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Abstract

The purpose of this talk is to introduce a few new results recently presented in [U.

D. Jentschura and G. S. Adkins, Quantum Electrodynamics: Atoms, Lasers and

Gravity (World Scientific, Singapore, 2022)]. The development of quantum

electrodynamics started when Bethe, Feynman and Schwinger, and Tomonaga,

developed the concept of renormalized quantum field theory, to deal with the

infinities that arose in perturbative calculations of scattering processes. The

characteristic element of the calculations was the emergence of so-called loop

corrections, which describe the self-interaction of the quantum fields. The

application of the formalism to bound states is marred with additional difficulties,

due to the presence of two distinct energy scales, which have to be matched at the

end of any precise calculation. Nevertheless, the theory has enabled theorists to

calculate transition energies in simple atomic systems like hydrogen and helium to

unprecendented accuracy, approaching 13 or 14 decimals. As an example of

higher-order calculations which could further enhance our understanding of bound

systems, the eighth-order Foldy–Wouthuysen transformation will be described.

Our talk also focuses on searches for physics beyond the Standard Model (proton

radius puzzle, X17 boson) which have an overlap with current precision atomic

physics. In particular, prospects for a definitive resolution of the proton radius

puzzle will be discussed.
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The Book: An “Advertisement”
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Textbook and Monograph
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Textbook and Monograph

5



Background

For more than 60 years, the book of Hans Albrecht Bethe (portrait, left) and
Edwin Ernest Salpeter (portrait, right) has been a cornerstone in the description
of few-body atomic systems. It is a masterpiece.
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Perhaps, a Little Warning

=== Bound-State Quantum Electrodynamics ===

may belong to the more difficult, and more technically demanding subfields of
theoretical physics. The field combines the intricacies of modern quantum field
theory (including the concepts of regularization and renormalization) with the
additional technical challenges of the bound-state formalism.

One needs a specific mindset to work on the subject.

Still, low-energy precision experiments based on quantum electrodynamics serve as
a tool to look for effects beyond the Standard Model, in or from the low-energy
sector.
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Table of Contents (812 Pages, 19 Chapters)

1. (I) Chapters 1–6: Advanced Quantum Mechanics Toward Field Quantization
(Introduction; From Unit Systems for the Microworld to Field Quantization;
Time–Ordered Perturbations; Bound–Electron Self–Energy and Bethe
Logarithm; Interatomic and Atom–Surface Interactions; Racah–Wigner
Algebra)

2. (II) Chapters 7–10: From Relativistic Quantum Mechanics to QED
(Free Dirac Equation; Dirac Equation for Bound States, Lasers and Gravity;
Electromagnetic Field and Photon Propagators; Tree–Level and Loop
Diagrams, and Renormalization)

3. (III) Chapters 11–17: QED and Bound States
(Foldy–Wouthuysen Transformation and Lamb Shift; Relativistic Interactions
for Many–Particle and Compound Systems; Fully Correlated Basis Sets and
Helium; Relativistic Many–Particle Calculations; Beyond Breit Hamiltonian
and On–Shell Form Factors; Bethe–Salpeter Equation; NRQED: An Effective
Field Theory for Atomic Physics)

4. (IV) Chapters 18+19: Concepts of Quantum Field Theory and QED
(Fermionic Determinants and Effective Lagrangians; Renormalization–Group
Equation)
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Examples: Some Highlights, Perhaps
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Calculation of Bethe Logarithms
“Almost analytic” representation of the Bethe logarithms:

ln k0(1S) = 10 ln(2)− 2ζ(2)− 1

+

∞∑
k=2

16 k

(k − 1)2 (k + 1)2
Φ

(
1 + k

1− k , 1, 2 k
)

= 2.98412 85557 65497 61075 97770 90013 79796 99751

80566 17002 00048 15926 13924 06576 62306 75532

86860 62013 30404 72249 .

I The Bethe logarithm is a sum over virtual excitations of the hydrogen
atom, where the excitation energies enter the sum in terms of their
logarithms. Hans Bethe came up with the concept in 1947, in order to
explain the splitting between the 2S1/2 and 2P1/2 energy levels in
hydrogen observed by Willis Lamb. The Bethe logarithm contributes
to the leading-order self-energy.

I The formula given above (Φ is the Lerch transcendent or incomplete
zeta function) is the result of an improved understanding of the
mathematical structure of the Schrödinger–Coulomb Green function,
which is explained in the book. It can be used in order to search for
closed-form expressions, using the PSLQ algorithm.
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Vertex, Loop and Electron Form Factors

We use dimensional regularization. d = 4− 2ε, D = 3− 2ε.
(A bit of Humor: “This was not available to Landau fifty years ago.”)
Recommend MS scheme:

e2 = (4π)1−ε α µ2εeγEε .

(Detailed Derivation!)
(Nothing Swept Under Rug!)

Vertex function:

ΓνR(q) = F1(q2) γν + F2(q2)
i

2m
σνµqµ ,

F1(q2) = 1 +
α

π

[
q2

m2

(
−

1

8
−

1

6ε
+

1

6
ln

(
m2

µ2

))
+ O

(
q4

m4

)]
,

F2(q2) =
α

2π

[
1 +

1

6

q2

m2
+

1

30

q4

m4
+ O

(
q6

m6

)]
.

Surprise: Dimensional regularization is easier than Pauli–Villars.
Also: Lamb shift using dimensional regularization.
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Binding Corrections to the Lamb Shift and Forward Scattering

I Diagrams:

I The original result was due to Bethe, Baranger and Feynman:

∆E =
α

π

(Zα)5m

n3
A50(nLj) , A50(nLj) = 4π δL0

(
139

128
− 1

2
ln(2)

)
.

I Modern Approach: Dispersion Relation! Idea: Let the incoming
Coulomb momentum, which is initially space-like, q2 = −~q 2 ≤ 0,
continue into the time-like domain, q2 → Q2 > 4m2, where the
expression for the energy correction develops a branch cut in the
complex plane. Then, write a dispersion relation which connects the
cut to real energy shift. This simplifies the calculation dramatically.
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General Results for the 8th–Order Foldy–Wouthuysen Transformation

Result for the eigth-order terms
(Obtained using advanced computer algebra):

H[8] = −
5

128m7
(~σ · ~π)8 −

i e2

32m4
[~σ · ~E, ~σ · ∂t ~E ]

+
7 e2

192m5
[~σ · ~π, ~σ · ~E ] [~σ · ~π, ~σ · ~E ]−

3 e2

64m5
{~σ · ~π, ~σ · ~E } {~σ · ~π, ~σ · ~E }

−
e2

24m5
[~σ · ~π, [~σ · ~π, (~σ · ~E)2 ] ] +

e2

48m5
{(~σ · ~π)3, ~σ · ∂t ~E}

−
5ie

1024m6
[~σ · ~π, [~σ · ~π, [~σ · ~π, [~σ · ~π, [~σ · ~π, ~E ] ] ] ]]

−
i e

32m6
{~σ · ~π, {~σ · ~π, [~σ · ~π, [~σ · ~π, [~σ · ~π, ~E ] ] ] } }

−
i e

48m6
{~σ · ~π, {~σ · ~π, {~σ · ~π, {~σ · ~π, [~σ · ~π, ~E ] } } } } .

The general results for the eighth-order transformation could be the starting point
for a series in improvements of theoretical predictions.
Computer algebra, including the somewhat sophisticated mapping of operator
algebras, was used in the derivation.
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Relativistic Recoil Correction (Salpeter)

I Way I (Chapter 15): Ad hoc approach, matching scattering amplitudes

I Way II (Chapter 16): Ab initio, relativistic Bethe–Salpeter equation

G = S + S K G

I Way III (Chapter 17): From an Effective Field Theory (NRQED)
(There is a Bethe–Salpeter Equation of NRQED!)
(It corresponds to the Schrödinger equation!)
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Precision Experiments and Theory:
Candidates for BSM Effects

Proton Radius Puzzle

X17 Boson
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Proton Radius Puzzle
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Enigma Since 2011: In a Nutshell

I Spectroscopic results can be “reverse engineered” in order to find the
proton radius.

I Measurements of the Lamb shift in muonic hydrogen (2011,
Paul–Scherrer Institute) yield a result of about rp ≈ 0.84 fm.

I Measurements of the Lamb shift in ordinary hydrogen by the Paris
group (Biraben and Nez, with notable results communicated in 1998
and 2018) yield a result of about rp ≈ 0.88 fm.

I A recent measurement of a 2S–8D transition in ordinary hydrogen,
completed at Colorado State University in 2022, yields a result of
rp ≈ 0.86 fm.

I The results of electron scattering experiments at Mainz (2010,
rp ≈ 0.88 fm) and PRad Brookhaven (2019, rp ≈ 0.84 fm) are not in
mutual agreement.

I Two PRLs from 1969 (experiments at Brookhaven) suggest that there
could be a non-universality in muon-proton versus electron-proton
scattering cross sections.

I The situation is unclear and the MUSE experiment at PSI (and further
spectrocopic results) could shed s more light on the problem.
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Forgotten Physical Review Letters (plural!) from 1969

PRL 23, 153 (1969) published on 21–JUL–1969
(coincidentally, the precise day when mankind set foot on the moon)

Could this be a hint for new physics?
The signal seen in 1969 matches the discrepancy seen in the proton radius
derived from hydrogen versus muonic hydrogen spectroscopy (both sign and
magnitude).
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Forgotten Physical Review Letters (plural!) from 1969

PRL 23, 149 (1969) published on 21–JUL–1969
(coincidentally, the precise day when mankind set foot on the moon)

Could this be a hint for new physics?
The signal seen in 1969 was carefully checked for the validity of the
one-photon approximation (Rosenbluth approximation):

dσ

dq2

∣∣∣∣
µ,e

=
dσ

dq2

∣∣∣∣
NS

1

cot2(θ/2)

[
2τGM (q2) +

G2
E(q2) + τ GM (q2)

1 + τ
cot2(θ/2)

]
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Non–Universality of about 4 % Seen in 1969
Plot from PRL 23, 153 (1969)
[Sachs form factor, muon versus electron scattering]:

8% change in the cross sections
4% change in the form factors
2% change in the rms radius

〈r2〉p = r2p = 6~2 ∂GE(q2)

∂q2

∣∣∣∣
q2=0

Could explain, e.g., a difference√
〈r2〉p

∣∣∣
e
≈ 0.86 fm ,

√
〈r2〉p

∣∣∣
µ
≈ 0.84 fm ,

[U.D.J., J.Phys.Conf.Ser. 2391,
012017 (2022)]
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Two (Perhaps, Three) Approaches to the Proton Radius Determination

Way #1: Scattering Experiments

〈r2〉p = r2p = 6~2 ∂GE(q2)

∂q2

∣∣∣∣
q2=0

Way #2A: Muonic Hydrogen Spectroscopy

∆E =
2

3

(Zα)4 µc2

π n3

(µ c rp
~

)2
Way #2B: Hydrogen Spectroscopy

We have Z = 1. The reduced mass µ is roughly 200 times larger for muonic
bound systems as compared to ordinary hydrogen. The finite-size effect is
proportional to µ3, and thus, muonic hydrogen is very sensitive probe of the
proton radius.
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(Not Yet Published) Reevaluation of Two–Loop Vacuum Polarization

Muonic bound systems are sensitive to vacuum-polarization corrections.
For a theoretical overview: [UDJ, Ann. Phys. (N.Y.) 326, 500 (2011)]

The two-loop vacuum-polarization correction contributes an energy shift of
about 1.5081 meV to the muonic hydrogen Lamb shift and had never been
reevaluated beyond the classic works of Kallen and Sabry (1955), and
Barbieri and Remiddi (1973). A reevaluation using dimensional
regularization and integration-by-parts techniques (S. Laporta and UDJ, in
preparation) sheds additional light on the problem, in view of a comparison
to a proton size puzzle of 0.3 meV in the muonic hydrogen Lamb shift.
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Muonic Hydrogen Measurement [2010]: Lamb Shift

2010 measurement: rp = 0.84184(67) fm ≈ 0.84 fm.
Nature 466, 213 (2010):
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Recent Hydrogen Measurement [2018, French]: 1S–3S

2018 measurement [Paris]: rp = 0.877(13) fm. Oops. . .

[The experimental approach taken by the Paris group should be largely
independent of cross-damping terms.]
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Recent Hydrogen Measurement [2019, Canada]: 2S–2P1/2

2019 measurement [Toronto]: rp = 0.833(10) fm.
Leads to a small “Canadian proton”.
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Lamb Shift and Fine Structure [Canada, Perhaps a Caveat]

Hydrogen spectrum (n = 2 manifold, without hyperfine structure):

Perhaps a little caveat: The 2P1/2–2P3/2 fine-structure is nearly
independent of the proton radius and can be calculated to very high
precision; its measurement would constitute an important consistency check
for the smallness of the “Canadian protons”.
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“French versus Canadian and German Protons”
One might ask, jokingly:
“Are French protons larger than German and Canadian protons?”
Blue: Decades of work of the French [Paris] group
Green: Result of the 2017 measurement of the Garching group
[Science 358, 79 (2017)] (in agreement with the Toronto measurement)

27



Recent Hydrogen Measurement [2022]: 2S–8D

2022 measurement: rp = 0.8584(51)fm ≈ 0.86 fm.
Colorado State University with support from the Russian Quantum Center.
“Size of American protons between German/Canadian and French ones.”
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Recent Hydrogen Measurement [2022]: 2S–8D

by the way... example of a higher-order coefficient:
A60(8D5/2) = 0.034 607 492(1)
[see U.D.J., E.-O. Le Bigot, P. J. Mohr, P. Indelicato, G. Soff,
Phys. Rev. Lett. 90, 163001 (2003)]
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X17 Boson
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Perhaps New Physics!?!?! (Group of Attila Krasznahorkay, ATOMKI)

Beryllium (2016):

7Li + p→ 8Be∗ → 8Be + γ → 8Be + e+e− (1+ → 0+)

Helium (2019):

3H + p→ 4He∗ → 4He + γ → 4He + e+e− (0− → 0+)

From arXiv:1910.10459:
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Caricature

Mass of new particle: about 17 MeV.
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Possible Theoretical Explanations

Group of Jonathan Feng (PRL, 2016):
“The X17 might be a protophobic vector boson.”

Paper of Ellwanger and Moretti (JHEP, 2016):
“The X17 might be a light pseudoscalar boson.”

Let us remember that in atomic physics precision experiments, we would
actually like to see deviations of experimental observations from
experiments attributable to “new physics”. This has been a significant
motivation pushing the theoretical and experimental efforts for the last
couple of decades.

Recent attempts at alternative explanations for the Hungarian
observations, but noone has carried out any experiment. Room for
improvement: Angular resolution, in Hungary!
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Light Vector and Pseudoscalar Particles and Atomic Physics

We investigate, irrespective of the Hungarian experimental results,
what the effect, what the effect of a light (mass in the approximate range
from 10 MeV to 100 MeV) vector or pseudoscalar new particle is for
atomic-physics experiments.

Here, f denotes the bound fermion (typically, an electron or a muon) and
N denotes the atomic nucleus. (Inspired by the mentioned theoretical
papers of Feng et al., and of Ellwanger and Moretti.)
Unfortunately, the mass range of 17 MeV (give or take) is quite problematic
for atomic-physics studies, because the Yukawa potentials are almost
indistiguishable from a nuclear-size effect for electronic bound states. Way
out: study muonic systems.
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Effective Hamiltonian for Vector Boson Exchange

Vector exchange leads to the following contribution to HFS:

HHFS,V =
h′f h

′
N

16πmf mN

[
−8π

3
δ(3)(~r)~σf · ~σN

−
m2
X

(
~σf · ~r ~σN · ~r − r2 ~σf · ~σN

)
r3

e−mX r

− (1 +mX r)
3~σf · ~r ~σN · ~r − r2 ~σf · ~σN

r5
e−mX r

−
(

2 +
mf

mN

)
(1 +mX r)

~σN · ~L
r3

e−mX r

]
.

Derivation:
[Phys. Rev. A 101, 062503 (2020)]
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Effective Hamiltonian for Pseudoscalar Boson Exchange

Pseudoscalar exchange exclusively contributes to the HFS:

HHFS,A =
hf hN

16πmf mN

[
4π

3
δ(3)(~r)~σf · ~σN

− m2
X ~σf · ~r ~σN · ~r

r3
e−mX r

+ (1 +mX r)
3~σf · ~r ~σN · ~r − ~σf · ~σN r2

r5
e−mX r

]
.

Leaves Lamb shift invariant!
[Phys. Rev. A 101, 062503 (2020)]
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Bound on the Muon Coupling Parameter

Vector model:
h
′
µ = (h′µ)opt = 5.6× 10−4 .

Pseudoscalar model:

hµ = (hµ)max = 3.8× 10−4 .
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Enhancement of X17 Effects in Muonic Systems

Example: Relative correction to the S state splitting is

EX,V (nS1/2)

EF (nS1/2)
≈ −

2h′fh
′
N

gNπ

Z mr

mX
,

EX,A(nS1/2)

EF (nS1/2)
≈ hfhN

gNπ

Z mr

mX
.

Have the reduced mass mr in the numerator after dividing by the
leading-order Fermi splitting.
(Electronic systems: relative corrections to HFS of order 10−9.)
(So: Concentrate on muonic systems)
Just to clarify:
The nuclear g factor gN is used in a specific normalization
[Phys. Rev. A 101, 062503 (2020)].
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Predictions for Muonic Deuterium

S states (with realistic estimates for coupling parameters):

E
(µd)
X,V (nS1/2)

EF (nS1/2)
≈̇ 3.8× 10−6 ,

E
(µd)
X,A (nS1/2)

EF (nS1/2)
≈̇ − 1.0× 10−6 .

P states:

E
(µd)
X,V (nP1/2)

EF (nP1/2)
≈̇ 2.5× 10−7

(
1− 1

n2

)
,

E
(µd)
X,A (nP1/2)

EF (nP1/2)
≈̇ 6.6× 10−8

(
1− 1

n2

)
.

This could be measurable but an enhanced understanding of nuclear
polarization effects might be required for S states.
For P states, nuclear effects are strongly suppressed.
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Predictions for True Muonium (µ+µ−)

Define

χV (nS) =
4

7

EX,V (nS)

EF (nS)
+

3

7

EANN,V (nS)

EANN,γ(nS)
,

χA(nS) =
4

7

EX,A(nS)

EF (nS)
+

3

7

EANN,A(nS)

EANN,γ(nS)
.

Obtain the estimates

χV (nS) ≈̇ 1.3× 10−6 ,

χA(nS) ≈̇ 2.1× 10−6 .

This could very well be measurable; only a very moderate improvement of
the accuracy of the predictions for hadronic vacuum polarization is required.
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Conclusions

I Textbook/monograph is available.
It covers aspects of atomic physics,
advanced quantum mechanics, to quantum
field theory and the Bethe–Salpeter equation.

I Proton radius puzzle: Requires additional
experimental efforts for verification.
Stimulates the evaluation of higher-order
binding corrections to the Lamb shift.

I X17 boson:
Possible addition to the low-energy sector
of the Standard Model
Could be detected in exotic atomic systems.

I Low-energy precision physics is one of the
most promising instruments to detect conceivable
low-energy additions to the Standard Model.
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Thank You for Your Attention!

I Hope You Had Fun!

I Questions are Welcome!
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