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Abstract
In higher dimensional physics there are usually two ways of 
dimensional reduction. One is by Kaluza-Klein theory and another by 
braneworld. In this talk we would like to discuss a third way of 
dimensional reduction. It is remarkably succinct, integrated by the 
groupoid and represented by the operation. Additionally, since it has 
a symmetry, it suggests an unknown conservation law based on 
Noetherʼs theorem.



Prologue: The Motive and Background
• Since the dawn of modern cosmology (early 20th century), the 3-dimensional sphere or hyperboloid has 

been the model for the universe we live in. Naturally, the Poincaré Conjecture was not proven at that 
time.

• In 1921-26, T. Kaluza and O. Klein proposed that gravity and electromagnetic forces can be unified by 
adding one extra dimension of space to the 3-dimensional space-time (4-dimensional space plus time) 
called 5-dimensional space-time (later shown to be insufficient). The extra 1-dimensional space, which 
we cannot perceive, is confined within the subatomic particles as an extremely small closed space. This 
is generally known as the Kaluza-Klein theory (KK theory), which is one of the essential theories in 
string theory today. 

• Although more complicated Calabi-Yau manifolds are used today, the essential idea is the same as the 
KK theory. Moreover, 10!"" different universes are produced from this theory (multiverses). 

• Experiments have been conducted to search for this compactified extra dimension, but they have yet to 
be verified. None of the particle physicists have been able to answer why space of more than three 
dimensions is compactly wound up in the first place. 

• Additionally, such an embedding from higher dimensional space to lower dimensional space should be 
diffeomorphism. However, they are really diffeomorphism? 



・An idea called D-brain (Dirichlet membrane: oscillations of 
string particles due to Dirichlet boundary conditions) and 
braneworld are becoming mainstream in string theory. Those 
ideas are that the extra dimensions are not compactified, but 
that our universe is a 3-dimensional space (4-dimensional 
space-time) floating within higher dimensional space.
・If this is the case, it is not surprising that there are 
subatomic particles as well that are eternally moving in a 2-
dimensional plane within 'our 3-dimensional spaceʼ. No such 
strange subatomic particles have yet been discovered.



Simple question:
Could we not discuss this in a simpler way or model?



Occamʼs Razor:
The	theory	or	law	to	be	explained	should	be	relatively	simple,
or
we	should	not	use	more	assumptions	than	necessary	to	explain	them.

Should	we	not	think	smarter,	based	on	such	a	philosophy?

Historical	examples
・Epicycles	became	more	and	more	complicated	to	correct	them	as	discrepancies	with	observational	facts	
were	found,	replacing	Copernicus‘	geocentric	theory.	(Initially,	the	celestial	motion	theory	with	epicycles	was	
more	accurate.)
See	https://youtu.be/erqsxNFOw4I
・The	Lorentz-Fitzgerald	contraction,	which	is	a	contraction	of	the	ether,	was	used	to	explain	the	medium	of	
electromagnetic	waves.
The	contraction	is	a	strange	hypothesis	that	space	shrinks	as	the	speed	of	an	object	increases.	Finally,	Einstein's	
special	theory	of	relativity	buried	all	such	strange	assumptions.

https://youtu.be/erqsxNFOw4I


History of spatial dimensions
• Euclid: Definition of points, lines, planes.
• Aristotle: The 3-dimensional volume is 'perfect' and there are no dimensions 

beyond the third dimension in his celestial theory.
• R. Descartes, P. Fermat: Co-ordinate geometry.
• B. Riemann: In Riemannian geometry, he introduced the line element (an 

extension of the Pythagorean theorem), which made it possible for the first 
time to mathematically discuss spaces of four or more dimensions.

• D. Hilbert: Based on the orthogonality of vectors, n-dimensional space is a 
space in which any number of base vectors are orthogonal to each other and 
the norm is defined. It is called a Hilbert space.

These ideas assume that low-dimensional space is a subspace of higher (or 
same) dimensional space. However, is this assumption correct in the strict 
sense? That will be obviously doubtful, especially when we look at the 
strangeness of extra-dimensional (higher-dimensional) space in modern 
physics.



Chapter 1: Concrete Insights
What is the spatial dimension? First of all, let us delve deeper 
into this matter.



Let us consider again the spatial 
dimension from the low-dimensional case
・Let us consider the relationship between co-ordinate 
geometry and its degree of freedom.



Degree of Freedom
• The simplest explanation is that of the direction from point A to 

point B in the 2-dimensional space.
• We empirically think that point B is only one arbitrary point (as in 

Cartesian co-ordinates).
• However, is this absolutely true?
• This is actually a special case, because the degree of freedom of 

the point means moving from A to B. That is, the direction 
towards point B is completely guaranteed.
• Suppose then, that the point from A to B has no degree of 

freedom: indecisive to one direction.
• How would that point move?



Point not given a degree of freedom 
(the 2-dimensional space)
• A point that is not given a degree of freedom cannot determine a single 

direction.
• In other words, as shown in Fig. 1, the point will move the 'whole event' 

directions (the entire 360°).

• This appears to be a wave (pulse wave) propagating in space with no medium. 
What does this mean?

B(circle)

A(point)

Fig. 1



Here are some things to keep in mind
• The original 1-dimensional space is not a subspace of  

the 2-dimensional space. A subspace is only a part of 
the 2-dimensional space. If it is a 1-dimensional straight 
line as a subspace, the degree of freedom has 'alreadyʼ 
been determined (e.g. from point A to point B).

• Now consider the degree of freedom or direction. If a point 
has 2 degrees of freedom in the 2-dimensional space, it is a 
point in the 2-dimensional space.
• On the other hand, what does it mean if a point has only one 

degree of freedom in the 2-dimensional space?



Conclusion: What does it mean that a point is 
in the 2-dimensional space with only one 
degree of freedom?
A point has only one degree of freedom in the 2-dimensional space:
• If the point originally existed in the 1-dimensional space with only 

one degree of freedom and it is moved to the 2-dimensional space, 
then the point keeps having only one degree of freedom in the 2-
dimensional space.
• Now consider the degree of freedom as a stochastic event: the 

fact that a point moving in the 2-dimensional space has two 
degrees of freedom means that the point can go in any direction 
in 360°. On the other hand, if a point has only one degree of 
freedom in the 2-dimensional space, it cannot arbitrarily decide in 
which direction to go. Therefore, the point can only move forward 
the 'whole event' directions. Thus, the point can only move in the 
2-dimensional space like a pulse wave.



Let us consider the same thing in the
2-dimensional Cartesian co-ordinate system
• In the ordinary Cartesian co-ordinates, there are two degrees of 

freedom (x, y).
• If there is only one degree of freedom, then there is only x (or y).
• For example, if x has a value, it can be shown as x=2. This is a 

'point' located at 2 in the 1-dimensional space (the number line), but if 
we consider this in the 2-dimensional space, of course we do not 
consider it to be (2, 0). Note that by considering y=0, we have given y a 
degree of freedom. Strictly speaking, we consider this x=2 to be a 
'straight line' parallel to the y-axis and passing through 2 on the x-axis.

• If we consider this in the context mentioned above, a point moved from 
the 1-dimensional space to the 2-dimensional space has no degree of 
freedom on the y-axis, so it occupies all points on the y-axis (i.e. the 
'whole event' in probability theory). Therefore, x=2 can be interpreted 
as meaning that x=2 is a straight line. It makes sense also in 
conventional mathematics.



Furthermore, consider x=2 in the 3-
dimensional space
Since x=2 has only one degree of freedom in the
3-dimensional space, it can be regarded as a plane parallel to 
the y-z plane by the same consideration.

2
x

y

z

Fig. 2

𝑥 =2(plane)



Now consider a point with one degree of freedom that is transferred 
from the 1-dimensional space to higher dimensional space and 
then the first example which spreads out in concentric circles as 
described earlier:
• This is considered to be a case in the polar co-ordinates.
• Therefore, if the point x=2 is transferred to the 2-dimensional space, it 

is a circle of radius 2.
• If the point is transferred to the 3-dimensional space, it is a sphere of 

radius 2.

2

𝑟 = 2 (radius) 𝑟 = 2 (radius)

Fig. 3 Fig. 4



So far, we have considered points that are transferred from lower 
dimensional space to higher dimensional space. How does the 
other way around go?
• The best example of this is the relationship between the equations of a 

circle and a surface in the homogeneous co-ordinates. For example, the 
equation of a paraboloid 𝑥!+𝑦! = 𝑧! is, by algebraic manipulation, the 
equation of a circle 𝑥/𝑦 ! + 𝑦/𝑧 ! = 𝑋! + 𝑌! = 1 , shown in Fig. 5 and 
Fig. 6. 

• This can be said to be a projection of a surface in the 3-dimensional 
space on to a circle in the 2-dimensional space. In other words, it is a 
transfer from higher dimensional space to lower dimensional space.

• From now on, following the term of the homogenous co-ordinates, the 
movement from m-dimensional space to n-dimensional space is referred 
to as ʻprojectionʼ.



The projection from the 3-dimensional space to the
2-dimensional space in the homogenous co-ordinates:

x

x

x

𝑥!+𝑦! = 𝑧!

o 1-1
X

Y

𝑥/𝑧 ! + 𝑦/𝑧 ! = 𝑋! + 𝑌! = 1

Fig. 5 Fig. 6



Finally for this chapter, let us end the discussion above as follows: 

• Lower dimensional space is not a subspace of higher dimensional space. They 
are disjoint each other.

• Any point in the n-dimensional space has n-degrees of freedom: it has n-
variables.

• If a point is transferred to a different dimensional space, the number of 
variables or the degree of freedom never changes.



Chapter 2: Description with Matrices
Let us introduce a specific matrix operator to project a point 
between mutual dimensions. This matrix is different from a 
conventional one; it includes a special operator needing a 
temporary variable for operation, because the number of variables 
of a point before and after this operation is different. 
Demonstrating it with attention to the fact, for example, 
operating by an operator 𝐸!" to project a point A1 in the 
1-dimensional space into the 2-dimensional space ( A2 ), the 
equation is 𝐴! = 𝐸"!𝐴" ,

∴
𝑥
𝑦 = 1 0

0 𝐷
𝑎
𝑇 = 𝑎

𝐷𝑇 , … (2.1)

where D is a matrix element making the dimension higher and T
a temporary variable to correspond to the 2-dimensional space 
after operation. Therefore, DT denotes all real numbers of y at 
once. This process of Eq. 2.1 is shown in Fig. 7.



x
𝑥 = 𝑎 (point)

x

y

𝑥 = 𝑎 (line)

𝑎 𝑎

Fig. 7



Operating another case from the 1-dimensional space to the 3-dimensional space, then:

𝑥
𝑦
𝑧

=
1 0 0
0 𝐷 0
0 0 𝐷

𝑎
𝑇
𝑇

=
𝑎
𝐷𝑇
𝐷𝑇

.  … (2.2)

Similarly, projection from the 3-dimensional space to the 2-dimensional space is 
operated as:

𝑥
𝑦
𝑧

=
1 0 0
0 1 0
0 0 𝐷!"

𝑎
𝑏
𝑐

=
𝑎
𝑏

𝐷!"𝑐
.  … (2.3)

𝐷#$ denotes an element making the dimension lower and inverse of D. Eq. 2.3 is shown in Fig. 8. Then, if returning 
the point projected from the 3-dimensional space into the 2-dimensional space by Eq. 2.3 to the original dimensional 
space, the operation is as follows:

𝑥
𝑦
𝑧

=
1 0 0
0 1 0
0 0 𝐷

𝑎
𝑏

𝐷!"𝑐
=

1 0 0
0 1 0
0 0 𝐷

1 0 0
0 1 0
0 0 𝐷!"

𝑎
𝑏
𝑐

=
𝑎
𝑏
𝑐

.  … (2.4)

∴ 𝐸,!𝐸!,(= 𝐸!, -.𝐸!,) = 𝐸,, ≡ 1.  … (2.5)



Fig. 83-dimensional space 2-dimensional space



The general operator which is dimensional unit matrix Elm is:
If 𝑙 < 𝑚,

𝐸./ = 𝑑𝑖𝑎𝑔(1,1,1, … , 1,1,1
.

, 𝐷, 𝐷, 𝐷, … , 𝐷, 𝐷, 𝐷
/0.

).
If 𝑚 < 𝑙,

𝐸!" = 𝐸"! #$ = 𝑑𝑖𝑎𝑔(1,1,1, … , 1,1,1
"

, 𝐷#$, 𝐷#$, 𝐷#$, … , 𝐷#$, 𝐷#$, 𝐷#$
!#"

).

∴ 𝐸12𝐸21 = 𝐸11 ≡ 1 ≡ 𝐸21𝐸12 = 𝐸22.  …(2-6)

Furthermore,
𝐸34 = 𝑑𝑖𝑎𝑔(𝐷, 𝐷, 𝐷, … , 𝐷, 𝐷, 𝐷

4

), 

𝐸43 = 𝐸34
0! = 𝑑𝑖𝑎𝑔(𝐷0!, 𝐷0!, 𝐷0!, … , 𝐷0!, 𝐷0!, 𝐷0!

4

).



Note: This is not the best example though, the 
case below is in a series of projections from 
higher dimensional space to lower dimensional 
space: 

Fig. 9

𝐵0(𝑟0, 𝛼, 𝛽)

𝐵!(𝑟0𝑐𝑜𝑠𝛼, 𝛽)𝐵1(𝑟0𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽)

↻
𝐵! 𝐵"

𝐵#

𝐸!"

𝐸"#𝐸!#



Chapter 3: The Groupoid
Proposition. In the former chapter, matrices in a series of operations 
(partially functional) make the action groupoid. They are indicated by 
equations as follows :
i. 𝐸"#𝐸#$ = 𝐸"$ (automorphism besides closure, proven in Chap. 4), … (3.1)
ii. (𝐸%"𝐸"#)𝐸#$ = 𝐸%"(𝐸"#𝐸#$) (associative), … (3.2)
iii. 𝐸&%𝐸%& = 𝐸&& ≡ 1 ≡ 𝐸%&𝐸&% = 𝐸%% (inverse), … (3.3)

Or 𝐸"#𝐸#" = 𝐸"# 𝐸"# '( = 𝐸#" '(𝐸#" ≡ 1 (identity), … (3.4)
iv. 𝐸%"𝐸"#𝐸#" = 𝐸%"𝐸"# 𝐸"# '( = 𝐸%" (right identity), … (3.5)

and 𝐸"%𝐸%"𝐸"# = 𝐸%" '(𝐸%"𝐸"# = 𝐸"# (left identity), … (3.6)
v. 𝐸"#𝐸#$ '( = 𝐸#$ '( 𝐸"# '(, … (3.7)
vi. 𝐸&& ≡ 1 (identity equivalent to the scalar value).  … (3.8)

(i) and (vi) are peculiar to the groupoid.

i:



Proof. At first, of the formula (i) is as follows: 
a1) If 0 < 𝑙 < 𝑚 < 𝑛 (projecting into higher dimensions),

𝑥) = 𝐸"#𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
#'"

)(𝑥(, 𝑥!, … , 𝑥", 𝑇, 𝑇, … , 𝑇
#'"

)*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝑇
#'"

)*

∴  𝐸#$𝑥′ = 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷, 𝐷, … , 𝐷
$'#

)(𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
#'"

𝑇, 𝑇, … , 𝑇
$'#

)*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝑇
$'"

)*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
$'"

)(𝑥(, 𝑥!, … , 𝑥", 𝑇, 𝑇, … , 𝑇
$'"

)*

= 𝐸"$𝑥 .

,

.

The operators in chap. 2 explicitly show the groupoid
mentioned above. However, we have never calculated such 
matrices. Therefore, we need to check and verify they really 
work. 



a2) If 0 < 𝑙 < 𝑛 < 𝑚 (projecting into higher dimensions),

𝑥% = 𝐸!"𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
!

, 𝐷, 𝐷, … , 𝐷
"#!

)(𝑥$, 𝑥&, … , 𝑥! , 𝑇, 𝑇, … , 𝑇
"#!

)'

= (𝑥$, 𝑥&, … , 𝑥! , 𝐷𝑇, 𝐷𝑇, … , 𝑇
"#!

)'
∴  𝐸)*𝑥′ = 𝐸*) +" 𝑥′

= 𝑑𝑖𝑎𝑔(1,1, … , 1
)

, 𝐷+", 𝐷+", … , 𝐷+"
)+*

)(𝑥", 𝑥!, … , 𝑥, , 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
)+,

𝑇, 𝑇, … , 𝑇
)+*

)-

= (𝑥", 𝑥!, … , 𝑥, , 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
*+,

𝑇, 𝑇, … , 𝑇
)+*

)-.

Remark. Since T is temporary, they are gone. For example, 

1 0 0
0 𝐷+" 0
0 0 𝐷+"

𝑎
𝐷𝑇
𝐷𝑇

=
1 0 0
0 𝐷+" 0
0 0 𝐷+"

1 0 0
0 𝐷 0
0 0 𝐷

𝑎
𝑇
𝑇
=

1 0 0
0 1 0
0 0 1

𝑎
𝑇
𝑇

=
𝑎
𝑇
𝑇

= 𝑎 .

See also Eq. 1.1 and 1.2.



∴ = (𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
$'"

)*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
$'"

)(𝑥(, 𝑥!, … , 𝑥", 𝑇, 𝑇, … , 𝑇
$'"

)*

= 𝐸"$𝑥 .

a3) If 0 < 𝑚 < 𝑙 < 𝑛 (projecting into higher dimensions),

𝑥) = 𝐸"#𝑥 = 𝐸#" '( 𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷'(, 𝐷'(, … , 𝐷'(
"'#

)(𝑥(, 𝑥!, … , 𝑥")*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷'(𝑥#+(, 𝐷'(𝑥#+!, … , 𝐷'(𝑥")*.

∴  𝐸/0𝑥′ = 𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, D, … , 𝐷 )
/-0

(𝑥., 𝑥!, … , 𝑥1, 𝐷-.𝑥/2., 𝐷-.𝑥/2!, … , 𝐷-.𝑥1
1-/

, 𝑇, 𝑇, … , 𝑇
0-1

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
0-1

)(𝑥., 𝑥!, … , 𝑥1, 𝑇, 𝑇, … , 𝑇
0-1

)3

= 𝐸"$𝑥 .



b1) If 0 < 𝑛 < 𝑚 < 𝑙 (projecting into lower dimensions),

𝑥) = 𝐸"#𝑥 = 𝐸#" '( 𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷'(, 𝐷'(, … , 𝐷'(
"'#

)(𝑥(, 𝑥!, … , 𝑥")*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷'(𝑥#+(, 𝐷'(𝑥#+!, … , 𝐷'(𝑥")*.

∴  𝐸/0𝑥4 = 𝐸0/ -. 𝑥4

= 𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
/-0

1,1, … , 1
1-/

)(𝑥., 𝑥!, … , 𝑥/, 𝐷-.𝑥/2., 𝐷-.𝑥/2!, … , 𝐷-.𝑥1)3

= (𝑥., 𝑥!, … , 𝑥0, 𝐷-.𝑥02., 𝐷-.𝑥02!, … , 𝐷-.𝑥1)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
1-0

)(𝑥., 𝑥!, … , 𝑥1)3

= 𝐸$" '(𝑥 = 𝐸"$𝑥 .



b2) If 0 < 𝑛 < 𝑙 < 𝑚 (projecting into lower dimensions),

𝑥= = 𝐸>?𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
>

, 𝐷, 𝐷, … , 𝐷
?@>

)(𝑥1, 𝑥!, … , 𝑥> , 𝑇, 𝑇, … , 𝑇
?@>

)A

= (𝑥1, 𝑥!, … , 𝑥? , 𝐷𝑇, 𝐷𝑇,… , 𝐷𝑇
?@>

)A.

∴  𝐸#$𝑥) = 𝐸$# '( 𝑥)

= 𝑑𝑖𝑎𝑔(1,1, … , 1
$

, 𝐷'(𝐷'(, … , 𝐷'(
#'$

) (𝑥(, 𝑥!, … , 𝑥#, 𝐷'(𝑇, 𝐷'(𝑇, … , 𝐷'(𝑇
#'"

)*

= (𝑥(, 𝑥!, … , 𝑥$, 𝐷'(𝑥$+(, 𝐷'(𝑥$+!, … , 𝐷'(𝑥", 𝑇, 𝑇, … , 𝑇
#'"

)*

= (𝑥(, 𝑥!, … , 𝑥$, 𝐷'(𝑥$+(, 𝐷'(𝑥$+!, … , 𝐷'(𝑥")*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
$

, 𝐷'(𝐷'(, … , 𝐷'(
"'$

)(𝑥(, 𝑥!, … , 𝑥")*

= 𝐸B>
@1𝑥 = 𝐸>B𝑥 .



b3) If 0 < 𝑚 < 𝑛 < 𝑙 (projecting into lower dimensions),

𝑥= = 𝐸>?𝑥 = 𝐸?>
@1 𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1

?

, 𝐷, D, … , 𝐷
>@?

)(𝑥1, 𝑥!, … , 𝑥>)A

= (𝑥1, 𝑥!, … , 𝑥? , 𝐷@1𝑥?C1, 𝐷@1𝑥?C!, … , 𝐷@1𝑥>)A.

∴  𝐸"(𝑥% = 𝑑𝑖𝑎𝑔(1,1, … , 1
(

, 𝐷, D, … , 𝐷
(#"

1,1, … , 1
(#!

)(𝑥$, 𝑥&, … , 𝑥", 𝐷#$𝑥")$, 𝐷#$𝑥")&, … , 𝐷#$𝑥!)'

= (𝑥(, 𝑥!, … , 𝑥$, 𝐷'(𝑥$+(, 𝐷'(𝑥$+!, … , 𝐷'(𝑥")*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
$

, 𝐷'(𝐷'(, … , 𝐷'(
"'$

)(𝑥(, 𝑥!, … , 𝑥")*

= 𝐸B>
@1𝑥 = 𝐸>B𝑥 .



Proof of (ii), of associative law, is as follow: Since (𝐸+,𝐸,-)𝐸-. = 𝐸+-𝐸-. = 𝐸+., and
𝐸+,(𝐸,-𝐸-.) = 𝐸+,𝐸,. = 𝐸+. from (i), (𝐸+,𝐸,-)𝐸-. = 𝐸+,(𝐸,-𝐸-.).

Proof of (iii) follows the rule of Eq. 2.6. Another proof for Eq. 3.4 is, from the formula (i), 𝑓 𝐴𝐴/0 = 𝐼 =
𝑓 𝐴 𝑓(𝐴/0). ∴ 𝑓(𝐴/0) =𝑓 𝐴 /0, where 𝑓 𝐴/0 = 𝐸-, and 
𝑓 𝐴 /0 = 𝐸,- /0.

Proof of (iv), it is trivial from (ii).

Proof of (v), 𝐸,-𝐸-. 𝐸,-𝐸-. /0 = 𝐸,-𝐸-. 𝐸-. /0 𝐸,- /0 = 𝐸,, ≡ 1.

At last, proof of (vi) is as follows. For 𝐺 = {𝐸,-}, the scalar multiplication by 1 in field k holds as 
𝑠: 1×𝐺 = G×1 → 𝐺. It is compatible with the matrix multiplications in G . Then, 
𝐸-. = 𝐼-𝐸-. ≡ 1𝐸-. = 𝐸-.1 ≡ 𝐸-.𝐼. = 𝐸-.. Since it is  ‘mapping to itself ’ (in the narrower sense of the 
word of our discussion), it is equivalent to conventional unit matrices. □

Since this groupoid is homomorphism from (i), it can be considered as a representation of groupoid. 
Strictly speaking, it is automorphism. This will be proven later.



From another viewpoint 
The groupoid mentioned above is partially defined, not for any two elements arbitrarily taken from G. We will 
not therefore consider it as a group. However, we have to take notice that group axioms do not claim that 
such a whole process (binary operation) should be done. To confirm it, let us try to give five conditions as 
group axioms as follows:
(1). We randomly take any two elements in a set G.
(2). For any two elements taken from G, the operation is closed in G, s. t. for any a, b, c in G, ab = c.
(3). For any a, b, c in G, (ab)c = a(bc) : associative law holds. 
(4). There exists unique identity e. 
(5). For each a in G, its inverse b exists s.t. ab = ba = e .

What we must pay attention to is whether the first condition should be included in axioms of groups. If 
accepting it, we should introduce a concept of axiom in probability theory. That is, in group theory, we assume 
the whole event for any two elements arbitrarily taken from G in the manner of probability theory, then 
define binary operation such for any elements taken from G at random. In other words, we should consider 
so-called sample space or measure theory for probability in group theory. Group axioms naturally do not 
claim such a process and another axiomatic system in probability theory. 
Remark. In conventional algebra, the number of combinations is N×N (Descartes product) at most. However, 
the number of the operators’ combinations is N×N×N×N. Even in the case of 𝐸%&𝐸&', the number is 
N×N×N . So we must contemplate and rethink these issues.



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 𝑥 = 𝐸!"𝐸"(𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
!

, 𝐷, 𝐷, … , 𝐷
"#!

1,1, … , 1
(#"

)𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
(#"

)(𝑥$, 𝑥&, … , 𝑥! , 𝑇, 𝑇, … , 𝑇
(#!

)'

= (𝑥$, 𝑥&, … , 𝑥! , 𝐷𝑇, 𝐷𝑇, … , 𝑇
(#!

)'

= 𝑑𝑖𝑎𝑔(1,1, … , 1
!

, 𝐷, 𝐷, … , 𝐷
(#!

)(𝑥$, 𝑥&, … , 𝑥! , 𝑇, 𝑇, … , 𝑇
(#!

)'

= 𝐸!(𝑥 .
∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



Chapter 4: The Groupoid Representation
Claim. Equation of the groupoid is 𝐸1/𝐸/0 = 𝐸10 automorphism.
Proof. Firtly, the automorphism is proved as follows. Let 𝑓 𝐴 be 𝐸1/, 𝑓 𝐵 be 𝐸/0.
a1) If 0 < 𝑙 < 𝑚 < 𝑛 (projecting into higher dimensions),
For 𝑓 𝐴 (𝐵),

(𝑓 𝐴 )(𝑥) = 𝑥4= 𝐸1/𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
/-1

)(𝑥., 𝑥!, … , 𝑥1, 𝑇, 𝑇, … , 𝑇
/-1

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝑇
/-1

)3.

Then 𝑓 𝐵 𝑥4 = 𝐸/0𝑥′ = 𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, 𝐷, … , 𝐷
0-/

)(𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
/-1

𝑇, 𝑇, … , 𝑇
0-/

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝑇
0-1

)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
0-1

)(𝑥., 𝑥!, … , 𝑥1, 𝑇, 𝑇, … , 𝑇
0-1

)3

= 𝐸10𝑥 .



a2) If 0 < 𝑙 < 𝑛 < 𝑚 (projecting into higher dimensions),
For 𝑓 𝐴 𝑓(𝐵),

(𝑓 𝐴 )(𝑥) = 𝑥)= 𝐸"#𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
#'"

)(𝑥(, 𝑥!, … , 𝑥", 𝑇, 𝑇, … , 𝑇
#'"

)*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝑇
#'"

)*
Then 𝑓 𝐵 𝑥4 = 𝐸/0𝑥′ = 𝐸0/ -. 𝑥′

= 𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷-., 𝐷-., … , 𝐷-.
/-0

)(𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
/-1

𝑇, 𝑇, … , 𝑇
/-0

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

𝑇, 𝑇, … , 𝑇
/-0

)3

= (𝑥(, 𝑥!, … , 𝑥", 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
$'"

)*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷, 𝐷, … , 𝐷
$'"

)(𝑥(, 𝑥!, … , 𝑥", 𝑇, 𝑇, … , 𝑇
$'"

)*

= 𝐸"$𝑥 .



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 𝑥 = (𝐸1/𝐸/0)𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
/-1

)𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, 𝐷, … , 𝐷
/-0

)(𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
/-1

𝑇, 𝑇, … , 𝑇
/-0

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

𝑇, 𝑇, … , 𝑇
/-0

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
0-1

)(𝑥., 𝑥!, … , 𝑥1, 𝑇, 𝑇, … , 𝑇
0-1

)3

= 𝐸10𝑥 .
∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



a3) If 0 < 𝑚 < 𝑙 < 𝑛 (projecting into higher dimensions),
For 𝑓 𝐴 𝑓(𝐵),
(𝑓(𝐴)) 𝑥 = 𝑥) = 𝐸"#𝑥 = 𝐸#" '( 𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷'(, 𝐷'(, … , 𝐷'(
"'#

)(𝑥(, 𝑥!, … , 𝑥")*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷'(𝑥#+(, 𝐷'(𝑥#+!, … , 𝐷'(𝑥")*.
Then, 𝑓 𝐵 𝑥) = 𝐸/0𝑥4

=𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, D, … , 𝐷 )
/-0

(𝑥., 𝑥!, … , 𝑥1, 𝐷-.𝑥/2., 𝐷-.𝑥/2!, … , 𝐷-.𝑥1
1-/

, 𝑇, 𝑇, … , 𝑇
0-1

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, 𝐷, … , 𝐷
0-1

)(𝑥., 𝑥!, … , 𝑥1, 𝑇, 𝑇, … , 𝑇
0-1

)3

= 𝐸"$𝑥 .



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 𝑥 = (𝐸1/𝐸/0)𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷-., 𝐷-., … , 𝐷-.
1-/

1,1, … , 1
0-1

)𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, D, … , 𝐷 )
0-/

(𝑥., 𝑥!, … , 𝑥1 𝑇, 𝑇, … , 𝑇
0-1

)3

= (𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
0-1

)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, D, … , 𝐷 )
0-1

(𝑥., 𝑥!, … , 𝑥1 𝑇, 𝑇, … , 𝑇
0-1

)3

= 𝐸10𝑥 .
∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



b1) If 0 < 𝑛 < 𝑚 < 𝑙 (projecting into lower dimensions),
For 𝑓 𝐴 𝑓(𝐵),

(𝑓(𝐴)) 𝑥 = 𝑥)𝑧 = 𝐸"#𝑥 = 𝐸#" '( 𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷'(, 𝐷'(, … , 𝐷'(
"'#

)(𝑥(, 𝑥!, … , 𝑥")*

= (𝑥(, 𝑥!, … , 𝑥", 𝐷'(𝑥#+(, 𝐷'(𝑥#+!, … , 𝐷'(𝑥")*.
Then, 

𝑓 𝐵 𝑥 = 𝐸/0𝑥4 = 𝐸0/ -. 𝑥4

= 𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
/-0

1,1, … , 1
1-/

)(𝑥., 𝑥!, … , 𝑥/, 𝐷-.𝑥/2., 𝐷-.𝑥/2!, … , 𝐷-.𝑥1)3

= (𝑥., 𝑥!, … , 𝑥0, 𝐷-.𝑥02., 𝐷-.𝑥02!, … , 𝐷-.𝑥1)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
1-0

)(𝑥., 𝑥!, … , 𝑥1)3

= 𝐸$" '(𝑥 = 𝐸"$𝑥 .



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 𝑥 = (𝐸!"𝐸"()𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
"

, 𝐷#$, 𝐷#$, … , 𝐷#$
!#"

)(𝑥$, 𝑥&, … , 𝑥!)' 𝑑𝑖𝑎𝑔(1,1, … , 1
(

, 𝐷#$𝐷#$, … , 𝐷#$
"#(

1,1, … , 1
!#"

)
= (𝑥$, 𝑥&, … , 𝑥(, 𝐷#$𝑥()$, 𝐷#$𝑥()&, … , 𝐷#$𝑥!)'

= 𝑑𝑖𝑎𝑔(1,1, … , 1
*

, 𝐷+"𝐷+", … , 𝐷+"
,+*

)(𝑥", 𝑥!, … , 𝑥,)-

= 𝐸(! #$𝑥 = 𝐸!(𝑥 .
∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



b2) If 0 < 𝑛 < 𝑙 < 𝑚 (projecting into lower dimensions),
For 𝑓 𝐴 𝑓(𝐵),

(𝑓(𝐴)) 𝑥 = 𝑥> = 𝐸./𝑥 = 𝑑𝑖𝑎𝑔(1,1, … , 1
/

, 𝐷, D, … , 𝐷
.0/

)(𝑥!, 𝑥", … , 𝑥. , 𝑇, 𝑇, … , 𝑇
.0/

)?

= (𝑥!, 𝑥", … , 𝑥. , 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
/0.

)?.
Then,
(𝑓 𝐵 )(𝑥%) = 𝐸"(𝑥% = 𝐸(" #$ 𝑥%

= 𝑑𝑖𝑎𝑔(1,1, … , 1
(

, 𝐷#$𝐷#$, … , 𝐷#$
"#(

)(𝑥$, 𝑥&, … , 𝑥! , 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
"#!

)'

= (𝑥$, 𝑥&, … , 𝑥(, 𝐷#$𝑥()$, 𝐷#$𝑥()&, … , 𝐷#$𝑥! , 𝑇, 𝑇, … , 𝑇
"#!

)'

= (𝑥$, 𝑥&, … , 𝑥(, 𝐷#$𝑥()$, 𝐷#$𝑥()&, … , 𝐷#$𝑥!)'

= 𝑑𝑖𝑎𝑔(1,1, … , 1
(

, 𝐷#$𝐷#$, … , 𝐷#$
!#(

)(𝑥$, 𝑥&, … , 𝑥!)'

= 𝐸4.
0!𝑥 = 𝐸.4𝑥 .



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 𝑥 = (𝐸1/𝐸/0)𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
1

, 𝐷, D, … , 𝐷
/-1

)𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
/-0

)(𝑥., 𝑥!, … , 𝑥1, 𝐷𝑇, 𝐷𝑇, … , 𝐷𝑇
/-1

)3

= (𝑥., 𝑥!, … , 𝑥0, 𝐷-.𝑥02., 𝐷-.𝑥02!, … , 𝐷-.𝑥1, 𝑇, 𝑇, … , 𝑇
/-1

)3
= (𝑥., 𝑥!, … , 𝑥0, 𝐷-.𝑥02., 𝐷-.𝑥02!, … , 𝐷-.𝑥1)3

= 𝑑𝑖𝑎𝑔(1,1, … , 1
0

, 𝐷-.𝐷-., … , 𝐷-.
1-0

)(𝑥., 𝑥!, … , 𝑥1)3

= 𝐸01 -.𝑥 = 𝐸!(𝑥 .
∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



b3) If 0 < 𝑚 < 𝑛 < 𝑙 (projecting into lower dimensions),
For 𝑓 𝐴 𝑓(𝐵),
(𝑓(𝐴)) 𝑥 = 𝑥= = 𝐸>?𝑥 = 𝐸?>

@1 𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
?

, 𝐷, D, … , 𝐷
>@?

)(𝑥1, 𝑥!, … , 𝑥>)A

= (𝑥1, 𝑥!, … , 𝑥? , 𝐷@1𝑥?C1, 𝐷@1𝑥?C!, … , 𝐷@1𝑥>)A.
Then,

𝑓 𝐵 𝑥) = 𝐸"(𝑥%

= 𝑑𝑖𝑎𝑔(1,1, … , 1
(

, 𝐷, D, … , 𝐷
(#"

1,1, … , 1
(#!

)(𝑥$, 𝑥&, … , 𝑥", 𝐷#$𝑥")$, 𝐷#$𝑥")&, … , 𝐷#$𝑥!)'
= (𝑥(, 𝑥!, … , 𝑥$, 𝐷'(𝑥$+(, 𝐷'(𝑥$+!, … , 𝐷'(𝑥")*

= 𝑑𝑖𝑎𝑔(1,1, … , 1
$

, 𝐷'(𝐷'(, … , 𝐷'(
"'$

)(𝑥(, 𝑥!, … , 𝑥")*

= 𝐸B>
@1𝑥 = 𝐸>B𝑥 .



For 𝑓(𝐴𝐵),
𝑓 𝐴𝐵 )(𝑥) = (𝐸>?𝐸?B 𝑥

= 𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷, D, … , 𝐷
"'#

)𝑑𝑖𝑎𝑔(1,1, … , 1
#

, 𝐷, D, … , 𝐷
$'#

1,1, … , 1
$'"

)(𝑥1, 𝑥!, … , 𝑥>)A

= (𝑥1, 𝑥!, … , 𝑥B , 𝐷@1𝑥BC1, 𝐷@1𝑥BC!, … , 𝐷@1𝑥>)A

= 𝑑𝑖𝑎𝑔(1,1, … , 1
B

, 𝐷@1𝐷@1, … , 𝐷@1
>@B

)(𝑥1, 𝑥!, … , 𝑥>)A

= 𝐸B>
@1𝑥 = 𝐸$%𝑥 .

∴ 𝑓 𝐴𝐵 = 𝑓 𝐴 (𝐵).



Epilogue: The Invariant and Symmetry ̶
Towards Noetherʼs Theorem
• Invariant: In theoretical physics, an invariant means a 

physical system unchanged under mathematical operation. It 
is called also symmetry. 
• Noetherʼs Theorem: It states that every differential 

symmetry of the action of a physical system with 
conservative forces has a corresponding conservation law. 
• Noetherʼs theorem actually holds not only differential 

symmetries but also discrete symmetries. Parity and 
selection rule in quantum theory are those examples. 



What is the invariant in the groupoid that 
we have discussed?
• The invariant is conservation of the degree of freedom: 

wherever a point is projected, its degree of freedom is 
conserved. 
• It suggests that if higher dimensional physics were described 

by the groupoid, we might find an unknown physical 
conservation law. 



What is a preferable unification of string theories?

• The upper model is by M-Theory.
• The lower one is by so-to-speak 

our theory of dimensionality.

Our 4-dimensional space time

Projection into higher dimension
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