2 , 1

2 ) (− i
2 ,− 1

2 ,− 1
2 ) ( i

2 , 1
2 ,− 1

2 ) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

evenI IAm
f

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2 − 1

2
1
2

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2 − 1

2
4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i

2 − 1
2 − 1

2

(S̃03, S̃12, S̃56) → ( i
2 , 1

2 , 1
2 ) (− i

2 ,− 1
2 , 1

2 ) ( i
2 ,− 1

2 ,− 1
2 ) (− i

2 , 1
2 ,− 1

2 ) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

evenII IIAm
f

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2 − 1

2
1
2

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2 − 1

2
4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i

2 − 1
2 − 1

2

b̂
m=2†
f =2 , presented in odd I as the second member of the second column. (This can easily be 

evaluated by taking into account Eq. (47) for any m.)

I Â1†
4 (≡ 03

(+i)
12

(+)
56[+]) ∗A b̂

2†
2 (≡ 03

(−i)
12

(−)
56

(+)) → b̂
1†
2 (≡ 03[+i] 12[+] 56

(+)) . (28)

The sign → means that the relation is valid up to the constant. The Hermitian conjugated partner 
of I Â1† is I Â2†.
4 3
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Let us check the Cartan subalgebra quantum numbers of this “scattering”: I Â1†
4 has 

(S03, S12, S56) = (i, 1, 0), b̂
2†
2 has (S03, S12, S56) = (− i

2 , − 1
2 , 12 ) and (S̃03, S̃12, S̃56) =

(− i
2 , − 1

2 , 12 ), and b̂1†
2 has (S03, S12, S56) = ( i

2 , 12 , 12 ) and (S̃03, S̃12, S̃56) = (− i
2 , − 1

2 , 12 ). This 
means that Clifford even “basis vector” changes the family members quantum numbers of the 
Clifford odd “basis vector”, leaving the family quantum numbers unchanged.

One can find that the algebraic application, ∗A, of I Â1†
3 (≡ 03[+i] 12[+] 56[+]) on b̂1†

1 leads to the 
same family member of the same family f = 1, namely to b̂1†

1 .
Calculating the eigenvalues of the Cartan subalgebra members, Eq. (8), before and after the 

algebraic multiplication, ∗A, assures us that I Âm†
3 carry the integer eigenvalues of the Cartan 

subalgebra members, namely of Sab = Sab + S̃ab , since they transfer to the Clifford odd “basis 
vector” integer eigenvalues of the Cartan subalgebra members, changing the Clifford odd “basis 
vector” into another Clifford odd “basis vector” of the same family.

We, therefore, confirm that the algebraic application of I Âm†
3 , m = 1, 2, 3, 4, on b̂1†

1 trans-

forms b̂
1†
1 into b̂

m†
1 , m = (1, 2, 3, 4). Similarly we find that the algebraic application of I Âm

4 , 
m = (1, 2, 3, 4) on b̂2†

1 transforms b̂2†
1 into b̂m†

1 , m = (1, 2, 3, 4). The algebraic application of I Âm
2 , 

m = (1, 2, 3, 4) on b̂3†
1 transforms b̂3†

1 into b̂m†
1 , m = (1, 2, 3, 4). And the algebraic application of I Âm

1 , 
m = (1, 2, 3, 4) on b̂4†

1 transforms b̂4†
1 into b̂m†

1 , m = (1, 2, 3, 4).

One easily checks Eq. (21) if taking into account Eq. (47); like: b̂1†
1 ∗A

I Âm
4 = 0, (m = (1, 2, 3, 4)), 

since either (
03

(+i))2 = 0 or 
12[+] ∗A

12[−]= 0 or 
56[+] 56

(−)= 0.

Similarly, one can check Eq. (22) by evaluating, for example, II Âm
4 ∗A b̂

1†
1 , since either 

12
(+) ∗A

12[+]= 0

or 
12[−] 56[+]= 0.

Let us check the validity of Eq. (23) on the case: b̂4†
1 ∗A

II Âm
4 = b̂

4†
3 for m = 1, and zero for 

m = (2, 3, 4), while b̂4†
1 ∗A

II Â1
f = (b̂4†

4 , b̂4†
2 , b̂4†

1 , b̂4†
3 ) for f = (1, 2, 3, 4). All II Âm

f giving non 
zero contributions, keep the family member quantum numbers of the Clifford odd “basis vectors” 
unchanged, changing the family quantum number. All the rest give zero contribution.

The statements of Eq. (20), (21), (22), (23), are, therefore, demonstrated on the case of d =
(5 + 1).

The Cartan subalgebra has in d = (5 + 1)-dimensional space 3 members. To illustrate that the 
Clifford even “basis vectors” have the properties of the gauge fields of the corresponding Clifford 
odd “basis vectors” let us study properties of the SU(3) ×U(1) subgroups of the Clifford odd 
and Clifford even “basis vectors”. We need the relations between Sab and (τ 3, τ 8, τ ‘)

τ 3 := 1

2
(−S1 2 − iS0 3) , τ 8 = 1

2
√

3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −1

3
(−iS0 3 + S1 2 + S5 6) . (29)

The corresponding relations for (τ̃ 3, τ̃ 8, τ̃ ′) can be read from Eq. (29), if replacing Sab by 
S̃ab .

The corresponding relations for superposition of the Cartan subalgebra elements (τ ′, τ 3, τ 8) 
for Sab = Sab + S̃ab follow if in Eq. (29) Sab is replaced by Sab.
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Fig. 1. The representations of the subgroups SU(3) and U(1) of the group SO(5, 1), the properties of which appear in 
Tables (1, 2) for the Clifford odd “basis vectors”, are presented. (τ3, τ8, τ ′) can be calculated if using Eq. (29). On the 
abscissa axis, on the ordinate axis and on the third axis, the eigenvalues of the superposition of the three Cartan subalgebra 
members, (τ3, τ8, τ ′), are presented. One notices one triplet, denoted by © with the values τ ′ = 1

6 , (τ3 = − 1
2 , τ8 =

1
2
√

3
, τ ′ = 1

6 ), (τ3 = 1
2 , τ8 = 1

2
√

3
, τ ′ = 1

6 ), (τ3 = 0, τ8 = − 1√
3
, τ ′ = 1

6 ), respectively, and one singlet denoted by the 

square. (τ3 = 0, τ8 = 0, τ ′ = − 1
2 ). The triplet and the singlet appear in four families, with the family quantum numbers 

presented in the last three columns of Table 2.

In Tables 2, 3 the Clifford odd and even “basis vectors” (b̂m†
f and I Âm

f , respectively) are pre-

sented as products of nilpotents (odd number of nilpotents for b̂m†
f and even number of nilpotents 

for I Âm
f ) and projectors: Like in Table 1. Besides the eigenvalues of the Cartan subalgebra mem-

bers of Eq. (8) also (τ 3, τ 8, τ ‘) are added on both tables. In Table 2 also (τ̃ 3, τ̃ 8, τ̃ ‘) are written. 
In Fig. 1 only one family is presented; all four families have the same (τ 3, τ 8, τ ‘), they only 
distinguish in (τ̃ 3, τ̃ 8, τ̃ ‘).

The corresponding table for the Clifford even “basis vectors” II Âm
f are not presented. II Âm

f

carry, namely, the same quantum numbers (τ 3, τ 8, τ ‘) as I Âm
f . There are only products of nilpo-

tents and projectors which distinguish among I Âm
f and II Âm

f , causing differences in properties 

with respect to the Clifford odd “basis vectors”; II Âm′
f ‘ transform b̂m†

f with a family member 

m of particular family f into b̂m†
f ′′ of the same family member m of another family f ′′. I Âm

f

transform a family member of particular family b̂m′†
f ‘ into another family member m of the same 

family b̂m†
f ‘ . (Let us remind the reader that the SO(5, 1) group and the SU(3), U(1) subgroups 

have the same number of commuting operators, but different number of generators; SO(5, 1) has 
15 generators, SU(3) and U(1) have together 9 generators.)

In the case that the group SO(5, 1) — manifesting as SU(3) × U(1) and representing the 
colour group with quantum numbers (τ 3, τ 8) and the “fermion” group with the quantum number 
τ ′ — is embedded into SO(13, 1) the triplet would represent quarks (and antiquarks), and the 
singlet leptons (and antileptons).

The corresponding gauge fields, presented in Table 3 and Fig. 2, if belonging to the sextet, 
would transform the triplet of quarks among themselves, changing the colour and leaving the 
“fermion” quantum number equal to 1

6 .
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Table 2
The “basis vectors” b̂m†

f
are presented for d = (5 + 1)-dimensional case. Each b̂m†

f
is a product of projectors and 

of an odd number of nilpotents and is the “eigenvector” of all the Cartan subalgebra members, (S03 , S12, S56) and 
(S̃03, S̃12, S̃56), Eq. (8), m counts the members of each family, while f determines the family quantum numbers (the 
eigenvalues of (S̃03, S̃12, S̃56)). This table also presents in the columns (8th, 9th, 10th) the eigenvalues of the three 
commuting operators (τ3, τ8 and τ ′) of the subgroups SU(3) × U(1), Eq. (29), as well as (in the last three columns) the 
corresponding (τ̃3, ̃τ8, ̃τ ′). �(3+1) = iγ 0γ 1γ 2γ 3 is written in the 7th column. �(5+1) = −1 (= −γ 0γ 1γ 2γ 3γ 5γ 6). 
Operators b̂m†

f
and b̂m

f
fulfil the anti-commutation relations of Eq. (16).

f m b̂
m†
f

S03 S12 S56 �3+1 τ3 τ8 τ ′ S̃03 S̃12 S̃56 τ̃3 τ̃8 τ̃ ‘

I 1
03

(+i)
12[+] | 56[+] i

2
1
2

1
2 1 0 0 − 1

2
i
2 − 1

2 − 1
2

1
2

1
2
√

3
1
6

2
03[−i] 12

(−) | 56[+] − i
2 − 1

2
1
2 1 0 − 1√

3
1
6

i
2 − 1

2 − 1
2

1
2

1
2
√

3
1
6

3
03[−i] 12[+] | 56

(−) − i
2

1
2 − 1

2 −1 − 1
2

1
2
√

3
1
6

i
2 − 1

2 − 1
2

1
2

1
2
√

3
1
6

4
03

(+i)
12

(−) | 56
(−) i

2 − 1
2 − 1

2 −1 1
2

1
2
√

3
1
6

i
2 − 1

2 − 1
2

1
2

1
2
√

3
1
6

II 1
03[+i] 12[+] | 56

(+) i
2

1
2

1
2 1 0 0 − 1

2 − i
2 − 1

2
1
2 0 − 1√

3
1
6

2
03

(−i)
12

(−) | 56
(+) − i

2 − 1
2

1
2 1 0 − 1√

3
1
6 − i

2 − 1
2

1
2 0 − 1√

3
1
6

3
03

(−i)
12[+] | 56[−] − i

2
1
2 − 1

2 −1 − 1
2

1
2
√

3
1
6 − i

2 − 1
2

1
2 0 − 1√

3
1
6

4
03[+i] 12

(−) | 56[−] i
2 − 1

2 − 1
2 −1 1

2
1

2
√

3
1
6 − i

2 − 1
2

1
2 0 − 1√

3
1
6

III 1
03[+i] 12

(+) | 56[+] i
2

1
2

1
2 1 0 0 − 1

2 − i
2

1
2 − 1

2 − 1
2

1
2
√

3
1
6

2
03

(−i)
12[−] | 56[+] − i

2 − 1
2

1
2 1 0 − 1√

3
1
6 − i

2
1
2 − 1

2 − 1
2

1
2
√

3
1
6

3
03

(−i)
12

(+) | 56
(−) − i

2
1
2 − 1

2 −1 − 1
2

1
2
√

3
1
6 − i

2
1
2 − 1

2 − 1
2

1
2
√

3
1
6

4
03[+i] 12[−] | 56

(−) i
2 − 1

2 − 1
2 −1 1

2
1

2
√

3
1
6 − i

2
1
2 − 1

2 − 1
2

1
2
√

3
1
6

IV 1
03

(+i)
12

(+) | 56
(+) i

2
1
2

1
2 1 0 0 − 1

2
i
2

1
2

1
2 0 0 − 1

2

2
03[−i] 12[−] | 56

(+) − i
2 − 1

2
1
2 1 0 − 1√

3
1
6

i
2

1
2

1
2 0 0 − 1

2

3
03[−i] 12

(+) | 56[−] − i
2

1
2 − 1

2 −1 − 1
2

1
2
√

3
1
6

i
2

1
2

1
2 0 0 − 1

2

4
03

(+i)
12[−] | 56[−] i

2 − 1
2 − 1

2 −1 1
2

1
2
√

3
1
6

i
2

1
2

1
2 0 0 − 1

2

Table 3 presents the Clifford even “basis vectors” I Âm†
f for d = (5 + 1) with the properties:

i. They are products of an even number of nilpotents, 
ab

(k), with the rest up to d
2 of projec-

tors,
ab[k].

ii. Nilpotents and projectors are eigenvectors of the Cartan subalgebra members Sab = Sab +
S̃ab , Eq. (8), carrying the integer eigenvalues of the Cartan subalgebra members.

iii. They have their Hermitian conjugated partners within the same group of IÂm†
f (with 2

d
2 −1

× 2
d
2 −1 members).

iv. They have properties of the boson gauge fields. When the Clifford even “basis vectors”, 
I Âm†, apply on the Clifford odd “basis vectors” (offering the description of the fermion fields) 
f

21
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Table 3
The Clifford even “basis vectors” I Âm†

f
, each of them is the product of projectors and an even number of nilpotents, 

and each is the eigenvector of all the Cartan subalgebra members, S03, S12, S56, Eq. (8), are presented for d = (5 + 1)-

dimensional case. Indexes m and f determine 2
d
2 −1 × 2

d
2 −1 different members I Âm†

f
. In the third column the “basis 

vectors” I Âm†
f

which are Hermitian conjugated partners to each other (and can therefore annihilate each other) are 
pointed out with the same symbol. For example, with �� are equipped the first member with m = 1 and f = 1 and 
the last member of f = 3 with m = 4. The sign © denotes the Clifford even “basis vectors” which are self-adjoint 
(I Âm†

f
)† = I Âm′†

f ‘ . It is obvious that † has no meaning, since I Âm†
f

are self adjoint or are Hermitian conjugated partner 

to another I Âm′†
f ‘ . This table also represents the eigenvalues of the three commuting operators τ3, τ8 and τ ′ of the 

subgroups SU(3) × U(1).

f m ∗ I Âm†
f

S03 S12 S56 τ3 τ8 τ ′

I 1 ��
03[+i] 12

(+)
56

(+) 0 1 1 − 1
2 − 1

2
√

3
− 2

3

2 � 03
(−i)

12[−] 56
(+) −i 0 1 − 1

2 − 3
2
√

3
0

3 ‡
03

(−i)
12

(+)
56[−] −i 1 0 −1 0 0

4 © 03[+i] 12[−] 56[−] 0 0 0 0 0 0

II 1 • 03
(+i)

12[+] 56
(+) i 0 1 1

2 − 1
2
√

3
− 2

3

2 ⊗ 03[−i] 12
(−)

56
(+) 0 −1 1 1

2 − 3
2
√

3
0

3 © 03[−i] 12[+] 56[−] 0 0 0 0 0 0

4 ‡
03

(+i)
12

(−)
56[−] i −1 0 1 0 0

III 1 © 03[+i] 12[+] 56[+] 0 0 0 0 0 0

2 

 03
(−i)

12
(−)

56[+] −i −1 0 0 − 1√
3

2
3

3 • 03
(−i)

12[+] 56
(−) −i 0 −1 − 1

2
1

2
√

3
2
3

4 ��
03[+i] 12

(−)
56

(−) 0 −1 −1 1
2

1
2
√

3
2
3

IV 1 

 03
(+i)

12
(+)

56[+] i 1 0 0 1√
3

− 2
3

2 © 03[−i] 12[−] 56[+] 0 0 0 0 0 0

3 ⊗ 03[−i] 12
(+)

56
(−) 0 1 −1 − 1

2
3

2
√

3
0

4 � 03
(+i)

12[−] 56
(−) i 0 −1 1

2
3

2
√

3
0

they transform the Clifford odd “basis vectors” into another Clifford odd “basis vectors” of the 
same family, transferring to the Clifford odd “basis vectors” the integer spins with respect to the 
SO(d − 1, 1) group, while with respect to subgroups of the SO(d − 1, 1) group they transfer 
appropriate superposition of the eigenvalues (manifesting the properties of the adjoint represen-
tations of the corresponding subgroups.)

If, for example, I Â1†
3 applies on a singlet b̂1†

1 keeps the internal space of b̂1†
1 unchanged (it can change 

only momentum), while if I Â2† applies on b̂1† transforms it to a member of a triplet, to b̂2†.
3 1 1
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We can see that I Âm†
3 with (m = 2, 3, 4), if applied on the SU(3) singlet b̂1†

4 with (τ ′ =
− 1

2 , τ 3 = 0, τ 8 = 0), transforms it to b̂m(=2,3,4)†
4 , respectively, which are members of the SU(3)

triplet. All these Clifford even “basis vectors” have τ ′ equal to 2
3 , changing correspondingly 

τ ′ = − 1
2 into τ ′ = 1

6 and bringing the needed values of τ 3 and τ 8.

In Table 3 we find (6 + 4) Clifford even “basis vectors” I Âm†
f with τ ′ = 0. Six of them are 

Hermitian conjugated to each other — the Hermitian conjugated partners are denoted by the same 
geometric figure on the third column. Four of them are self-adjoint and correspondingly with 
(τ ′ = 0, τ 3 = 0, τ 8 = 0), denoted in the third column of Table 3 by ©. The rest 6 Clifford even 
“basis vectors” belong to one triplet with τ ′ = 2

3 and (τ 3, τ 8) equal to [(0, − 1√
3
), (− 1

2 , 1
2
√

3
), 

( 1
2 , 1

2
√

3
)] and one antitriplet with τ ′ = − 2

3 and ((τ 3, τ 8) equal to [(− 1
2 , − 1

2
√

3
), ( 1

2 , − 1
2
√

3
), 

(0, 1√
3
)].

Each triplet has Hermitian conjugated partners in anti-triplet and opposite. In Table 3 the 
Hermitian conjugated partners of the triplet and antitriplet are denoted by the same signum: 
(I Â1†

1 , I Â4†
3 ) by ��, (I Â1†

2 , I Â3†
3 ) by •, and (I Â2†

3 , I Â1†
4 ) by 

.

The octet, two triplets and four singlets are presented in Fig. 2.

Fig. 2 represents the 2
d
2 −1 × 2

d
2 −1 members I Âm

f of the Clifford even “basis vectors” for 

the case that d = (5 + 1). The properties of I Âm
f are presented also in Table 3. Manifest-

ing the structure of subgroups SU(3) × U(1) of the group SO(5, 1) they are represented as 
eigenvectors of the superposition of the Cartan subalgebra members (S03, S12, S56), that is with 
τ 3 = 1

2 (−S12 − iS03), τ 8 = 1
2
√

3
(S12 − iS03 − 2S56), and τ ′ = − 1

3 (S12 − iS03 + S56). There 

are four self adjoint Clifford even “basis vectors” with (τ 3 = 0, τ 8 = 0, τ ′ = 0), one sextet of 
three pairs Hermitian conjugated to each other, one triplet and one antitriplet with the members 
of the triplet Hermitian conjugated to the corresponding members of the antitriplet and opposite. 
These 16 members of the Clifford even “basis vectors” I Âm

f are the gauge fields “partners” of the 

Clifford odd “basis vectors” b̂m†
f , presented in Fig. 1 for one of four families, anyone. The reader 

can check that the algebraic application of I Âm
f , belonging to the triplet transforms applying on 

the Clifford odd singlet, denoted in Fig. 1 by a square, this singlet to one of the members of the 
triplet, denoted in Fig. 1 by the circle ©.

Looking at the boson fields I Âm†
f from the point of view of subgroups SU(3) × U(1) of the 

group SO(5 + 1) we recognize in the part of fields forming the octet the colour gauge fields of 
quarks and leptons and antiquarks and antileptons. The Clifford even “basis vectors” I Âm†

f trans-

form when applying on the Clifford odd “basis vectors” b̂m′†
f ′ to another (or the same) member, 

keeping the family member unchanged.
We can check that although II Âm†

f have different structure of an even number of nilpotents, 

and the rest of the projectors than I Âm†
f , having correspondingly different properties with respect 

to the Clifford odd “basis vectors”: I Âm†
f transform b̂m′†

f ‘ among the family members, keeping 

the family quantum numbers unchanged, II Âm†
f transform b̂m†

f into the same member of another 

family, keeping the family member’s quantum number unchanged, both, I Âm†
f and II Âm†

f do 

have the equivalent figure and equivalent Sab and correspondingly also (τ 3, τ 8, τ ′) content.
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Fig. 2. The Clifford even “basis vectors” I Âm†
f

in the case that d = (5 + 1) are presented concerning the eigenvalues 
of the commuting operators of the subgroups SU(3) and U(1) of the group SO(5, 1), Eq. (29): (τ3, τ8, τ ′). Their 
properties appear in Table 3. The abscissa axis carries the eigenvalues of τ3, the ordinate axis carries the eigenvalues 
of τ8 and the third axis carries the eigenvalues of τ ′ . One notices four singlets with (τ3 = 0, τ8 = 0, τ ′ = 0), denoted 
by ©, representing four self adjoint Clifford even “basis vectors” I Âm†

f
, with (f = 1, m = 4), (f = 2, m = 3), (f =

3, m = 1), (f = 4, m = 2), one sextet of three pairs, Hermitian conjugated to each other, with τ ′ = 0, denoted by �
(I Â2†

1 with (τ ′ = 0, τ3 = − 1
2 , τ8 = − 3

2
√

3
) and I Â4†

4 with (τ ′ = 0, τ3 = 1
2 , τ8 = 3

2
√

3
)), by ‡ (I Â3†

1 with (τ ′ =
0, τ3 = −1, τ8 = 0) and I Â4†

2 with τ ′ = 0, τ3 = 1, τ8 = 0)), and by ⊗ (I Â2†
2 with (τ ′ = 0, τ3 = 1

2 , τ8 = − 3
2
√

3
) and 

I Â3†
4 with (τ ′ = 0, τ3 = − 1

2 , τ8 = 3
2
√

3
)), and one triplet, denoted by �� (I Â4†

3 with (τ ′ = 2
3 , τ3 = 1

2 , τ8 = 1
2
√

3
)), by 

• (I Â3†
3 with (τ ′ = 2

3 , τ3 = − 1
2 , τ8 = 1

2
√

3
)), and by 

 (I Â2†

3 with (τ ′ = 2
3 , τ3 = 0, τ8 = − 1√

3
)), as well as one 

antitriplet, Hermitian conjugated to triplet, denoted by �� (I Â1†
1 with (τ ′ = − 2

3 , τ3 = − 1
2 , τ8 = − 1

2
√

3
)), by • (I Â1†

2

with (τ ′ = − 2
3 , τ3 = 1

2 , τ8 = − 1
2
√

3
)), and by 

 (I Â4†

1 with (τ ′ = − 2
3 , τ3 = 0, τ8 = 1√

3
)).

Let us anyhow demonstrate properties of “scattering” of b̂m†
f on II Âm′†

f ‘ , paying attention on 
SU(3) and U(1) substructure of SO(5, 1).

Let us look at the “scattering” of the kind of Eq. (28)

b̂
2†
2 (≡ 03

(−i)
12

(−)
56

(+)) ∗A
II Â3†

1 (≡ 03
(+i)

12
(+)

56[−]) → b̂
2†
4 (≡ 03[−i] 12[−] 56

(+)) , (30)

b̂
2†
2 (≡ 03

(−i)
12

(−)
56

(+)) has (τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6 ) and (τ̃ 3 = 0, τ̃ 8 = − 1√
3
, τ̃ ′ = 1

6 ).

b̂
2†
4 (≡ 03[−i] 12[−] 56

(+)) has (τ 3 = 0, τ 8 = − 1√
3
, τ ′ = 1

6 ) and (τ̃ 3 = 0, τ̃ 8 = 0, τ̃ ′ = − 1
2 ).

II Â1†
(≡ 03

(+i)
12

(+)
56[−]) has (τ 3 = 0, τ 8 = 1√ , τ ′ = − 2 ).
4 3 3
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If b̂
2†
2 absorbs II Â3†

4 (≡ 03[+i] 12
(+)

56
(−)) with (τ 3 = − 1

2 , τ 8 = 3
2
√

3
, τ ′ = 0) becomes

b̂
2†
3 (≡ 03

(−i)
12[−] 56[+]) with quantum numbers (τ 3 = 0, τ 8 = − 1√

3
, τ ′ = 1

6 ) and (τ̃ 3 = − 1
2 , τ̃ 8 =

1
2
√

3
, τ̃ ′ = 1

6 ).
II Â3†

4 transfers its quantum numbers to b̂2†
2 , changing family and leaving the family member 

m unchanged.

2.4. Second quantized fermion and boson fields with internal spaces described by Clifford 
“basis vectors” in even dimensional spaces

We learned in the previous Subsects. (2.2, 2.3) that in even dimensional spaces (d = 2(2n +1)

or d = 4n) the Clifford odd and the Clifford even “basis vectors”, which are the superposition of 
the Clifford odd and the Clifford even products of γ a’s, respectively, offer the description of the 
internal spaces of fermion and boson fields.

The Clifford odd algebra offers 2
d
2 −1 “basis vectors” b̂m†

f , appearing in 2
d
2 −1 families (with 

the family quantum numbers determined by S̃ab = i
2 {γ̃ a, γ̃ b}−), which, together with their 

2
d
2 −1× 2

d
2 −1 Hermitian conjugated partners b̂m

f fulfil the postulates for the second quantized 
fermion fields, Eq. (16) in this paper, Eq. (26) in Ref. [14], explaining the second quantization 
postulate of Dirac.

The Clifford even algebra offers 2
d
2 −1× 2

d
2 −1 “basis vectors” of I Âm†

f , and the same number 

of II Âm†
f , with the properties of the second quantized boson fields manifesting as the gauge 

fields of fermion fields described by the Clifford odd “basis vectors” b̂m†
f . The commutation 

relations of iÂm†
f , i = (I, II ), are commented in the last paragraph of App. A on a simple case 

of d = (3 + 1). The subgroup structure of SU(3) can be recognized on Fig. 2, leading to the 
commutation relations of the observed colour boson gauge fields. However, further studies are 
needed to recognize what new this way of describing internal spaces of fermion and boson fields 
with the Clifford algebra is offering.

The Clifford odd and the Clifford even “basis vectors” are chosen to be products of nilpotents, 
ab

(k) (with the odd number of nilpotents if describing fermions and the even number of nilpotents if 

describing bosons), and projectors, 
ab[k]. Nilpotents and projectors are (chosen to be) eigenvectors 

of the Cartan subalgebra members of the Lorentz algebra in the internal space of Sab for the 
Clifford odd “basis vectors” and of Sab(= Sab + S̃ab) for the Clifford even “basis vectors”.

To define the creation operators, for fermions or bosons, besides the “basis vectors” defining 
the internal space of fermions and bosons, the basis in ordinary space in momentum or coordinate 
representation is needed. Here Ref. [14], Subsect. 3.3 and App. J is overviewed.

Let us introduce the momentum part of the single-particle states. (The extended version is 
presented in Ref. [14] in Subsect. 3.3 and App. J.)

| �p > = b̂
†
�p |0p >, < �p | =< 0p | b̂ �p ,

< �p | �p′ > = δ( �p − �p′) =< 0p |b̂ �p b̂
†
�p′ |0p >,

pointing out
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< 0p |b̂ �p′ b̂
†
�p |0p > = δ( �p′ − �p) , (31)

with the normalization < 0p | 0p >= 1. While the quantized operators �̂p and �̂x commute 
{p̂i , p̂j }− = 0 and {x̂k , x̂l}− = 0, it follows for {p̂i , x̂j }− = iηij . One correspondingly finds

< �p | �x > = < 0 �p | b̂ �p b̂
†
�x |0�x >= (< 0�x | b̂�x b̂

†
�p |0 �p >)†

< 0 �p |{b̂†
�p , b̂

†
�p ′ }−|0 �p > = 0 , < 0 �p |{b̂ �p, b̂ �p ′ }−|0 �p >= 0 , < 0 �p |{b̂ �p, b̂

†
�p ′ }−|0 �p >= 0,

< 0�x |{b̂†
�x, b̂

†
�x ′ }−|0�x > = 0 , < 0�x |{b̂�x, b̂�x ′ }−|0�x >= 0 , < 0�x |{b̂�x, b̂

†
�x ′ }−|0�x >= 0 ,

< 0 �p |{b̂ �p, b̂
†
�x}−|0�x > = ei �p·�x 1√

(2π)d−1
, < 0�x |{b̂�x, b̂

†
�p}−|0 �p >= e−i �p·�x 1√

(2π)d−1
.

(32)

The internal space of either fermion or boson fields has the finite number of “basis vectors”, 
2

d
2 −1 × 2

d
2 −1 for fermions (and the same number of their Hermitian conjugated partners), and 

twice 2
d
2 −1 × 2

d
2 −1 for bosons, the momentum basis is continuously infinite.

The creation operators for either fermions or bosons must be tensor products, ∗T , of both 
contributions, the “basis vectors” describing the internal space of fermions or bosons and the 
basis in ordinary momentum or coordinate space.

The creation operators for a free massless fermion of the energy p0 = | �p|, belonging to a 
family f and to a superposition of family members m applying on the vacuum state |ψoc >

∗T |0 �p > can be written as ([14], Subsect. 3.3.2, and the references therein)

b̂s†
f ( �p) =

∑
m

csm
f ( �p) b̂

†
�p ∗T b̂

m†
f , (33)

where the vacuum state for fermions |ψoc > ∗T |0 �p > includes both spaces, the internal part, 
Eq. (15), and the momentum part, Eq. (31) (in a tensor product for a starting single particle state 
with zero momentum, from which one obtains the other single fermion states of the same “basis 
vector” by the operator b̂†

�p which pushes the momentum by an amount �p10).
The creation operators and annihilation operators for fermion fields fulfil the anti-commutation 

relations for the second quantized fermion fields11.12

10 The creation operators and their Hermitian conjugated annihilation operators in the coordinate representation can be 
read in [14] and the references therein: b̂s†

f
(�x, x0) = ∑

m b̂
m†
f

∗T

∫ +∞
−∞

dd−1p

(
√

2π)d−1 csm
f ( �p) b̂†

�p e−i(p0x0−ε �p·�x) ([14], 
subsect. 3.3.2., Eqs. (55,57,64) and the references therein).
11 Let us evaluate: < 0 �p |{b̂s′

f ‘(
�p′) , b̂s†

f
( �p)}+ |ψoc > |0 �p >= δss′δff ′ δ( �p′ − �p) · |ψoc >= < 0 �p |b̂s′

f ‘ b̂s†
f

b̂ �p′ b̂†
�p +

b̂
†
�pb̂ �p′ b̂s†

f
b̂s′
f ‘ |ψoc > |0 �p >= < 0 �p |b̂s′

f ‘ b̂s†
f

b̂ �p′ b̂†
�p |ψoc > |0 �p >, since, according to Eq. (16), b̂s′

f ‘ |ψoc >= 0.

Let us demonstrate for free fields | �p >= e−i �p·�x |0p >= b̂
†
�p |0p >, < �p| =< 0p |ei �p·�x =< 0p | ̂b �p

< �p′| �p >=< 0p | ̂b �p′ b̂
†
�p |0p >= δ( �p′ − �p), < �−p′| �−p >=< 0p | ̂b†

�p′ b̂ �p |0p >= δ( �−p′ − ( �−p)) = δ( �p − �p′), conse-

quently < 0p |{ ̂b �p , ̂b†
�p′ }− |0p >= 0.

12 Two fermion states (formed from two creation operators applying on the vacuum state) with the orthogonal basis part 
in ordinary space (with two different momenta in ordinary space in the case of free fields) “do not meet”; correspondingly, 
each can carry the same “basis vector”. They must differ in the internal basis if they have the identical ordinary part of 
the basis. (Otherwise, the tensor product, ∗TH

, of such two fermion states is zero.) Illustration: Let us treat an atom with 
many electrons. Each electron has a spin of either 1/2 or −1/2. Their orthogonal basis in ordinary space allows them 
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< 0 �p |{b̂s′
f ‘(

�p′) , b̂s†
f ( �p)}+ |ψoc > |0 �p > = δss′

δff ′ δ( �p′ − �p) · |ψoc >,

{b̂s′
f ‘(

�p′) , b̂s
f ( �p)}+ |ψoc > |0 �p > = 0 · |ψoc > |0 �p >,

{b̂s′†
f ′ ( �p′) , b̂s†

f ( �p)}+ |ψoc > |0 �p > = 0 · |ψoc > |0 �p >,

b̂s†
f ( �p) |ψoc > |0 �p > = |ψs

f ( �p) >,

b̂s
f ( �p) |ψoc > |0 �p > = 0 · |ψoc > |0 �p >,

|p0| = | �p| . (34)

The creation operators b̂s†
f ( �p) and their Hermitian conjugated partners annihilation operators 

b̂s
f ( �p), creating and annihilating the single fermion states, respectively, fulfil when applying 

the vacuum state, |ψoc > ∗T |0 �p >, the anti-commutation relations for the second quantized 
fermions, postulated by Dirac (Ref. [14], Subsect. 3.3.1, Sect. 5).13

To write the creation operators for boson fields, we must take into account that boson gauge 
fields have the space index α, describing the α component of the boson field in the ordinary 
space.14 We, therefore, add the space index α as follows.

iÂm†
fα ( �p) = b̂

†
�p ∗T

iCm
f α

iÂm†
f , i = (I, II ) . (35)

We treat free massless bosons of momentum �p and energy p0 = | �p| and of particular “basis 
vectors” iÂm†

f ’s which are eigenvectors of all the Cartan subalgebra members,15 iCm
f α carry 

the space index α of the boson field. Creation operators operate on the vacuum state |ψocev >

∗T |0 �p > with the internal space part just a constant, |ψocev >= | 1 >, and for a starting single 
boson state with zero momentum from which one obtains the other single boson states with the 
same “basis vector” by the operators b̂†

�p which push the momentum by an amount �p, making 

also iCm
f α depending on �p.

For the creation operators for boson fields in a coordinate representation one finds using 
Eqs. (31), (32)

iÂm†
fα (�x, x0) =

+∞∫
−∞

dd−1p

(
√

2π)d−1
iÂm†

f α( �p)e−i(p0x0−ε �p·�x)|p0=| �p| , i = (I, II ) . (36)

to have the internal spin ±1/2 (leading to total angular momentum either ±1/2 or larger due to the angular momentum 
in ordinary space). As mentioned in the introduction section in a.iii. the Hilbert space of the second quantized fermion 
states is represented by the tensor products, ∗TH

, of all possible members of creation operators from zero to infinity 
applying on the simple vacuum state. For any of these members the scalar product is obtained by multiplying from the 
left hand side by their Hermitian conjugated partner.
13 The anti-commutation relations of Eq. (34) are valid also if we replace the vacuum state, |ψoc > |0 �p >, by the Hilbert 
space of the Clifford fermions generated by the tensor products multiplication, ∗TH

, of any number of the Clifford odd 
fermion states of all possible internal quantum numbers and all possible momenta (that is, of any number of b̂s †

f
( �p) of 

any (s, f, �p)), Ref. ([14], Sect. 5.).
14 In the spin-charge-family theory the Higgs’s scalars origin in the boson gauge fields with the vector index (7, 8), 
Ref. ([14], Sect. 7.4.1, and the references therein).
15 In the general case, the energy eigenstates of bosons are in a superposition of iÂm†

f , for either i = I or i = II . One 
example, which uses the superposition of the Cartan subalgebra eigenstates manifesting the SU(3) × U(1) subgroups of 
the group SO(5, 1), is presented in Fig. 2.
27
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To understand what new the Clifford algebra description of the internal space of fermion and 
boson fields, Eqs. (35), (36), (33), bring to our understanding of the second quantized fermion 
and boson fields and what new can we learn from this offer, we need to relate 

∑
ab cabωabα

and 
∑

mf
I Âm†

f
ICm

f α , recognizing that I Âm†
f

ICm
f α are eigenstates of the Cartan subalge-

bra members, while ωabα are not. And, equivalently, we need to relate 
∑

ab c̃abω̃abα and ∑
mf

II Âm†
f

IICm
f α .

The gravity fields, the vielbeins and the two kinds of spin connection fields, f a
α , ωabα , 

ω̃abα , respectively, are in the spin-charge-family theory (unifying spins, charges and families of 
fermions and offering not only the explanation for all the assumptions of the standard model
but also for the increasing number of phenomena observed so far) the only boson fields in 
d = (13 + 1), observed in d = (3 + 1) besides as gravity also as all the other boson fields with 
the Higgs’s scalars included [11].

We, therefore, need to relate:

{1

2

∑
ab

Sab ωabα}
∑
m

βmf b̂m†
f ( �p) related to {

∑
m′f ′

I Âm′†
f ′ Cm′f ′

α }
∑
m

βmf b̂m†
f ( �p) ,

∀f and∀βmf ,

Scd
∑
ab

(cab
mf ωabα) related to Scd (I Âm†

f Cmf
α ) ,

∀ (m,f ),

∀ Cartan subalgebra memberScd . (37)

Let be repeated that I Âm†
f are chosen to be the eigenvectors of the Cartan subalgebra members, 

Eq. (8). Correspondingly we can relate a particular I Âm†
f

ICm
f α with such a superposition of 

ωabα’s, which is the eigenvector with the same values of the Cartan subalgebra members as there 
is a particular I Âm†

f Cmf
α . We can do this in two ways:

i. Using the first relation in Eq. (37). On the left hand side of this relation Sab’s apply on b̂m†
f

part of b̂m†
f ( �p). On the right hand side I Âm†

f apply as well on the same “basis vector” b̂m†
f .

ii. Using the second relation, in which Scd apply on the left hand side on ωabα’s,

Scd
∑
ab

cab
mf ωabα =

∑
ab

cab
mf i (ωcbαηad − ωdbαηac + ωacαηbd − ωadαηbc), (38)

on each ωabα separately; cab
mf are constants to be determined from the second relation, where 

on the right-hand side of this relation Scd(= Scd + S̃cd) apply on the “basis vector” I Âm†
f of the 

corresponding gauge field.16

We must treat equivalently also II Âm†
f

IICm
f α and ω̃abα .

Let us conclude this section by pointing out that either the Clifford odd “basis vectors”, b̂m†
f , 

or the Clifford even “basis vectors”, iÂm†
f , i = (I, II ), have each in any even d , 2

d
2 −1 × 2

d
2 −1

members, while ωabα as well as ω̃abα have each for a particular α d
2 (d −1) members. It is needed 

16 The reader can find the relation of Eq. (37) demonstrated for the case d = 3 + 1 in Ref. [15] at the end of Sect. 3.
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to find out what new this difference brings into the unifying theories of the Kaluza-Klein-like 
kind to what the spin-charge-family belongs.

3. Conclusions

In the spin-charge-family theory [6,8,11,9,22,12,14] the Clifford odd algebra describes the 
internal space of fermion fields. The Clifford odd “basis vectors” — the superposition of odd 
products of γ a’s — in a tensor product with the basis in ordinary space form the creation and 
annihilation operators, in which the anti-commutativity of the “basis vectors” is transferred to the 
creation and annihilation operators for fermions, explaining the second quantization postulates 
for fermion fields.

The Clifford odd “basis vectors” have all the properties of fermions: Half integer spins con-
cerning the Cartan subalgebra members of the Lorentz algebra in the internal space of fermions 
in even dimensional spaces (d = 2(2n + 1) or d = 4n), as discussed in Subsects. (2.2, 2.4) (and 
in App. A in a pedagogical way). With respect to the subgroups of the SO(d − 1, 1) group the 
Clifford odd “basis vectors” appear in the fundamental representations, as illustrated in Sub-
sects. 2.3.

In this article, it is demonstrated that Clifford even algebra is offering the description of the 
internal space of boson fields. The Clifford even “basis vectors” — the superposition of even 
products of γ a’s — in a tensor product with the basis in ordinary space form the creation and 
annihilation operators which manifest the commuting properties of the second quantized boson 
fields, offering the explanation for the second quantization postulates for boson fields [16,15]. 
The Clifford even “basis vectors” have all the properties of boson fields: Integer spins for the 
Cartan subalgebra members of the Lorentz algebra in the internal space of bosons, as discussed 
in Subsects. 2.2.

With respect to the subgroups of the SO(d − 1, 1) group the Clifford even “basis vectors” 
manifest the adjoint representations, as illustrated in Subsect. 2.3.

There are two kinds of anti-commuting algebras [6]: The Grassmann algebra, offering in d-dimensional 
space 2 . 2d operators (2d θa ’s and 2d ∂

∂θa
’s, Hermitian conjugated to each other, Eq. (3)), and the two 

Clifford subalgebras, each with 2d operators named γ a ’s and γ̃ a ’s, respectively, [6,10], Eqs. (2)-(6).
The operators in each of the two Clifford subalgebras appear in even-dimensional spaces in two groups 

of 2
d
2 −1× 2

d
2 −1 of the Clifford odd operators (the odd products of either γ a ’s in one subalgebra or of γ̃ a ’s 

in the other subalgebra), which are Hermitian conjugated to each other: In each Clifford odd group of any 
of the two subalgebras, there appear 2

d
2 −1 irreducible representation each with the 2

d
2 −1 members and the 

group of their Hermitian conjugated partners.
There are as well the Clifford even operators (the even products of either γ a ’s in one subalgebra or of 

γ̃ a ’s in another subalgebra) which again appear in two groups of 2
d
2 −1× 2

d
2 −1 members each. In the case 

of the Clifford even objects, the members of each group of 2
d
2 −1× 2

d
2 −1 members have the Hermitian 

conjugated partners within the same group, Subsect. 2.2, Table 1.
The Grassmann algebra operators are expressible with the operators of the two Clifford subalgebras 

and opposite, Eq. (5). The two Clifford sub-algebras are independent of each other, Eq. (6), forming two 
independent spaces.

Either the Grassmann algebra [12] or the two Clifford subalgebras can be used to describe the internal 
space of anti-commuting objects, if the superposition of odd products of operators (θa ’s or γ a ’s, or γ̃ a’s) 
are used to describe the internal space of these objects. The commuting objects must be a superposition of 
even products of operators (θa’s or γ a ’s or γ̃ a ’s).
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No integer spin anti-commuting objects have been observed so far, and to describe the internal 
space of the so far observed fermions only one of the two Clifford odd subalgebras are needed.

The problem can be solved by reducing the two Clifford subalgebras to only one, the one 
(chosen to be) determined by γ a’s. The decision that γ̃ a’s apply on γ a as follows: {γ̃ aB =
(−)B i Bγ a} |ψoc >, Eq. (7), (with (−)B = −1, if B is a function of odd products of γ a’s, other-

wise (−)B = 1) enables that 2
d
2 −1 irreducible representations of Sab = i

2 {γ a , γ b}− (each with 

the 2
d
2 −1 members) obtain the family quantum numbers determined by S̃ab = i

2 {γ̃ a , γ̃ b}−.

The decision to use in the spin-charge-family theory in d = 2(2n +1), n ≥ 3 (d ≥ (13 +1) in-
deed), the superposition of the odd products of the Clifford algebra elements γ a’s to describe the 
internal space of fermions which interact with gravity only (with the vielbeins, the gauge fields 
of momenta, and the two kinds of the spin connection fields, the gauge fields of Sab and S̃ab, re-
spectively), Eq. (1), offers not only the explanation for all the assumed properties of fermions and 
bosons in the standard model, with the appearance of the families of quarks and leptons and an-
tiquarks and antileptons ([14] and the references therein) and of the corresponding vector gauge 
fields and the Higgs’s scalars included [11], but also for the appearance of the dark matter [35]
in the universe, for the explanation of the matter/antimatter asymmetry in the universe [8], and 
for several other observed phenomena, making several predictions [7,33–37].

The recognition that the use of the superposition of the even products of the Clifford algebra 
elements γ a’s to describe the internal space of boson fields, what appears to manifest all the 
properties of the observed boson fields, as demonstrated in this article, makes clear that the 
Clifford algebra offers not only the explanation for the postulates of the second quantized anti-
commuting fermion fields but also for the postulates of the second quantized boson fields.

This recognition, however, offers the possibility to relate

{1

2

∑
ab

Sab ωabα}
∑
m

βmf b̂m†
f ( �p) to {

∑
m′f ′

I Âm′†
f ′ ICm′

f ‘α}
∑
m

βmf b̂m†
f ( �p) ,

∀f and∀βmf ,

Scd
∑
ab

(cab
mf ωabα) to Scd (I Âm†

f
ICm

f α) ,

∀ (m,f ),

∀ Cartan subalgebra memberScd ,

and equivalently for II Âm†
f

IICm
f α and ω̃abα , what offers the possibility to replace the covariant 

derivative p0α

p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα

in Eq. (1) with

p0α = pα −
∑
mf

I Âm†
f

ICm
f α −

∑
mf

II Âm†
f

IICm
f α ,

where the relations among I Âm†
f

ICm
f α and II Âm†

f
IICm

f α with respect to ωabα and ω̃abα , not 
discussed directly in this article, need additional study and explanation.

Although the properties of the Clifford odd and even “basis vectors” and correspondingly of 
the creation and annihilation operators for fermion and boson fields are, hopefully, demonstrated 
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in this article, yet the proposed way of the second quantization of fields, the fermion and the 
boson ones needs further study to find out what new can the description of the internal space of 
fermions and bosons bring into the understanding of the second quantized fields.

This study showing up that the Clifford algebra can be used to describe the internal spaces of 
fermion and boson fields equivalently, offering correspondingly the explanation for the second 
quantization postulates for fermion and boson fields is opening a new insight into the quantum 
field theory, since studies of the interaction of fermion fields with boson fields and of boson fields 
with boson fields so far look very promising.

The study of properties of the second quantized boson fields, the internal space of which is 
described by Clifford even algebra has just started and needs further consideration.
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Appendix A. “Basis vectors” in d = (3 + 1)

This section, suggested by the referee, is to illustrate on a simple case of d = (3 + 1) the 
properties of “basis vectors” when describing internal spaces of fermions and bosons by the 
Clifford algebra: i. The way of constructing the “basis vectors” for fermions which appear in 
families and for bosons which have no families. ii. The manifestation of anti-commutativity of 
the second quantized fermion fields and commutativity of the second quantized boson fields. iii. 
The creation and annihilation operators, described by a tensor product, ∗T , of the “basis vectors” 
and their Hermitian conjugated partners with the basis in ordinary space-time.

This section is a short overview of some sections presented in the article [18], equipped by 
concrete examples of “basis vectors” for fermions and bosons in d = (3 + 1).

“Basis vectors”

Let us start by arranging the “basis vectors” as a superposition of products of (operators17) γ a , 
each “basis vector” is the eigenvector of all the Cartan subalgebra members, Eq. (8). To achieve 

17 We repeat that we treat γ a as operators, not as matrices. We write “basis vectors” as the superposition of products 
of γ a . If we want to look for a matrix representation of any operator, say Sab , we arrange the “basis vectors” into a 
series and write a matrix of transformations caused by the operator. However, we do not need to look for the matrix 
representations of the operators since we can directly calculate the application of any operators on “basis vectors”.
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this, we arrange “basis vectors” to be products of nilpotents and projectors, Eqs. (9), (10), so that 
every nilpotent and every projector is the eigenvector of one of the Cartan subalgebra members.

Example 1. Let us notice that, for example, two nilpotents anti-commute, while one nilpotent 
and one projector (or two projectors) commute due to Eq. (6):
1
2 (γ 0 − γ 3) 1

2 (γ 1 − iγ 2) = − 1
2 (γ 1 − iγ 2) 1

2 (γ 0 − γ 3), while 1
2 (γ 0 − γ 3) 1

2 (1 + iγ 1γ 2) = 1
2 (1 +

iγ 1γ 2) 1
2 (γ 0 − γ 3).

In d = (3 +1) there are 16 (2d=4) “eigenvectors” of the Cartan subalgebra members (S03, S12) 
and (S03, S12) of the Lorentz algebras Sab and Sab, Eq. (8).

Half of them are the Clifford odd “basis vectors”, appearing in two irreducible representations, 
in two “families” (2

4
2 −1, f = (1, 2)), each with two (2

4
2 −1, m = (1, 2)) members, b̂m†

f , and their 
Hermitian conjugated partners, Eq. (39).

There are 2
4
2 −1 × 2

4
2 −1 (Clifford odd) Hermitian conjugated partners b̂m

f = (b̂
m†
f )† appearing 

in a separate group which is not reachable by Sab, Eq. (40).

There are two separate groups of 2
4
2 −1 × 2

4
2 −1 Clifford even “basis vectors”, iAm†

f , i =
(I, II ), the 2

4
2 −1 members of each are self-adjoint, the rest have their Hermitian conjugated 

partners within the same group, Eqs. (42), (43).
All the members of each group are reachable by Sab or S̃ab from any starting “basis vector” 

iA1†
1 .

Example 2. b̂m=1†
f=1 = 03

(+i)
12[+] (= 1

2 (γ 0 − γ 3) 1
2 (1 + iγ 1γ 2)) is a Clifford odd “basis vector”, 

its Hermitian conjugated partner, Eq. (6), is b̂m=1
f =1 = 03

(−i)
12[+] (= 1

2 (γ 0 + γ 3) 1
2 (1 + iγ 1γ 2), not 

reachable by either Sab or by S̃ab from any of two members in any of two “families” of the group 
of b̂m†

f , presented in Eq. (39).

IAm=1†
f =1 (= 03[+i] 12[+]= 1

2 (1 +γ 0γ 3) 1
2 (1 + iγ 1γ 2) is self-adjoint, IAm=2†

f =1 (= 03
(−i)

12
(−)= 1

2 (γ 0 +
γ 3)(γ 1 − iγ 2). Its Hermitian conjugated partner, belonging to the same group, is IAm=1†

f =2 and 

is reachable from IAm=1†
f =1 by the application of S̃01, since γ̃ 0∗A

03[+i]= i
03

(+i) and γ̃ 1∗A

12[+]=
i

12
(+).

Clifford odd “basis vectors”

Let us first present the Clifford odd anti-commuting “basis vectors”, appearing in two “fam-
ilies” b̂m†

f , and their Hermitian conjugated partners (b̂m†
f )†. Each member of the two groups is 

a product of one nilpotent and one projector. We choose the right-handed Clifford odd “basis 
vectors”.18 Clifford odd “basis vectors” appear in two families, each family has two members.19

18 We could choose the left-handed Clifford odd “basis vectors” by exchanging the role of ‘basis vectors” and their 
Hermitian conjugated partners.
19 In the case of d = (1 + 1), we would have one family with one member only, which must be nilpotent.
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Let us notice that members of each of two families have the same quantum numbers (S03 , S12). 
They distinguish in “family” quantum numbers (S̃03 , S̃12).

f = 1 f = 2
S̃03 = i

2 , S̃12 = − 1
2 S̃03 = − i

2 , S̃12 = 1
2 S03 S12

b̂
1†
1 = 03

(+i)
12[+] b̂

1†
2 = 03[+i] 12

(+) i
2

1
2

b̂
2†
1 = 03[−i] 12

(−) b̂
2†
2 = 03

(−i)
12[−] − i

2 − 1
2 .

(39)

We find for their Hermitian conjugated partners

S03 = − i
2 , S12 = 1

2 S03 = i
2 , S12 = − 1

2 S̃03 S̃12

b̂1
1 = 03

(−i)
12[+] b̂1

2 = 03[+i] 12
(−) − i

2 − 1
2

b̂2
1 = 03[−i] 12

(+) b̂2
2 = 03

(+i)
12[−] i

2
1
2 .

(40)

The vacuum state |ψoc >, Eq. (15), on which the Clifford odd “basis vectors” apply is equal to: 

|ψoc >= 1√
2
(

03[−i] 12[+] + 
03[+i] 12[−]).

Let us recognize that the Clifford odd “basis vectors” anti-commute due to the odd number of 
nilpotents, Example 1. And they are orthogonal according to Eqs. (47), (48), (49): b̂m†

f ∗A b̂
m′†
f ′ =

0.

Example 3. According to the vacuum state presented above, one finds that, for example, 

b̂
1†
1 (= 03

(+i)
12[+])|ψoc > is b̂1†

1 back, since 
03

(+i)
12[+] ∗A

03[−i] 12[+]= 03
(+i)

12[+], according to Eq. (47), 

while 
03

(−i)
12[+] ∗A

03[−i] 12[+]= 0 (due to (γ 0 + γ 3)(1 − γ 0γ 3) = 0).
Let us apply S01 and S̃01 on some of the “basis vectors” b̂m†

f , say b̂1†
1 .

When applying S01 = i
2γ 0γ 1 on 1

2 (γ 0 − γ 3) 1
2 (1 + iγ 1γ 2)(≡ 03

(+i)
12[+]) we get − i

2
1
2 (1 −

γ 0γ 3) 1
2 (γ 1 − iγ 2)(≡ (− i

2

03[−i] 12
(−)).

When applying S̃01 = i
2 γ̃ 0γ̃ 1 on 1

2 (γ 0 − γ 3) 1
2 (1 + iγ 1γ 2)(≡ 03

(+i)
12[+]) we get, according to 

Eq. (7), or if using Eq. (11), − i
2

1
2 (1 + γ 0γ 3) 1

2 (γ 1 + iγ 2)(≡ (− i
2

03[+i] 12
(+)).

It then follows, after using Eqs. (11), (47), (48), (49) or just the starting relation, Eq. (6), and 
taking into account the above concrete evaluations, the relations of Eq. (16) for our particular 
case

b̂
m†
f ∗A |ψoc > = |ψm

f >,

b̂m
f ∗A |ψoc > = 0 · |ψoc >,

{b̂m†
f , b̂

m′†
f ′ }− ∗A |ψoc > = 0 · |ψoc >,

{b̂m
f , b̂m′

f ′ }− ∗A |ψoc > = 0 · |ψoc >,

{b̂m, b̂
m′†

′ }− ∗A |ψoc > = δmm′
δff ‘|ψoc > . (41)
f f
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The last relation of Eq. (41) takes into account that each “basis vector” carries the “family” quan-
tum number, determined by S̃ab of the Cartan subalgebra members, Eq. (8), and the appropriate 
normalization of “basis vectors”, Eqs. (39), (40).

Clifford even “basis vectors”

Besides 2
4
2 −1 × 2

4
2 −1 Clifford odd “basis vectors” and the same number of their Hermitian 

conjugated partners, Eqs. (39), (40), the Clifford algebra objects offer two groups of 2
4
2 −1 ×2

4
2 −1

Clifford even “basis vectors”, the members of the group IAm†
f and IIAm†

f , which have Hermitian 

conjugated partners within the same group or are self-adjoint.20 We have the group IAm†
f , m =

(1, 2), f = (1, 2), the members of which are Hermitian conjugated to each other or are self-
adjoint,

S03 S12 S03 S12

IA1†
1 = 03[+i] 12[+] 0 0 , IA1†

2 = 03
(+i)

12
(+) i 1

IA2†
1 = 03

(−i)
12

(−) −i −1 , IA2†
2 = 03[−i] 12[−] 0 0 ,

(42)

and the group IIAm†
f , m = (1, 2), f = (1, 2), the members of which are either Hermitian conju-

gated to each other or are self adjoint

S03 S12 S03 S12

IIA1†
1 = 03[+i] 12[−] 0 0 , IIA1†

2 = 03
(+i)

12
(−) i −1

IIA2†
1 = 03

(−i)
12

(+) −i 1 , IIA2†
2 = 03[−i] 12[+] 0 0 .

(43)

The Clifford even “basis vectors” have no families. The two groups, IAm†
f and IIAm†

f (they are 

not reachable from one another by Sab), are orthogonal (which can easily be checked, since 
ab

(±k) ∗A

ab

(±k)= 0, and 
ab[±k] ∗A

ab[∓k]= 0).

IAm†
f ∗A

IIAm′†
f ‘ = 0, for any (m,m′, f, f ‘) . (44)

Application of iAm†
f , i = (I, II ) on b̂m†

f

Let us demonstrate the application of iAm†
f , i = (I, II ), on the Clifford odd “basis vectors” 

b̂
m†
f , Eqs. (20), (23), for our particular case d = (3 + 1) and compare the result with the result 

of application Sab and S̃ab on b̂m†
f evaluated above in Example 3. We found, for example, that 

S01(= i
2γ 0γ 1) ∗A b̂

1†
1 (= 1

2 (γ 0 −γ 3) 1
2 (1 + iγ 1γ 2)(= 03

(+i)
12[+]) = − i

2
1
2 (1 −γ 0γ 3) 1

2 (γ 1 − iγ 2)(=
(− i

2

03[−i] 12
(−i)) = − i

2 b̂
2†
1 .

Applying IA2†
1 (= 03

(−i)
12

(−)) ∗A b̂
1†
1 (= 03

(+i)
12[+]) = − 

03[−i] 12
(−), which is −b̂

2†
1 , presented in 

Eq. (39). We obtain in both cases the same result, up to the factor i
2 (in front of γ 0γ 1 in S01). 

In the second case one sees that IA2†
1 (carrying S03 = −i, S12 = −1) transfers these quantum 

numbers to b̂1†
1 (carrying S03 = i

2 , S12 = 1
2 ) what results in b̂2†

1 (carrying S03 = −i
2 , S12 = −1

2 ).

20 Let be repeated that Sab = Sab + S̃ab [15].
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We can check what the application of the rest three IAm†
f , do when applying on b̂m†

f . The 

self-adjoint member carrying S03 = 0, S12 = 0, either gives b̂m†
f back, or gives zero, according 

to Eq. (47). The Clifford even “basis vectors”, carrying non zero S03 and S12 transfer their 
internal values to b̂m†

f or give zero. In all cases IAm†
f transform a “family” member to another or 

the same “family” member of the same “family”.

Example 4. IA1†
1 (= 03[+i] 12[+]) ∗A b̂

1†
1 (= 03

(+i)
12[+]) = b̂

1†
1 (= 03

(+i)
12[+]), IA1†

1 (= 03[+i] 12[+]) ∗A

b̂
1†
2 (= 03[+i] 12

(+)) = b̂
1†
2 (= 03[+i] 12

(+)), IA2†
1 (= 03

(−i)
12

(−)) ∗A b̂
1†
2 (= 03[+i] 12

(+)) = −b̂
2†
2 (= 03

(−i)
12[−]), 

IA2†
1 (= 03

(−i)
12

(−)) ∗A b̂
2†
2 (= 03

(−i)
12[−]) = 0.

One easily sees that the application of IIAm†
f on b̂m′†

f ‘ gives zero for all (m, m′, f, f ′) (due to 
ab[±k] ∗A

ab[∓k]= 0, 
ab[±k] ∗A

ab

(∓k)= 0, and similar applications).

We realised in Example 3. that the application of S̃01 = i
2 γ̃ 0γ̃ 1 on b̂1†

1 gives (− i
2

03[+i] 12
(+i)

) = − i
2 b̂

1†
2 .

Let us algebraically, ∗A, apply IIA2†
1 (= 03

(−i)
12

(+)), with quantum numbers (S03, S12) =
(−i, 1), from the right hand side the Clifford odd “basis vector” b̂1†

1 . This application causes 
the transition of b̂1†

1 (with quantum numbers (S̃03, S̃12) = ( i
2 , − 1

2 ) (see Eq. (10)) into b̂1†
2 (with 

quantum numbers (S̃03, S̃12) = (− i
2 , 12 )). IIA2†

1 obviously transfers its quantum numbers to Clif-
ford odd “basis vectors”, keeping m unchanged, and changing the “family” quantum number: 
b̂

1†
1 ∗A

IIA2†
1 = b̂

1†
2 .

We can conclude: The internal space of the Clifford even “basis vectors” has properties of the 
gauge fields of the Clifford odd “basis vectors”; IAm†

f transform “family” members of the Clif-
ford odd “basis vectors” among themselves, keeping the “family” quantum number unchanged, 
IIAm†

f transform a particular “family” member into the same “family” member of another “fam-
ily”.

Creation and annihilation operators

To define creation and annihilation operators for fermion and boson fields, we must include 
besides the internal space, the ordinary space, presented in Eq. (31), which defines the momentum 
or coordinate part of fermion and boson fields.

We define the creation operators for the single particle fermion states as a tensor product, ∗T , 
of the Clifford odd “basis vectors” and the basis in ordinary space, Eq. (33):
b̂s†

f ( �p) = ∑
m csm

f ( �p) b̂†
�p ∗T b̂

m†
f . The annihilation operators are their Hermitian conjugated 

partners.
We have seen in Example 1. that Clifford odd “basis vectors” (having odd products of nilpo-

tents) anti-commute. The commuting objects b̂†
�p (multiplying the “basis vectors”) do not change 

the Clifford oddness of b̂s†
f ( �p). The two Clifford odd objects, b̂s†

f ( �p) and b̂s′†
f ‘ (

�p′), keep their 
anti-commutativity, fulfilling the anti-commutation relations as presented in Eq. (34). Corre-
spondingly we do not need to postulate anti-commutation relations of Dirac. The Clifford odd 
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“basis vectors” in a tensor product with the basis in ordinary space explain the second quantized 
postulates for fermion fields.

The Clifford odd “basis vectors” contribute for each �p a finite number of b̂s†
f ( �p), the ordinary 

basis offers infinite possibilities.21

Recognizing that internal spaces of fermion fields and their corresponding boson gauge fields 
are describable in even dimensional spaces by the Clifford odd and even “basis vectors”, respec-
tively, it becomes evidently that when including the basis in ordinary space, we must take into 
account that boson gauge fields have the space index α, which describes the α component of the 
boson fields in ordinary space.

We multiply, therefore, as presented in Eq. (35), the Clifford even “basis vectors” with 
the coefficient iCm

f α carrying the space index α so that the creation operators iÂm†
fα ( �p) =

b̂
†
�p ∗T

iCm
f α

iÂm†
f , i = (I, II ) carry the space index α.22 The self-adjoint “basis vectors”, like 

(iÂ1†
1α, iÂ2†

2α, i = (I, II )), do not change quantum numbers of the Clifford odd “basis vectors”, 
since they have internal quantum numbers equal to zero.

In higher dimensional space, like in d = (5 + 1), I Â1†
3 , presented in Table 3, could represent 

the internal space of a photon field, which transfers to, for example, a fermion and anti-fermion 
pair with the internal space described by (b̂1†

1 , b̂3†
1 ), presented in Table 2, the momentum in 

ordinary space.
The subgroup structure of SU(3) gauge fields can be recognized in Fig. 2.

Properties of the gauge fields iÂm†
f α need further studies.

In even dimensional spaces, the Clifford odd and even “basis vectors”, describing internal 
spaces of fermion and boson fields, offer the explanation for the second quantized postulates for 
fermion and boson fields [15].

Appendix B. Discussion on the open questions of the standard model and answers offered 
by the spin-charge-family theory

There are many suggestions in the literature for unifying charges in larger groups, adding additional 
groups for describing families [1–5], or by going to higher dimensional spaces of the Kaluza-Kline like 
theories [24–31], what also the spin-charge-family is.

Let me present some open questions of the standard model and briefly tell the answers offered by the 
spin-charge family theory.

A. Where do fermions — quarks and leptons and antiquarks and antileptons — and their families originate?
The answer offered by the spin-charge-family theory: In d = (13 + 1) one irreducible representation 

of SO(13, 1) analysed with respect to subgroups SO(7, 1) (containing subgroups of SO(3, 1) × SU(2) ×
SU(2)) and SO(6) (containing subgroups of SU(3) × U(1)) offers the Clifford odd “basis vectors”, de-
scribing the internal spaces of quarks and leptons and antiquarks and antileptons, Table 4, as assumed by 
the standard model. The Clifford odd “basis vectors” appear in families.

21 An infinitesimally small difference between �p and �p′ makes two creation operators b̂s†
f

( �p) and b̂s†
f

( �p′) with the 
same “basis vector” describing the internal space of fermion fields still fulfilling the anti-commutation relations (as we 
learn from atomic physics; two electrons can carry the same spin if they distinguish in the coordinate part of the state).
22 Requiring the local phase symmetry for the fermion part of the action, Eq. (1), would lead to the requirement of the 
existence of the boson fields with the space index α.
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B. Why are charges of quarks so different from charges of leptons, and why have left-handed family mem-
bers so different charges from the right-handed ones?

The answer offered by the spin-charge-family theory: The SO(7, 1) part of the “basis vectors” is identi-
cal for quarks and leptons and identical for antiquarks and antileptons, Table 4, they distinguish only in the 
SU(3), the colour or anticolour part, and in the fermion or antifermion U(1) quantum numbers. All families 
have the same content of SO(7, 1), SU(3) and U(1) with respect to Sab . They distinguish only in the fam-
ily quantum number, determined by S̃ab . The difference between left-handed and right-handed members 
appears due to the difference in one quantum numbers of the two SU(2) groups, as seen in Table 4.
C. Why do family members — quarks and leptons — manifest such different masses if they all start as 
massless, as (elegantly) assumed by the standard model?

The answer offered by the spin-charge-family theory: Masses of quarks and leptons are in this theory 
determined by the spin connection fields ωstσ , the gauge fields of Sab ,23 and by ω̃stσ , the gauge fields of 
S̃ab , which are the same for quarks and leptons.24 Triplets and singlets are scalar gauge fields with the space 
index σ = (7, 8). They have, with respect to the space index, the quantum numbers of the Higgs scalars, 
Ref. ([14], Table 8, Eq. (110,111)).
D. What is the origin of boson fields, of vector fields which are the gauge fields of fermions, and the Higgs’ 
scalars and the Yukawa couplings? Have all boson fields, with gravity and scalar fields included a common 
origin?

The answer offered by the spin-charge-family theory: In a simple starting action, Eq. (1), boson fields 
origin in gravity — in vielbeins and two kinds of spin connection fields, ωabα and ω̃abα , in d = (13 +1) — 
and manifest in d = (3 + 1) as vector gauge fields, α = (0, 1, 2, 3), or scalar gauge fields, α ≥ 5 [11], ([14], 
Sect. 6 and references therein). Boson gauge fields are massless as there are fermion fields. The breaks of 
the starting symmetry makes some gauge fields massive. This article describes the internal space of boson 
fields by the Clifford even basis vectors, manifesting as the boson gauge fields of the corresponding fermion 
fields described by the Clifford odd “basis vectors”. The description of the boson fields with the Clifford 
even “basis vectors” confirms the existence of two kinds of spin connection fields as we see in Sects. 2.2
and 2.3, but also open a door to a new understanding of gravity. According to the starting action, Eq. (1), 
all gauge fields start in d ≥ (13 + 1) as gravity.
E. How are scalar fields connected with the origin of families? How many scalar fields determine properties 
of the so far (and others possibly be) observed fermions and of weak bosons?

The answer offered by the spin-charge-family theory: The interaction between quarks and leptons and 
the scalar gauge fields, which at the electroweak brake obtain constant values, causes that quarks and leptons 
and the weak bosons become massive. There are three singlets, they distinguish among quarks and leptons, 
and two triplets, they do not distinguish among quarks and leptons, which give masses to the lower four 
families.25

F. Where does the dark matter originate?
The answer offered by the spin-charge-family theory: The theory predicts two groups of four families at 

low energy. The stable of the upper four groups are candidates to form the dark matter [35].
G. Where does the “ordinary” matter-antimatter asymmetry originate?

The answer offered by the spin-charge-family theory: The theory predicts scalars triplets and antitriplets 
with the space index α = (9, 10, 11, 12, 13, 14) [8].
H. How can we understand the second quantized fermion and boson fields?

23 The three U(1) singlets, the gauge fields of the “fermion” quantum number τ4, of the hypercharge Y , and of the 
electromagnetic charge Q, determine the difference in masses of quarks and leptons, presented in Table 4, Ref. ([14], 
Sect, 6.2.2, Eq. (108)).
24 The two times two ̃SU(2) triplets are the same for quarks and leptons, forming two groups of four families. Ref. ([14], 
Sect, 6.2.2, Eq. (108).
25 There are the same three singlets and two additional triplets, which determine the masses of the upper four families-
explaining the existence of the dark matter.
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The answer offered by the spin-charge-family theory: The main contribution of this article, Sect. 2, is the 
description of the internal spaces of fermion and boson fields with the superposition of odd (for fermions) 
and even (for bosons) products of γ a . The corresponding creation and annihilation operators, which are 
tensor, ∗T , products of (finite number) “basis vectors” and (infinite) basis in ordinary space inherit anti-
commutativity or commutativity from the corresponding “basis vectors”, explaining the postulates for the 
second quantized fermion and boson fields.
I. What is the dimension of space? (3 + 1)?, ((d − 1) + 1)?, ∞?

The answer offered by the spin-charge-family theory: We observe (3 + 1)-dimensional space. In order 
that one irreducible representation (one family) of the Clifford odd “basis vectors”, analysed with respect 
to subgroups SO(3, 1)× SO(4) ×SU(3) ×U(1) of the group SO(13, 1) includes all quarks and leptons 
and antiquarks and antileptons, the space must have d ≥ (13 + 1). (Since the only “elegantly” acceptable 
numbers are 0 and ∞, the space-time could be ∞.)

The SO(10) theory [2], for example, unifies the charges of fermions and bosons separately. Analysing 
SO(10) with respect to the corresponding subgroups, the charges of fermions appear in fundamental repre-
sentations and bosons in adjoint representations.26

There are additional open questions answers of which the spin-charge-family theory offers.
The spin-charge-family theory has to answer the question common to all the Kaluza-Klein-

like theories: How and why the space we observe has d = (3 + 1) dimensions? The proposed 
description of the internal spaces of fermion and boson fields might help.

Appendix C. Some useful relations in Grassmann and Clifford algebras, needed also in 
App. D

This appendix contains the helpful relations needed for the reader of this paper. For 
more detailed explanations and for proofs, the reader is kindly asked to read [14] and the 
references therein.

For fermions, the operator of handedness �d is determined as follows:

�(d) =
∏
a

(
√

ηaaγ a) ·
{

(i)
d
2 , for d even ,

(i)
d−1

2 , for d odd .
(45)

The vacuum state for the Clifford odd “basis vectors”, |ψoc >, is defined as

|ψoc >=
2

d
2 −1∑

f =1

b̂m
f ∗A

b̂
m†
f |1 > . (46)

Taking into account that the Clifford objects γ a and γ̃ a fulfil relations of Eq. (6), one obtains 
beside the relations presented in Eq. (11) the following ones

ab

(k)
ab

(−k) = ηaa
ab[k] , ab

(−k)
ab

(k)= ηaa
ab[−k] , ab

(k)
ab[k]= 0 ,

ab

(k)
ab[−k]= ab

(k) ,

ab

(−k)
ab[k] = ab

(−k) ,
ab[k] ab

(k)= ab

(k) ,
ab[k] ab

(−k)= 0 ,
ab[k] ab[−k]= 0 ,

ab

˜(k)
ab

(k) = 0 ,

ab

˜(k)
ab

(−k)= −iηaa
ab[−k] ,

ab

˜(−k)
ab

(k)= −iηaa
ab[k] ,

ab

˜(k)
ab[k]= i

ab

(k) ,

26 The space-time is in unifying theories (3 + 1), consequently they have to relate handedness and charges “by 
hand” [22], postulate the existence of antiparticles, and the existence of scalar fields, as does the standard model.
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ab

˜(k)
ab[−k] = 0 ,

ab

˜(−k)
ab[k]= 0 ,

ab

˜(−k)
ab[−k]= i

ab

(−k) ,

ab

˜[k] ab

(k)= ab

(k) ,

ab

˜[k] ab

(−k) = 0 ,
ab

[̃k] ab[k]= 0 ,
ab

[̃−k] ab[k]= ab[k] ,
ab

˜[k] ab[−k]= ab[−k] . (47)

The algebraic multiplication among 
ab

˜(k) and 
ab

˜[k] goes as in the case of 
ab

(k) and 
ab[k]

ab

˜(k)

ab

˜[k] = 0 ,

ab

˜[k]
ab

˜(k)=
ab

˜(k) ,

ab

˜(k)

ab

˜[−k]=
ab

˜(k) ,

ab

˜[k]
ab

˜(−k)= 0 ,

ab

˜(−k)

ab

˜(k) = ηaa
ab[−k] ,

ab

˜(−k)
ab

[̃−k]= 0 . (48)

One can further find that

Sac
ab

(k)
cd

(k) = − i

2
ηaaηcc

ab[−k] cd[−k] , Sac
ab[k] cd[k]= i

2

ab

(−k)
cd

(−k) ,

Sac
ab

(k)
cd[k] = − i

2
ηaa

ab[−k] cd

(−k) , Sac
ab[k] cd

(k)= i

2
ηcc

ab

(−k)
cd[−k] . (49)

Appendix D. One family representation of Clifford odd “basis vectors” in d = (13 + 1)

This appendix, is following App. D of Ref. [18], with a short comment on the corresponding 
gauge vector and scalar fields and fermion and boson representations in d = (14 +1)-dimensional 
space included.

In even dimensional space d = (13 + 1) ([15], App. A), one irreducible representation of the 
Clifford odd “basis vectors”, analysed from the point of view of the subgroups SO(3, 1) ×SO(4)

(included in SO(7, 1)) and SO(7, 1) × SO(6) (included in SO(13, 1), while SO(6) breaks into 
SU(3) × U(1)), contains the Clifford odd “basis vectors” describing internal spaces of quarks 
and leptons and antiquarks, and antileptons with the quantum numbers assumed by the standard 
model before the electroweak break. Since SO(4) contains two SU(2) groups, Y = τ 23 +τ 4, one 
irreducible representation includes the right-handed neutrinos and the left-handed antineutrinos, 
which are not in the standard model scheme.

The Clifford even “basis vectors”, analysed to the same subgroups, offer the description of 
the internal spaces of the corresponding vector and scalar fields, appearing in the standard model
before the electroweak break [16,15]; as explained in Subsect. 2.2.1.

For an overview of the properties of the vector and scalar gauge fields in the spin-charge-
family theory, the reader is invited to see Refs. ([14,11] and the references therein). The vector 
gauge fields, expressed as the superposition of spin connections and vielbeins, carrying the space 
index m = (0, 1, 2, 3), manifest properties of the observed boson fields. The scalar gauge fields, 
causing the electroweak break, carry the space index s = (7, 8) and determine the symmetry of 
mass matrices of quarks and leptons.

In this Table 4, one can check the quantum numbers of the Clifford odd “basis vectors” 
representing quarks and leptons and antiquarks and antileptons if taking into account that 
all the nilpotents and projectors are eigenvectors of one of the Cartan subalgebra members, 

(S03, S12, S56, . . . , S13 14), with the eigenvalues ± i
2 for 

ab

(±i) and 
ab[±i], and with the eigenval-

ues ± 1 for 
ab

(±1) and 
ab[±1].
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Table 4
The left-handed (�(13,1) = −1, Eq. (45)) irreducible representation of one family of spinors — the product of the odd 
number of nilpotents and of projectors, which are eigenvectors of the Cartan subalgebra of the SO(13, 1) group [8,10], 
manifesting the subgroup SO(7, 1) of the colour charged quarks and antiquarks and the colourless leptons and antileptons 
— is presented. It contains the left-handed (�(3,1) = −1) weak (SU(2)I ) charged (τ13 = ± 1

2 ), and SU(2)II charge-

less (τ23 = 0) quarks and leptons, and the right-handed (�(3,1) = 1) weak (SU(2)I ) chargeless and SU(2)II charged 
(τ23 = ± 1

2 ) quarks and leptons, both with the spin S12 up and down (± 1
2 , respectively). Quarks distinguish from leptons 

only in the SU(3) ×U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38) = [( 1
2 , 1

2
√

3
), (− 1

2 , 1
2
√

3
), (0, − 1√

3
), 

carrying the “fermion charge” (τ4 = 1
6 ). The colourless leptons carry the “fermion charge” (τ4 = − 1

2 ). The same mul-
tiplet contains also the left handed weak (SU(2)I ) chargeless and SU(2)II charged antiquarks and antileptons and the 
right handed weak (SU(2)I ) charged and SU(2)II chargeless antiquarks and antileptons. Antiquarks distinguish from 
antileptons again only in the SU(3) × U(1) part: Antiquarks are anti-triplets carrying the “fermion charge” (τ4 = − 1

6 ). 
The anti-colourless antileptons carry the “fermion charge” (τ4 = 1

2 ). Y = (τ23 + τ4) is the hyper charge, the electro-

magnetic charge is Q = (τ13 + Y ).

i |aψi > �(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, �(7,1) = (−1)1 , �(6) = (1) − 1
of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12[+] | 56[+] 78
(+) || 9 10

(+)
11 12[−] 13 14[−] 1 1

2 0 1
2

1
2

1
2
√

3
1
6

2
3

2
3

2 uc1
R

03[−i] 12
(−) | 56[+] 78

(+) || 9 10
(+)

11 12[−] 13 14[−] 1 − 1
2 0 1

2
1
2

1
2
√

3
1
6

2
3

2
3

3 dc1
R

03
(+i)

12[+] | 56
(−)

78[−] || 9 10
(+)

11 12[−] 13 14[−] 1 1
2 0 − 1

2
1
2

1
2
√

3
1
6 − 1

3 − 1
3

4 dc1
R

03[−i] 12
(−) | 56

(−)
78[−] || 9 10

(+)
11 12[−] 13 14[−] 1 − 1

2 0 − 1
2

1
2

1
2
√

3
1
6 − 1

3 − 1
3

5 dc1
L

03[−i] 12[+] | 56
(−)

78
(+) || 9 10

(+)
11 12[−] 13 14[−] -1 1

2 − 1
2 0 1

2
1

2
√

3
1
6

1
6 − 1

3

6 dc1
L

− 03
(+i)

12
(−) | 56

(−)
78

(+) || 9 10
(+)

11 12[−] 13 14[−] -1 − 1
2 − 1

2 0 1
2

1
2
√

3
1
6

1
6 − 1

3

7 uc1
L

− 03[−i] 12[+] | 56[+] 78[−] || 9 10
(+)

11 12[−] 13 14[−] -1 1
2

1
2 0 1

2
1

2
√

3
1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) | 56[+] 78[−] || 9 10

(+)
11 12[−] 13 14[−] -1 − 1

2
1
2 0 1

2
1

2
√

3
1
6

1
6

2
3

9 uc2
R

03
(+i)

12[+] | 56[+] 78
(+) || 9 10[−] 11 12

(+)
13 14[−] 1 1

2 0 1
2 − 1

2
1

2
√

3
1
6

2
3

2
3

10 uc2
R

03[−i] 12
(−) | 56[+] 78

(+) || 9 10[−] 11 12
(+)

13 14[−] 1 − 1
2 0 1

2 − 1
2

1
2
√

3
1
6

2
3

2
3

11 dc2
R

03
(+i)

12[+] | 56
(−)

78[−] || 9 10[−] 11 12
(+)

13 14[−] 1 1
2 0 − 1

2 − 1
2

1
2
√

3
1
6 − 1

3 − 1
3

12 dc2
R

03[−i] 12
(−) | 56

(−)
78[−] || 9 10[−] 11 12

(+)
13 14[−] 1 − 1

2 0 − 1
2 − 1

2
1

2
√

3
1
6 − 1

3 − 1
3

13 dc2
L

03[−i] 12[+] | 56
(−)

78
(+) || 9 10[−] 11 12

(+)
13 14[−] -1 1

2 − 1
2 0 − 1

2
1

2
√

3
1
6

1
6 − 1

3

14 dc2
L

− 03
(+i)

12
(−) | 56

(−)
78

(+) || 9 10[−] 11 12
(+)

13 14[−] -1 − 1
2 − 1

2 0 − 1
2

1
2
√

3
1
6

1
6 − 1

3

15 uc2
L

− 03[−i] 12[+] | 56[+] 78[−] || 9 10[−] 11 12
(+)

13 14[−] -1 1
2

1
2 0 − 1

2
1

2
√

3
1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) | 56[+] 78[−] || 9 10[−] 11 12

(+)
13 14[−] -1 − 1

2
1
2 0 − 1

2
1

2
√

3
1
6

1
6

2
3

17 uc3
R

03
(+i)

12[+] | 56[+] 78
(+) || 9 10[−] 11 12[−] 13 14

(+) 1 1
2 0 1

2 0 − 1√
3

1
6

2
3

2
3

18 uc3
R

03[−i] 12
(−) | 56[+] 78

(+) || 9 10[−] 11 12[−] 13 14
(+) 1 − 1

2 0 1
2 0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12[+] | 56
(−)

78[−] || 9 10[−] 11 12[−] 13 14
(+) 1 1

2 0 − 1
2 0 − 1√

3
1
6 − 1

3 − 1
3

40
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Table 4 (continued)

i |aψi > �(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, �(7,1) = (−1)1 , �(6) = (1) − 1
of (anti)quarks and (anti)leptons

20 dc3
R

03[−i] 12
(−) | 56

(−)
78[−] || 9 10[−] 11 12[−] 13 14

(+) 1 − 1
2 0 − 1

2 0 − 1√
3

1
6 − 1

3 − 1
3

21 dc3
L

03[−i] 12[+] | 56
(−)

78
(+) || 9 10[−] 11 12[−] 13 14

(+) -1 1
2 − 1

2 0 0 − 1√
3

1
6

1
6 − 1

3

22 dc3
L

− 03
(+i)

12
(−) | 56

(−)
78

(+) || 9 10[−] 11 12[−] 13 14
(+) -1 − 1

2 − 1
2 0 0 − 1√

3
1
6

1
6 − 1

3

23 uc3
L

− 03[−i] 12[+] | 56[+] 78[−] || 9 10[−] 11 12[−] 13 14
(+) -1 1

2
1
2 0 0 − 1√

3
1
6

1
6

2
3

24 uc3
L

03
(+i)

12
(−) | 56[+] 78[−] || 9 10[−] 11 12[−] 13 14

(+) -1 − 1
2

1
2 0 0 − 1√

3
1
6

1
6

2
3

25 νR

03
(+i)

12[+] | 56[+] 78
(+) || 9 10

(+)
11 12
(+)

13 14
(+) 1 1

2 0 1
2 0 0 − 1

2 0 0

26 νR

03[−i] 12
(−) | 56[+] 78

(+) || 9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2 0 1
2 0 0 − 1

2 0 0

27 eR

03
(+i)

12[+] | 56
(−)

78[−] || 9 10
(+)

11 12
(+)

13 14
(+) 1 1

2 0 − 1
2 0 0 − 1

2 −1 −1

28 eR

03[−i] 12
(−) | 56

(−)
78[−] || 9 10

(+)
11 12
(+)

13 14
(+) 1 − 1

2 0 − 1
2 0 0 − 1

2 −1 −1

29 eL

03[−i] 12[+] | 56
(−)

78
(+) || 9 10

(+)
11 12
(+)

13 14
(+) -1 1

2 − 1
2 0 0 0 − 1

2 − 1
2 −1

30 eL − 03
(+i)

12
(−) | 56

(−)
78

(+) || 9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2 − 1
2 0 0 0 − 1

2 − 1
2 −1

31 νL − 03[−i] 12[+] | 56[+] 78[−] || 9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
1
2 0 0 0 − 1

2 − 1
2 0

32 νL

03
(+i)

12
(−) | 56[+] 78[−] || 9 10

(+)
11 12
(+)

13 14
(+) -1 − 1

2
1
2 0 0 0 − 1

2 − 1
2 0

33 d̄ c̄1
L

03[−i] 12[+] | 56[+] 78
(+) || 9 10[−] 11 12

(+)
13 14
(+) -1 1

2 0 1
2 − 1

2 − 1
2
√

3
− 1

6
1
3

1
3

34 d̄ c̄1
L

03
(+i)

12
(−) | 56[+] 78

(+) || 9 10[−] 11 12
(+)

13 14
(+) -1 − 1

2 0 1
2 − 1

2 − 1
2
√

3
− 1

6
1
3

1
3

35 ūc̄1
L

− 03[−i] 12[+] | 56
(−)

78[−] || 9 10[−] 11 12
(+)

13 14
(+) -1 1

2 0 − 1
2 − 1

2 − 1
2
√

3
− 1

6 − 2
3 − 2

3

36 ūc̄1
L

− 03
(+i)

12
(−) | 56

(−)
78[−] || 9 10[−] 11 12

(+)
13 14
(+) -1 − 1

2 0 − 1
2 − 1

2 − 1
2
√

3
− 1

6 − 2
3 − 2

3

37 d̄ c̄1
R

03
(+i)

12[+] | 56[+] 78[−] || 9 10[−] 11 12
(+)

13 14
(+) 1 1

2
1
2 0 − 1

2 − 1
2
√

3
− 1

6 − 1
6

1
3

38 d̄ c̄1
R

− 03[−i] 12
(−) | 56[+] 78[−] || 9 10[−] 11 12

(+)
13 14
(+) 1 − 1

2
1
2 0 − 1

2 − 1
2
√

3
− 1

6 − 1
6

1
3

39 ūc̄1
R

03
(+i)

12[+] | 56
(−)

78
(+) || 9 10[−] 11 12

(+)
13 14
(+) 1 1

2 − 1
2 0 − 1

2 − 1
2
√

3
− 1

6 − 1
6 − 2

3

40 ūc̄1
R

03[−i] 12
(−) | 56

(−)
78

(+) || 9 10[−] 11 12
(+)

13 14
(+) 1 − 1

2 − 1
2 0 − 1

2 − 1
2
√

3
− 1

6 − 1
6 − 2

3

41 d̄ c̄2
L

03[−i] 12[+] | 56[+] 78
(+) || 9 10

(+)
11 12[−] 13 14

(+) -1 1
2 0 1

2
1
2 − 1

2
√

3
− 1

6
1
3

1
3

42 d̄ c̄2
L

03
(+i)

12
(−) | 56[+] 78

(+) || 9 10
(+)

11 12[−] 13 14
(+) -1 − 1

2 0 1
2

1
2 − 1

2
√

3
− 1

6
1
3

1
3

43 ūc̄2
L

− 03[−i] 12[+] | 56
(−)

78[−] || 9 10
(+)

11 12[−] 13 14
(+) -1 1

2 0 − 1
2

1
2 − 1

2
√

3
− 1

6 − 2
3 − 2

3

44 ūc̄2
L

− 03
(+i)

12
(−) | 56

(−)
78[−] || 9 10

(+)
11 12[−] 13 14

(+) -1 − 1
2 0 − 1

2
1
2 − 1

2
√

3
− 1

6 − 2
3 − 2

3

45 d̄ c̄2
R

03
(+i)

12[+] | 56[+] 78[−] || 9 10
(+)

11 12[−] 13 14
(+) 1 1

2
1
2 0 1

2 − 1
2
√

3
− 1

6 − 1
6

1
3

46 d̄ c̄2
R

− 03[−i] 12
(−) | 56[+] 78[−] || 9 10

(+)
11 12[−] 13 14

(+) 1 − 1
2

1
2 0 1

2 − 1
2
√

3
− 1

6 − 1
6

1
3

(continued on next page)
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Table 4 (continued)

i |aψi > �(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, �(7,1) = (−1)1 , �(6) = (1) − 1
of (anti)quarks and (anti)leptons

47 ūc̄2
R

03
(+i)

12[+] | 56
(−)

78
(+) || 9 10

(+)
11 12[−] 13 14

(+) 1 1
2 − 1

2 0 1
2 − 1

2
√

3
− 1

6 − 1
6 − 2

3

48 ūc̄2
R

03[−i] 12
(−) | 56

(−)
78

(+) || 9 10
(+)

11 12[−] 13 14
(+) 1 − 1

2 − 1
2 0 1

2 − 1
2
√

3
− 1

6 − 1
6 − 2

3

49 d̄ c̄3
L

03[−i] 12[+] | 56[+] 78
(+) || 9 10

(+)
11 12
(+)

13 14[−] -1 1
2 0 1

2 0 1√
3

− 1
6

1
3

1
3

50 d̄ c̄3
L

03
(+i)

12
(−) | 56[+] 78

(+) || 9 10
(+)

11 12
(+)

13 14[−] -1 − 1
2 0 1

2 0 1√
3

− 1
6

1
3

1
3

51 ūc̄3
L

− 03[−i] 12[+] | 56
(−)

78[−] || 9 10
(+)

11 12
(+)

13 14[−] -1 1
2 0 − 1

2 0 1√
3

− 1
6 − 2

3 − 2
3

52 ūc̄3
L

− 03
(+i)

12
(−) | 56

(−)
78[−] || 9 10

(+)
11 12
(+)

13 14[−] -1 − 1
2 0 − 1

2 0 1√
3

− 1
6 − 2

3 − 2
3

53 d̄ c̄3
R

03
(+i)

12[+] | 56[+] 78[−] || 9 10
(+)

11 12
(+)

13 14[−] 1 1
2

1
2 0 0 1√

3
− 1

6 − 1
6

1
3

54 d̄ c̄3
R

− 03[−i] 12
(−) | 56[+] 78[−] || 9 10

(+)
11 12
(+)

13 14[−] 1 − 1
2

1
2 0 0 1√

3
− 1

6 − 1
6

1
3

55 ūc̄3
R

03
(+i)

12[+] | 56
(−)

78
(+) || 9 10

(+)
11 12
(+)

13 14[−] 1 1
2 − 1

2 0 0 1√
3

− 1
6 − 1

6 − 2
3

56 ūc̄3
R

03[−i] 12
(−) | 56

(−)
78

(+) || 9 10
(+)

11 12
(+)

13 14[−] 1 − 1
2 − 1

2 0 0 1√
3

− 1
6 − 1

6 − 2
3

57 ēL

03[−i] 12[+] | 56[+] 78
(+) || 9 10[−] 11 12[−] 13 14[−] -1 1

2 0 1
2 0 0 1

2 1 1

58 ēL

03
(+i)

12
(−) | 56[+] 78

(+) || 9 10[−] 11 12[−] 13 14[−] -1 − 1
2 0 1

2 0 0 1
2 1 1

59 ν̄L − 03[−i] 12[+] | 56
(−)

78[−] || 9 10[−] 11 12[−] 13 14[−] -1 1
2 0 − 1

2 0 0 1
2 0 0

60 ν̄L − 03
(+i)

12
(−) | 56

(−)
78[−] || 9 10[−] 11 12[−] 13 14[−] -1 − 1

2 0 − 1
2 0 0 1

2 0 0

61 ν̄R

03
(+i)

12[+] | 56
(−)

78
(+) || 9 10[−] 11 12[−] 13 14[−] 1 1

2 − 1
2 0 0 0 1

2
1
2 0

62 ν̄R − 03[−i] 12
(−) | 56

(−)
78

(+) || 9 10[−] 11 12[−] 13 14[−] 1 − 1
2 − 1

2 0 0 0 1
2

1
2 0

63 ēR

03
(+i)

12[+] | 56[+] 78[−] || 9 10[−] 11 12[−] 13 14[−] 1 1
2

1
2 0 0 0 1

2
1
2 1

64 ēR

03[−i] 12
(−) | 56[+] 78[−] || 9 10[−] 11 12[−] 13 14[−] 1 − 1

2
1
2 0 0 0 1

2
1
2 1

Taking into account that the third component of the weak charge, τ 13 = 1
2 (S56 − S78), for the 

second SU(2) charge, τ 23 = 1
2 (S56 + S78), for the colour charge [τ 33 = 1

2 (S9 10 − S11 12) and 
τ 38 = 1

2
√

3
(S9 10 + S11 12 − 2S13 14)], for the “fermion charge” τ 4 = − 1

3 (S9 10 + S11 12 + S13 14), 

for the hyper charge Y = τ 23 + τ 4, and electromagnetic charge Q = Y + τ 13, one reproduces 
all the quantum numbers of quarks, leptons, and antiquarks, and antileptons. One notices that 
the SO(7, 1) part is the same for quarks and leptons and the same for antiquarks and antilep-
tons. Quarks distinguish from leptons only in the colour and “fermion” quantum numbers and 
antiquarks distinguish from antileptons only in the anti-colour and “anti-fermion” quantum num-
bers.

In odd dimensional space, d = (14 +1), the eigenstates of handedness are the superposition of 
one irreducible representation of SO(13, 1), presented in Table 4, and the one obtained if on each 
“basis vector” appearing in SO(13, 1) the operator S0 (14+1) applies, Subsect. 2.2.2, Ref. [18].
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Let me point out that in addition to the electroweak break of the standard model the break 
at ≥ 1016 GeV is needed ([14], and references therein). The condensate of the two right-handed 
neutrinos causes this break (Ref. [14], Table 6); it interacts with all the scalar and vector gauge 
fields, except the weak, U(1), SU(3) and the gravitational field in d = (3 + 1), leaving these 
gauge fields massless up to the electroweak break, when the scalar fields, leaving massless only 
the electromagnetic, colour and gravitational fields, cause masses of fermions and weak bosons.

The theory predicts two groups of four families: To the lower group of four families, the three 
so far observed contribute. The theory predicts the symmetry of both groups to be SU(2) ×
SU(2) × U(1), Ref. ([14], Sect. 7.3), which enable to calculate mixing matrices of quarks and 
leptons for the accurately enough measured 3 × 3 sub-matrix of the 4 × 4 unitary matrix. No 
sterile neutrinos are needed, and no symmetry of the mass matrices must be guessed [36].

In the literature, one finds a lot of papers trying to reproduce mass matrices and measured 
mixing matrices for quarks and leptons [41–47].

The stable of the upper four families predicted by the spin-charge-family theory is a candi-
date for the dark matter, as discussed in Refs. [35,14]. In the literature, there are several works 
suggesting candidates for the dark matter and also for matter/antimatter asymmetry [48,49].
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[37] G. Bregar, N.S. Mankoč Borštnik, The new experimental data for the quarks mixing matrix are in better agreement 
with the spin-charge-family theory predictions, in: N.S. Mankoč Borštnik, H.B. Nielsen, D. Lukman (Eds.), Pro-
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