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21 cm signal

• The 21 cm signal appears to be a treasure trove to study physics
during cosmic dawn and reionization.

• The 21 cm line has been actively used to trace the neutral
hydrogen in Milky Way for more than seven decades.
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21 cm signal

Dillon (2015) arXiv:1506.03024; originally reproduced from Tegmark & Zaldarriaga (2009) 2



What is the 21 cm signal? (22)

• Differential brightness temperature:

δTB = T′R − TR

dIν
dl = jν − αν Iν

2πν/T≪ 1−−−−−−→
Iν = 2ν2T

T′R = Texc (1− e−τν ) + TR e−τν .

δTB = (Texc − TR)(1− e−τν )
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What is the 21 cm signal? (22)

• For the 21 cm line: Texc = TS (spin temperature),
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• characterised by number density ratio in the hyperfine states,
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× exp
[
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]
, νTS = 1420 MHz = 1/(21 cm)

• For neutral hydrogen medium (expanding Universe),

δTB = T21 =
TS − TR
1+ z (1− e−τν ), τν ≈ 3A10 nHI

16ν2TS HTS
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21 cm signal and its evolution

• Absorption/emission in 21 cm line: T21 ∝ (1− TR/TS).

• Below z ∼ 200 (ΛCDM): Tgas ∝ (1+ z)2, TCMB ∝ (1+ z).

Pritchard & Loeb, Rep. Prog. Phys. 75, 086901 (2012)
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EDGES low band observation

• In 2018, such an absorption at z ∼ 17 has been confirmed by
EDGES observation:

Bowman et al. 2018, Nature, 555, 67 6



EDGES low band observation

• It is centered at 78± 1 MHz or z = 17.2± 0.2. Here, ν0 = ν
1+z and

ν = 1420 MHz.

• To explain the EDGES anomaly, one requires to enhance TR
(Radio Background) above TCMB or lower Tgas below 3.2 K at
redshift ∼ 17.
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Observations of Excess Radio Background

ARCADE2 (2011) [Fixsen et al., APJ, 11]; LWA1 (2018) [Dowell et al., APJL, 18]
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Observations of Excess Radio Background

• ARCADE 2 observed Excess: 3-10 GHz
• Combining ARCADE 2 with other Low-frequency data gives excess
in the range of 22 MHz−10 GHz.

• Also supported by LWA-1 in range: 40-80 MHz.

• This excess radio radiation can also explain the EDGES anomaly.

• There are several theoretical models to explain this excess at CD,
for e.g., axion-photon conversion & synchrotron radiation from
electron in the presence of IGM MFs, radiative decays of relic
neutrinos, accretion onto the first intermediate-mass BHs, etc.

• The excess radiation can be modelled as:1

TR = TCMB (1+ z)
[
1+ Ar

( νobs
78 MHz

)β
]
,

1Fialkov & Barkana, MNRAS 486, 1763 (2019)
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IGM in the presence of Excess Radio and X-ray heating

• IGM gas temperature evolution:

dTgas
dz = 2 Tgas

1+ z +
Γc

(1+ z)H (Tgas − TCMB)

• Inclusion of first stars effect2:

+
dTgas
dz

∣∣∣∣∣
x−ray

− ΓR
(1+ z) (1+ fHe + Xe)

; ΓR = XHI
A10
2H xR

[
TR
TS

− 1
]
T10.

2Venumadhav et al., PRD 98, 103513 (2018).
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IGM gas temperature evolution for different cases

• Increases excess radiation fraction (Ar) above 100, does not
significantly change the Tgas.

• Because ΓR ∝ (TR/TS − 1) ∼ TR/TS

• Coupling between Tgas and TS are ∝ 1/TR .
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Global 21 cm signal for different cases
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Free parameters related to IGM temperature & Ly-α coupling
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Foreground model considered for EDGES signal
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21 cm data for machine training
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Inclusion of foreground
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Pearson correlation in IGM parameters
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Pearson correlation in FG parameters
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Prediction of parameters with RMSE and R2 score
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Loss while training
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Model loss & prediction of parameters with RMSE and R2 score
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Summary & conclusion



Summary and conclusion

• The signal can provide a good insight into the period when the
galaxies and first stars formed.

• We generated synthetic data by resolving the typical
cosmological equations

• The accuracy of one of our estimations is evaluated by
examining the RMSE and R2 scores for each case

• As far as our understanding goes, most authors have employed
Markow Chain Monte Carlo (MCMC), nested sampling, or similar
methods for parameter space sampling.

• As ANN (Artificial Neural Network) and MCMC have different
methodologies, we cannot directly compare their speed.
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Summary and conclusion

• However, ANN offers the advantage of bypassing the
requirement of computing the likelihood function multiple
times to derive inferred parameter values.

• Thus, when dealing with a higher dimensional parameter space,
ANN is computationally more efficient and faster.

• In future works, we wish to include energy injection terms
linking directly to the first star’s astrophysical properties,
instrument response and contamination model to make the NN
more robust.

• Also, we intend to apply this concept and algorithm to more
realistic data, like EDGES, SARAS 3, SKA, etc.
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Thank You!



A brief introduction to evolution of our Universe

Image credits: European Space Agency (ESA)
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Collisional & Lyα coupling coefficients

• The collisional coupling coefficient3,

xc =
PC

TS

PR
TS

=
T10
TR A10

×(NH kHH10 +Ne kHe10+Np k
Hp
10 ), PR

TS =

(
1+ TR

T10

)
A10

• kij10 scattering rate between i & j particles
• After the inclusion of x-ray and VDKZ18 heating effects, the gas
temperature remains > 10 K.

• Therefore, we can take (for 10 K < Tgas < 103 K),

kHH10 ≈ 3.1× 10−11(Tgas/K)0.357 exp(−32 K/Tgas) cm3/sec

• WF coupling coefficient: xα = T10/(TR A10)× 4Pα/27, Pα scattering rate of
Lyα photons4. Einstein coefficient: A10 = 2.85× 10−15 sec−1

3Pritchard & Loeb, Rep. Prog. Phys. 75, 086901 (2012)
4Wouthuysen S. A., ApJ, 57, 31 (1952). Field G. B., Proc. IRE, 46, 240 (1958).
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Collisional & Lyα coupling coefficients

• WF coupling5:

• we consider xα = 2Aα(z)× (T0/TR), step height Aα = 100, pivot redshift
zα0 = 17 & ∆zα = 2, Ai(z) = Ai(1+ tanh[(zi0 − z)/∆zi]). 6

• {AX, zX0,∆zX} = {1000 K, 12.75, 1}, {Axe, zxe,∆zxe} = {1, 9, 3}.

5Furlanetto et al., Phys. Rept. 433 (2006) 181-301.
6Kovetz et al., PRD 98, 103529 (2018); Mirocha et al., ApJ. 813, 11 (2015); Harker et al.,
MNRAS, 455, 3829 (2016). 22



Frequencies and wavelengths

Lyα = 2.47× 109 MHz
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21-cm signal and spin temperature

dn0
dt = −n0Pc01 + n1Pc10 ,

• Pc01 & Pc10 are excitation and deexcitation coefficients.

• In the equilibrium, n1n0 =
Pc01
Pc10

⇒ Pc01
Pc10

= g1
g0 exp

[
− 2πν10

Tgas

]
,

• TS = Tgas because in equilibrium TS will reach to the Tgas.

• Planck spectrum, Bν(T) = 2hν3/c2
exp(hν/kbT)−1 , in the Rayleigh–Jeans

regime, 2πν/T≪ 1, Bν(T) = 2ν2T .
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21-cm signal and spin temperature

Iν = Sν(1− e−τ ) + Iν0 e−τ

• Hydrogen is characterized by TS, Sν(T) = jν/αν ≡ Bν(TS).
Iν0 = Bν(TCMB).

Iν(TB) = Iν(TS) (1− e−τ ) + Iν(TCMB) e−τ ,

• TB is final brightness temperature.
• 21 cm differential brightness temperature, T21 = TB − TB0 .
• TB0 = TB(τ = 0) = TCMB. T ∝ (1+ z). Therefore, the observed,

T21 =
TS − TCMB
1+ z × (1− e−τ ) .

• To find τ , write complete eq,

dIν
dl =

hνe
4π ϕ(ν)[n1A10 + Iνn1B10 − Iνn0B01].
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Hyperfine splitting(4)

• Dipole moments of electron and proton7:

µe = − (ge = 2) e
2me

Se & µp =
(gp = 5.59) e

2mp
Sp .

• Magnetic field due to dipole (µ):

B =
µ0
4π r3 [3 (µ · r̂) r̂− µ] +

2µ0
3 µ δ3(r) .

• Hamiltonian of electron in the presence of Magnetic field due to
dipole of proton:

HHF = −µe · Bp .
• Expectation value:

EHF =
4gp

3mpm2
e a4

×
∣∣∣+1/4
−3/4

• Energy gas: ∆E = 5.88× 10−6 eV
• Corresponding ν = ∆E/2π ≃ 1420.4 MHz & λ ≃ 21 cm.

7Quantum Mechanics by David J. Griffiths 22
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