
1

The twenty-sixth workshop

What Comes Beyond
the Standard Models?

July 10�18, 2023, Bled, Slovenia

K.V.Stepanyantz

Moscow State University, Physical Faculty,

Department of Theoretical Physics

The gauge coupling uni�cation in Grand

Uni�ed Theories based on the group E8

based on K.S., ArXiv:2305.01295 [hep-ph]

K.V.Stepanyantz The gauge coupling uni�cation in Grand Uni�ed



2

Minimal Supersymmetric Standard Model (MSSM)

MSSM is the simplest supersymmetric extension of the Standard Model. It is a
gauge theory with the group SU3 ×SU2 ×U1 and softly broken supersymmetry.
Consequently, there are 3 gauge coupling constants e3, e2, and e1 in MSSM
(their number is equal to the number of factors in the gauge group). Quarks,
leptons, and Higgs �elds are components of the chiral matter super�elds:

Super�eld SU3 SU2 U1 (Y ) Super�eld SU3 SU2 U1 (Y )

3×Q 3 2 −1/6 3×N 1 1 0

3× U 3 1 2/3 3× E 1 1 −1

3×D 3 1 −1/3 Hd 1 2 1/2

3× L 1 2 1/2 Hu 1 2 −1/2

where for the super�elds which include left quarks and leptons we use the brief
notations

Q =

(
Ũ

D̃

)
; L =

(
Ñ

Ẽ

)
.
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Anomaly cancellation in MSSM

Quantum numbers of various MSSM super�elds are not accidental. They satisfy,
e.g., the anomaly cancellation conditions

tr
(
TA{TB , TC}

)
= 0,

where TA are the generators of the representation in which the chiral matter
super�elds lie. For MSSM the nontrivial relations needed for this equation to be
satis�ed have the form

2× SU3 + U1 :
1

4
tr(λAλB)

(
YU + YD + 2 · YQ

)
=

1

4
tr(λAλB)

(2
3
− 1

3
− 2 · 1

6

)
= 0;

2× SU2 + U1 :
1

4
(σασβ)

(
3 · YQ + YL

)
=

1

4
(σασβ)

(
− 3 · 1

6
+

1

2

)
= 0;

3× U1 :
∑

Y 3 = 3 · Y 3
U + 3 · Y 3

D + Y 3
E + 6 · Y 3

Q + 2 · Y 3
L

= 3 ·
(2
3

)3
+ 3 ·

(
− 1

3

)3
+ (−1)3 + 6 ·

(
− 1

6

)3
+ 2 ·

(1
2

)3
= 0.

(The contributions of Hd and Hu cancel each other and are not written here.)
Therefore, there is a question if these quantum numbers are accidental and how
they appear.
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Grand Uni�cation based on the group SU5

Similarly to the nonsupersymmetric case �rst considered in the paper

H.Georgi and S.L.Glashow, Phys. Rev. Lett. 32 (1974), 438.

the analysis of MSSM super�eld quantum numbers demonstrates that the
super�elds of a single generation (including the right neutrino) can be
accomodated in 3 irreducible representations of the group SU5

1 + 5 + 10

1 ∼ N ; 5i ∼


D1

D2

D3

Ẽ

−Ñ

 ; 10ij ∼


0 U3 −U2 Ũ1 D̃1

−U3 0 U1 Ũ2 D̃2

U2 −U1 0 Ũ3 D̃3

−Ũ1 −Ũ2 −Ũ3 0 E

−D̃1 −D̃2 −D̃3 −E 0

 .

In this case after the symmetry breaking SU5 → SU3 × SU2 × U1 all �elds of
the low-energy theory will have correct quantum numbers.
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Grand Uni�cation based on the group SU5

By a vacuum expectation value of the Higgs �eld in the adjoint representation
24 the SU5 symmetry can be broken down to the subgroup SU3 × SU2 × U1

with the elements

ω5 =

(
ω3e

−iβY /3 0

0 ω∗
2e

iβY /2

)
∈ SU3 × SU2 × U1 ⊂ SU5.

Then, from the SU5 tensor transformations

N → N ; 5i → (ω5)i
j5j ; 10ij → (ω∗

5)
k
i(ω

∗
5)

l
j 10

kl

one obtains that with respect to the subgroup SU3×SU2×U1 all chiral super�elds
have the same quantum numbers as the MSSM super�elds.

The further symmetry breaking SU3 ×SU2 ×U1 → SU3 ×Uem
1 is usually made

by vacuum expectation values of the Higgs super�elds in the representations 5
and 5. However, in this case the doublet-triplet splitting requires �ne tuning.

The anomaly cancellation in this model occurs due to the relation

tr
(
TA{TB , TC}

)∣∣∣
5
+ tr

(
TA{TB , TC}

)∣∣∣
10

= 0.

K.V.Stepanyantz The gauge coupling uni�cation in Grand Uni�ed



6

Gauge coupling uni�cation in SU5 GUT

Because the group SU5 is simple, there is the only gauge coupling constant e5
in the SU5 Grand Uni�ed Theory (GUT). This implies that in the low-energy
SU3 × SU3 × U1 theory 3 coupling constants should be related to each other.
This relation is written as

α2 = α3; sin2 θW = 3/8,

where tg θW ≡ e1/e2. If we introduce the notation α1 ≡ 5

3
· e

2
1

4π
, then the gauge

coupling uni�cation condition takes the simplest form α1 = α2 = α3 = α5. This
condition is in a good agreement with the well-known renormalization group
behaviour of the running gauge couplings in MSSM.

K.V.Stepanyantz The gauge coupling uni�cation in Grand Uni�ed



7

The SO10 Grand Uni�ed Theory

The �eld content of the SU5 GUT implies a possibility of the existence of a
theory with a wider SO10 symmetry

H.Fritzsch, P.Minkowski, Annals Phys. 93 (1975), 193;
H.Georgi, AIP Conf. Proc. 23 (1975), 575.

because the super�elds of a single generation can be accommodated into a single
irreducible (spinor) representation

16
∣∣∣
SO10

= 1(5) + 5(−3) + 10(1)
∣∣∣
SU5×U1

,

However, the symmetry breaking pattern

SO10 → SU5 → SU3 × SU2 × U1

has some drawbacks. In particular, for the symmetry breaking one needs

(super)�elds in su�ciently large representations (no less than 45
∣∣∣
SO10

and

24
∣∣∣
SU5

), and the simplest (supersymmetric) SU5 model is excluded by the

modern experimental limits on the proton lifetime.
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The �ipped SU5 model

A more convenient symmetry breaking pattern is

SO10 → SU5 × U1 → SU3 × SU2 × U1.

It corresponds to the �ipped SU5 model

S.M.Barr, Phys. Lett. B 112 (1982), 219; I.Antoniadis, J.R.Ellis, J.S.Hagelin,
D.V.Nanopoulos, Phys. Lett. B 194 (1987), 231; B.A.Campbell, J.R.Ellis,
J.S.Hagelin, D.V.Nanopoulos, K.A.Olive, Phys. Lett. B 197 (1987), 355; J.R.Ellis,
J.S.Hagelin, S.Kelley, D.V.Nanopoulos, Nucl. Phys. B 311 (1988), 1.

In this case the chiral matter super�elds are accommodated in the representations

3×
(
10(1) + 5(−3) + 1(5)

)
in a di�erent way,

1 ∼ E; 5i ∼


U1

U2

U3

Ẽ

−Ñ

 ; 10
ij ∼


0 D3 −D2 Ũ1 D̃1

−D3 0 D1 Ũ2 D̃2

D2 −D1 0 Ũ3 D̃3

−Ũ1 −Ũ2 −Ũ3 0 N

−D̃1 −D̃2 −D̃3 −N 0

 .

We see that the super�elds corresponding to the right up and down quarks and
leptons are swapped. (That is why this model is called ��ipped�.)
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The �ipped SU5 model

The SU5 × U1 symmetry is broken down to SU3 × SU2 × U
(Y )
1 by vacuum

expectation values of Higgses in the representations 10(−1) and 10(1), and the

group U
(Y )
1 appears as a superposition of the SU(5) transformations with

ω5 = exp
{ iαY

30

(
2 · 13 0
0 −3 · 12

)}
and the U1 transformations with ω1 = exp(−iQαY /5), where Q is the U1 charge
normalized as was pointed above. This model
1. allows to naturally split Higgs douplet and triplet;
2. does not require higher representations for the breaking of the SU5 symmetry;
3. satis�es present limits on the proton lifetime.

The �ipped SU5 model has 2 coupling constants e5 and e1. However, if it is
considered as a remnant of the SO10 theory, then they are related to each other
as

e5 =
e10√
2
; e1 =

e5

2
√
10

=
e10

4
√
5
.

Then for the residual SU3 × SU2 × U1 theory we obtain the standard relations

α2 = α3; sin2 θW = 3/8.
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The E-series of the simple compact Lie algebras and the �ipped E8 GUT

It is known that the Lie algebras used for constructing various GUTs belong to
the E-series if we also include in it some classical Lie algebras

D5 = SO10 A4 = SU5 SU3 × SU2

E8 E7 E6

We will investigate a possibility of constructing GUT based on the group E8

assuming that

1. The symmetry breaking pattern is

E8 → E7 × U1 → E6 × U1 → SO10 × U1 → SU5 × U1 → SU3 × SU2 × U1.

2. Vacuum expectation values responsible for the various symmetry breakings
can be acquired only by certain parts of the fundamental representation of the
group E8 (of the dimension 248).
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The Γ-matrices in diverse dimensions

Let us construct the Γ-matrices in the space of a dimension D with the Euclidean
signature, which satify the condition

{Γi,Γj} = 2δij · 1,

For an even D they have the size 2D/2 × 2D/2, and for an odd D their size is
2(D−1)/2 × 2(D−1)/2. For D = 2, 3 as the Γ-matrixes one can choose the Pauli
matrices,

Γ
(2)
1 = σ1; Γ

(2)
2 = σ2; Γ

(3)
1 = σ1; Γ

(3)
2 = σ2; Γ

(3)
3 = σ3.

For the other values of D the Γ-matrices are constructed with the help of
mathematical induction. Suppose that they have been constructed in an odd
dimension D. Then in the even dimension D + 1 the Γ-matrices are de�ned as

Γ
(D+1)
i =

(
0 Γ

(D)
i

Γ
(D)
i 0

)
, i = 1, . . . , D; Γ

(D+1)
D+1 =

(
0 −i
i 0

)
and have the size in two times larger, than in the previous (odd) dimension.
Moreover, in this case there is the matrix

Γ
(D+1)
D+2 =

(
1 0
0 −1

)
.
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The Γ-matrices in diverse dimensions

The matrix Γ
(D+1)
D+2 satis�es the conditions{

Γ
(D+1)
D+2 ,Γ

(D+1)
i

}
= 0, i = 1, . . . D + 1;

(
Γ
(D+1)
D+2

)2
= 1.

Therefore, in the next (odd) dimension D + 2, as Γ-matrices, one can take

the Γ-matrices from the previous (even) dimension, Γ
(D+2)
i ≡ Γ

(D+1)
i (where

i = 1, . . . D + 1), and add to them Γ
(D+2)
D+2 ≡ Γ

(D+1)
D+2 . This completes the

induction step.

The Γ-matrices constructed in this way are Hermitian, (Γi)
+ = Γi. For even i

they are antisymmetric, and for odd i they are symmetric. In an even dimension
D the charge conjugation matrix is de�ned as

C ≡ Γ1Γ3 . . .ΓD−1

and satis�es the conditions

C Γi C
−1 = −(−1)D/2 (Γi)

T ; C−1 = C+ = CT = (−1)D(D−2)/8 C.

Also (for even D) the following equations take place:

(Γi1i2...ikC)T = (−1)(D−2k)(D−2k−2)/8 Γi1i2...ikC;

(Γi1i2...ikΓD+1C)T = (−1)(D−2k)(D−2k+2)/8 Γi1i2...ikΓD+1C.
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Notations

The generators of the fundamental representation are denoted by tA, where
A = 1, . . . , dimG. They are normalized by the condition

tr(tAtB) =
1

2
gAB ,

where gAB = gBA is a metric. The matrix inverse to gAB is denoted by gAB .
The generators TA of an arbitrary representation R satisfy the equations

tr(TATB) = T (R)gAB ; gAB(TATB)i
j = C(R)i

j ; [TA, TB ] = ifAB
CTC ,

where fAB
C are the structure constants. The expression fABC ≡ gCDfAB

D

is totally antisymmetric, and

(TAdj A)CB = ifAB
C ; C2 gAB ≡ −fAC

DfBD
C .

In particular, from these equations we obtain gAB [TA, [TB , TC ]] = C2TC .
For irreducible representations

C(R)i
j = C(R) δi

j , where C(R) = T (R) · dimG

dimR
.
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The group E8

The fundamental representation of the group E8 coincides with the adjoint
representation and has the dimension 248. The group E8 has the maximal
subgroup SO16 ⊂ E8, with respect to which

248
∣∣∣
E8

= 120 + 128
∣∣∣
SO16

.

Here 120 is the adjoint representation of SO16, and 128 is its representation by
Majorana-Weyl (right, for the de�niteness) spinors. Therefore,

tA =
{
ta, tij

}
,

where i, j = 1, . . . , 16 and a = 1, . . . , 128. The commutation relations of the
group E8 are written as

E8



[tij , tkl] =
i√
120

(
δiltjk − δjltik − δiktjl + δjktil

)
;

[tij , ta] = − i√
480

(Γ
(16)
ij )a

btb;

[ta, tb] = − i

2
√
480

(Γ
(16)
ij C(16))abtij .
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The group E8

Here C(16) is the (symmetric) charge conjugation matrix in D = 16, and the

matrices Γ
(16)
ij C(16) are antisymmetric. The corresponding metric has the form

gAB →
(

δikδjl − δilδjk 0

0 (C(16))ab

)
;

gAB →

( 1

4

(
δikδjl − δilδjk

)
0

0 (C(16))ab

)
.

In particular, it is easy to verify the identity

gABtAtB =
1

2
tijtij + (C(16))abtatb =

1

2
,

which is certainly equivalent to the equations

1

2
[tij , [tij , tkl]] + (C(16))ab[ta, [tb, tkl]] =

1

2
tkl;

1

2
[tij , [tij , td]] + (C(16))ab[ta, [tb, td]] =

1

2
td.
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The group E7

To describe the group E7, we use the subgroup SO12 × SO3 ⊂ E7. Then

56
∣∣∣
E7

= [12, 2] + [32, 1]
∣∣∣
SO12×SO3

;

133
∣∣∣
E7

= [1, 3] + [32′, 2] + [66, 1]
∣∣∣
SO12×SO3

,

where 32 and 32′ are right and left spinor representations of SO12. The indices
of the left SO12 spinors are denoted by dots. Therefore,

tA =
{
tij , tα, taȦ

}
, where a, b = 1, 2; α, β = 1, . . . , 3; i, j = 1, . . . , 12.

E7



[tα, tβ ] =
i√
12

εαβγtγ ; [tα, tij ] = 0;

[tα, taȦ] = − 1

2
√
12

(σα)a
btbȦ; [tij , taȦ] = − i

2
√
24

(Γ
(12)
ij )Ȧ

ḂtaḂ ;

[tij , tkl] =
i√
24

(
δiltjk − δjltik − δiktjl + δjktil

)
;

[taȦ, tbḂ ] =
i

4
√
24

(σ2)ab(Γ
(12)
ij C(12))ȦḂtij +

1

2
√
12

(C(12))ȦḂ(σασ2)abtα.
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The group E7

The corresponding metric has the form

gAB →

 δikδjl − δilδjk 0 0
0 δαβ 0

0 0 −(σ2)ab(C
(12))ȦḂ

 ;

gAB →


1

4

(
δikδjl − δilδjk

)
0 0

0 δαβ 0

0 0 (σ2)
ab(C(12))ȦḂ

 .

Note that the matrices σ2 = iσ1σ3 and C(12) are antisymmetric, while the
matrices σασ2 and Γ

(12)
ij C(12) are symmetric,

(C(12))T = −C(12); (C(12))2 = −1; (Γ
(12)
ij C(12))T = Γ

(12)
ij C(12).

Therefore, the above metric is really symmetric.
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The group E7

In the explicit form the generators of the fundamental representation 56 are
written as

tij =
i√
24

(
(δikδjl − δilδjk)δ

b
a 0

0
1

2
(Γ

(12)
ij )A

B

)
;

tα =
1

2
√
12

(
δkl(σα)a

b 0
0 0

)
;

tdḊ =
i

2
√
12

(
0 (σ2)da(Γ

(12)
k )Ḋ

B

(Γ
(12)
l C(12))AḊδbd 0

)
.

As a check, one can verify that

C(56) ≡ gABtAtB =
1

2
tijtij + tαtα+(σ2)

ab(C(12))ȦḂtaȦtbḂ =
19

16
=

1

2
· 133
56

.
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The symmetry breaking E8 → E7 × U1

Let us investigate if it is possible to break the E8 symmetry by the vacuum
expectation value of the representation 248. For this purpose we consider the
embedding

E8 ⊃ SO16 ⊃ SO12 × SO3︸ ︷︷ ︸
⊂E7

×SO3,

for which

248
∣∣∣
E8

= 120 + 128
∣∣∣
SO16

= [1, 1, 3]︸ ︷︷ ︸
[1,3]

+ [1, 3, 1] + [66, 1, 1] + [32′, 2, 1]︸ ︷︷ ︸
+[133,1]

+ [12, 2, 2] + [32, 1, 2]︸ ︷︷ ︸
+[56,2]

∣∣∣
E7×SO3

∣∣∣
SO12×SO3×SO3

.

Let us present a scalar �eld in the representation 248 in the form

φ = φA gABtB =
1

2
φijtij + φa(C

(16))abtb

and suppose that (
φ13,14

)
0
=
(
φ15,16

)
0
= v8.
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The symmetry breaking E8 → E7 × U1

Let us construct the corresponding little group. By de�nition, a vacuum
expectation value should be invariant under its transformations. Therefore, it is
necessary to �nd all E8 generators which commute with φ0 = v8

(
t13,14+t15,16

)
.

Evidently, tij commute with φ0 if i, j = 1, . . . , 12. These generators form the
subgroup SO12. Also the little group includes

t̃1 ≡ 1√
2

(
t13,16 − t14,15

)
; t̃2 ≡ 1√

2

(
− t13,15 − t14,16

)
;

t̃3 ≡ 1√
2

(
t13,14 − t15,16

)
; t̃′3 ≡ 1√

2

(
− t13,14 − t15,16

)
.

They form the subgroup SO3 × U1 of the little group,

[t̃′3, t̃α] = 0; [t̃α, t̃β ] =
i√
60

εαβγ t̃γ .

However, the little group is wider than SO12×SO3×U1 because some generators
ta also commute with the vacuum expectation value. Really,

[φ0, ta] = v8
[
t13,14 + t15,16, ta

]
= − iv8

2
√
120

(
Γ
(16)
13,14 + Γ

(16)
15,16

)
a

b tb.
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The symmetry breaking E8 → E7 × U1

Substituting the explicit form of the Γ-matrices we see that

− i

2

(
Γ
(16)
13,14 + Γ

(16)
15,16

)
=

(
1 0
0 −1

)
· 1
2

(
1 + Γ

(12)
13

)
.

This implies that the generators ta which belong to the little group form two left
SO12 spinors (each of them having 32 nontrivial components). It is possible to
verify that with respect to SO3 they lie in the spinor representation 2. Therefore,
we obtain the little group E7 × U1 because

133
∣∣∣
E7

= [1, 3] + [32′, 2] + [66, 1]
∣∣∣
SO12×SO3

Thus,
E8 → E7 × U1.

Now, let us relate 2 coupling constants of the resulting theory with the original
coupling constant e8. Comparing the commutation relations of the generators
tij for the groups E8 and E7 we see that

tij

∣∣∣
E8

=
1√
5
tij

∣∣∣
E7

.
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The symmetry breaking E8 → E7 × U1

Because Aµ = ieAA
µ tA and the generators tij are normalized by the same

condition

tr(tijtkl) =
1

2

(
δikδjl − δilδjk

)
,

the coupling constants for the groups E7 and E8 are related as

e7 =
e8√
5
.

Therefore, we should only �nd the value of the coupling constant e
(7)
1 which

corresponds to the subgroup U1. This constant depends on the normalization of
the U1 charge. Let us choose the SO3 generators in the subgroup E7×SO3 ⊂ E8

in such a way that

t′α

∣∣∣
R=2

= σα;
(
t′α
)
βγ

∣∣∣
R=3

= −2iεαβγ .

In this case
[t′α, t

′
β ] = 2iεαβγt

′
γ .

As a generator of the U1 component of the little group we take t′3. Then

248
∣∣∣
E8

= 1(0) + 1(2) + 1(−2) + 133(0) + 56(1) + 56(−1)
∣∣∣
E7×U1

.
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The symmetry breaking E8 → E7 × U1

The generators of the SO3 subgroup in E7 ×SO3 ⊂ E8 normalized in the same
way as all E8 generators satisfy the commutation relations

[t̃′α, t̃
′
β ] =

i√
60

εαβγ t̃
′
γ .

Comparing them with the commutation relations for t′α at the previous slide we
see that

t̃′3 =
1

4
√
15

t′3.

Therefore, the corresponding couplings are related by the equation

e
(7)
1 =

e8

4
√
15

=
e7

4
√
3
.

Thus, at this stage of the symmetry breaking we �nally obtain

α7 =
α8

5
; α

(7)
1 =

α7

48
.

For investigating the next symmetry breaking stage E7 ×U1 → E6 ×U1 we will
need some information about the group E6, which is presented below.
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The group E6

The group E6 has the maximal subgroup SO10 × U1, with respect to which

27
∣∣∣
E6

= 1(4) + 10(−2) + 16(1)
∣∣∣
SO10×U1

;

27
∣∣∣
E6

= 1(−4) + 10(2) + 16(−1)
∣∣∣
SO10×U1

;

78
∣∣∣
E6

= 1(0) + 16(−3) + 16(3) + 45(0)
∣∣∣
SO10×U1

,

where 16 and 16 are the right and left spinor representations of SO10. However,
now we will use a single spinor index a = 1, . . . , 32, so that

tA =
{
tij , ta, t

}
,

E6



[tij , tkl] =
i√
12

(
δiltjk − δjltik − δiktjl + δjktil

)
;

[tij , t] = 0; [t, ta] =
1

4
(Γ

(10)
11 )a

btb; [tij , ta] = − i

2
√
12

(Γ
(10)
ij )a

btb;

[ta, tb] = − i

4
√
12

(Γ
(10)
ij C(10))abtij +

1

4
(Γ

(10)
11 C(10))abt.
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The group E6

In this case the metric has the form

gAB →

 δikδjl − δilδjk 0 0

0 (C(10))ab 0
0 0 1

 ;

gAB →


1

4

(
δikδjl − δilδjk

)
0 0

0 (C(10))ab 0
0 0 1

 ,

and in D = 10

(C(10))T = C(10); (C10)2 = 1;

(Γ
(10)
ij C(10))T = −Γ

(10)
ij C(10); (Γ

(10)
11 C(10))T = −Γ

(10)
11 C(10).
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The group E6

The generators of the fundamental representation 27 have the form

tij =
i√
12


0 0 0

0 δikδjl − δilδjk 0

0 0
1

4

[
Γ
(10)
ij (1 + Γ

(10)
11 )

]
a

b

 ;

t =
1

12


4 0 0

0 −2δkl 0

0 0
1

2
(1 + Γ

(10)
11 )a

b

 ;

td =
1√
96


0 0

√
2
(
1 + Γ

(10)
11

)
d
b

0 0
[
Γ
(10)
k (1 + Γ

(10)
11 )

]
d

b

√
2
[
(1 + Γ

(10)
11 )C(10)

]
ad

[
(1 + Γ

(10)
11 )Γ

(10)
l C(10)

]
ad

0


As a check, it is easy to verify that

C(27) = gABtAtB =
1

2
tijtij + (C(10))abtatb + t2 =

13

9
=

1

2
· 78
27

.
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The symmetry breaking E7 × U1 → E6 × U1

The group E7 contains the maximal subgroup E6 × U1, with respect to which

56
∣∣∣
E7

= 27(1) +27(−1) + 1(3) + 1(−3)
∣∣∣
E6×U1

;

133
∣∣∣
E7

= 1(0) + 27(−2) +27(2) + 78(0)
∣∣∣
E6×U1

.

We see that the representation 56 contains two E6 singlets with nontrivial U1

charges. If one of them acquires a vacuum expectation value, then the little group
will contain the factor E6. Let the vacuum expectation value v7 is acquired by
the representation 56(1) of the group E7×U1, and the corresponding scalar �eld
lies in the representation 1(3) of the group E6 × U1 ⊂ E7. Under the U1 × U1

transformations in
E7 × U1︸︷︷︸

β
(7)
1

⊃ (E6 × U1︸︷︷︸
β
(7)
2

)× U1︸︷︷︸
β
(7)
1

.

the vacuum expectation value changes as v7 → exp
(
iβ

(7)
1 + 3iβ

(7)
2

)
v7.

Therefore, it is invariant under the transformations with β
(7)
1 + 3β

(7)
2 = 0.

Evidently, they constitute the group U1 ⊂ U1 × U1.
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The symmetry breaking E7 × U1 → E6 × U1

Let us compare the coupling constants in the original E7 × U1 theory and its
E6 ×U1 remnant. The relation between the couplings for the groups E7 and E6

is obtained from the comparison of the commutation relations for the generators
tij :

tij

∣∣∣
E7

=
1√
2
tij

∣∣∣
E6

→ e6 =
e7√
2
,

because
Aµ

∣∣∣
E7

= ie7A
A
µ tA

∣∣∣
E7

→ Aµ

∣∣∣
E6

= ie6A
A
µ tA

∣∣∣
E6

.

To �nd the coupling constant e
(6)
1 , we write the branching rule for the

representation 56(1) with respect to the subgroup E6 × U1 × U1,

56(1)
∣∣∣
E7×U1

= 27(1, 1) + 27(1,−1) + 1(1, 3) + 1(1,−3)
∣∣∣
E6×U1×U1

.

Therefore, the charge with respect to the little group can be chosen in the form

Q
(6)
1 =

1

2

(
− 3Q

(7)
1 +Q

(7)
2

)
,

where the normalization is chosen in such a way that it is an integer and the
least possible integer.
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The symmetry breaking E7 × U1 → E6 × U1

Earlier we saw that the coupling constant for the U1 component of E7 × U1 is

e
(7)
1 =

e7

4
√
3
.

Therefore, the charge Q
(7)
1 is an eigenvalue of the operator 4

√
3 t

(7)
1 , where t

(7)
1

is the generator of the U1 factor in E7×U1 which is normalized in the same way
as the generators of the group E7.

Let t
∣∣∣
U1⊂E7

be the generator of the U1 factor in the subgroup E6 × U1 ⊂ E7

normalized in the same way as all E7 generators. Then

t
∣∣∣
U1⊂E7

=
1

12


3 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 −1

 acting on


1
1
27

27

 .

This generator is correctly normalized because

tr

((
t
∣∣∣
U1⊂E7

)2)
=

1

144

(
1 · 32 + 1 · (−3)2 + 27 · 12 + 27 · 12

)
=

72

144
=

1

2
.
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The symmetry breaking E7 × U1 → E6 × U1

Due to the branching rule

56
∣∣∣
E7

= 27(1) +27(−1) + 1(3) + 1(−3)
∣∣∣
E6×U1

,

the charge Q
(7)
2 is an eigenvalue of the operator 12 t

∣∣∣
U1⊂E7

. Therefore, the little

group charge is an eigenvalue of the operator

1

2

(
− 3 · 4

√
3 t

(7)
1 + 12 t

∣∣∣
U1⊂E7

)
= 12

(
−

√
3

2
t
(7)
1 +

1

2
t
∣∣∣
U1⊂E7

)
.

Note that in the right hand side the operator in the brackets is normalized in
the same way as the generators of the group E7. therefore, the coe�cient 12 is
equal to the ratio of the couplings e7 and e

(6)
1 ,

e
(6)
1 =

e7
12

.

Thus,
e6 =

e7√
2
; e

(6)
1 =

e7
12

=
e6

6
√
2

or, equivalently,

α6 =
α7

2
; α

(6)
1 =

α6

72
.
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The symmetry breaking E7 × U1 → E6 × U1

Next, we construct the branching rule of 248 with respect to the subgroup E6 ×
U1︸︷︷︸
β
(7)
1

× U1︸︷︷︸
β
(7)
2

⊂ E7 × U1︸︷︷︸
β
(7)
1

,

248
∣∣∣
E8

=
[
1(0, 0) + 1(2, 0) + 1(−2, 0)

]
+
[
1(0, 0) + 27(0,−2) + 27(0, 2)

+78(0, 0)
]
+
[
27(1, 1) + 27(1,−1) + 1(1, 3) + 1(1,−3)

]
+
[
27(−1, 1) + 27(−1,−1) + 1(−1, 3) + 1(−1,−3)

]∣∣∣∣
E6×U1×U1

.

Calculating the charge with respect to the little group for each term we obtain
the decomposition

248
∣∣∣
E8

= 4× 1(0) + 2× 1(3) + 2× 1(−3) + 2× 27(−1) + 2× 27(1) + 27(2)

+27(−2) + 78(0)
∣∣∣
E6×U1

.

The further symmetry breaking E6 ×U1 → SO10 ×U1 can be produced by two
di�erent ways. Namely, vacuum expectation values can be acquired by 27(−1)
or 27(2). For the next symmetry breaking steps the number of options becomes
larger.
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The representations for the further symmetry breaking

The further investigation of the symmetry breaking is made similarly. Vacuum
expectation values are acquired by the representations which are present in the
branching rules of 248 and contain singlets with respect to the non-Abelian
components of the little group with nontrivial U1 charges:

For the symmetry breaking E6 × U1 → SO10 × U1

27
∣∣∣
E6

= 1(4) + 10(−2) + 16(1)
∣∣∣
SO10×U1

.

For the symmetry breaking SO10 × U1 → SU5 × U1

16
∣∣∣
SO10

= 1(−5) + 5(3) + 10(−1)
∣∣∣
SU5×U1

.

For the symmetry breaking SU5 × U1 → SU3 × SU2 × U1

10
∣∣∣
SU5

= [1, 1](6) + [3, 1](−4) + [3, 2](1)
∣∣∣
SU3×SU2×U1

.

Note that we avoid involving higher representations of various groups present in
the symmetry breaking pattern.
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Relations between the coupling constants of the non-Abelian groups

The relations between the coupling constants for the non-Abelian groups
are obtained by comparing the commutation relations for the corresponding
generators using the explicit form of the embeddings.

For instance, the SO10 generators (tij)kl =
i
2
(δikδjl − δilδjk) normalized with

the metric

gAB → δikδjl − δilδjk; gAB → 1

4

(
δikδjl − δilδjk

)
satisfy the commutation relations

[tij , tkl] =
i

2

(
δiltjk − δjltik − δiktjl + δjktil

)
.

Comparing this equation with the corresponding relation for E6 we conclude that

tij

∣∣∣
E6

=
1√
3
tij

∣∣∣
SO10

→ e10 =
e6√
3
,

because in this case

Aµ

∣∣∣
E6

= ie6A
A
µ tA

∣∣∣
E6

→ Aµ

∣∣∣
SO10

= ie10A
A
µ tA

∣∣∣
SO10

=
i

2
e10
(
Aµ

)
ij
tij

∣∣∣
SO10

.
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Relations between the coupling constants of the non-Abelian groups

Let us construct the embedding U5 ⊂ SO10. For this purpose we consider a
complex 5-component column z = x + iy in the fundamental representation of
the group U5,

z ≡ x+ iy → Ω5z = (B + iC)(x+ iy) = (Bx− Cy) + i(By + Cx),

where the 5× 5 matrix Ω5 ∈ U5 was written as the sum of the real part B and
the purely imaginary part iC. Note that from the condition Ω+

5 Ω5 = 1 we obtain
that the real matrices B and C satisfy the constraints

BTB + CTC = 1; BTC = CTB.

The above transformation of z can equivalently be presented as the
transformation of a real 10-component column(

x
y

)
→
(

B −C
C B

)(
x
y

)
.

From the above constraints on the matrices B and C it is easy to see that the
matrix in this equation is orthogonal. Moreover, its determinant is equal to 1
because the U5 group manifold is connected. Therefore, this matrix belongs to
the group SO10.
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Relations between the coupling constants of the non-Abelian groups

The properly normalized generators of SO10 corresponding to the subgroup SU5

can be written in the form

tA

∣∣∣∣
SU5⊂SO10

=



1√
2

(
tA,5 0
0 tA,5

)
=

1√
2
T (tA,5),

if tA,5 is purely imaginary;

i√
2

(
0 tA,5

−tA,5 0

)
=

1√
2
T (tA,5),

if tA,5 is real,

where tA,5 (with A = 1, . . . , 24) are the generators of the SU5 fundamental
representation normalized by the condition

tr
(
tA,5tB,5

)
=

1

2
δAB .

(Certainly, it is convenient to choose them in such a way that they are either
real or purely imaginary). Due to the factor 1/

√
2 coming from the normalization

condition, the coupling constants for the group SO10 and its SU5 subgroup are
related by the equation

e5 =
e10√
2
.
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Relations between the coupling constants of the non-Abelian groups

We also see that the properly normalized generator of the U1 subgroup is

t
∣∣∣
U1⊂SO10

= − i√
20

(
0 −15
15 0

)
.

Similarly, the last embedding SU3 × SU2 × U1 ⊂ SU5

ω5 =

(
e−2iβ

(5)
2 ω3 0

0 e3iβ
(5)
2 ω2

)

gives
e2 = e3 = e5.

Thus, for the coupling constants corresponding to the non-Abelian groups we
obtain the relations

e2 = e3 = e5 =
e10√
2
=

e6√
6
=

e7√
12

=
e8√
60

,

which can equivalently be rewritten in the form

α2 = α3 = α5 =
α10

2
=

α6

6
=

α7

12
=

α8

60
.

K.V.Stepanyantz The gauge coupling uni�cation in Grand Uni�ed



37

How to obtain the coupling constants for the U1 groups

For the symmetry breaking G×U1 → H ×U1 the coupling constants for the U1

groups are calculated according to the following algorithm:

1. It is necessary to construct decomposition of the representation which acquires
the vacuum expectation value with respect to the subgroup H × U1 × U1 ⊂
G× U1.

2. Next, one should �nd the expression for the little group charge. At all steps
except for the last one it is chosen in such a way that this charge takes minimal
possible integer values. At the last step the charge normalization is chosen so
that the number of MSSM representations in the decomposition of 248 with the
U1 charges coinciding with the hypercharge will be as much as possible.

3. After this, we construct the generators of the group U1 × U1 normalized in
the same way as the generators of the group G.

4. Then we construct the generator of the little group and extract from it the
operator normalized in the same way as the generators of the group G. The
coe�cient before it gives the ratio eG/e

(H)
1 .

With the help of this algorithm for each option of the symmetry breaking we
obtain a sequence of the U1 charges. For each of them �nally we calculate
tg θW = e

(Y )
1 /e2.
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Options for the further symmetry breaking

Option E6 × U1 SO10 × U1 SU5 × U1 sin2 θW

B-1-1-1 27(−1)
∣∣∣
E6×U1

16(−1)
∣∣∣
SO10×U1

10(−1)
∣∣∣
SU5×U1

3/8

B-1-1-2 27(−1)
∣∣∣
E6×U1

16(−1)
∣∣∣
SO10×U1

10(4)
∣∣∣
SU5×U1

3/5

B-1-2-1 27(−1)
∣∣∣
E6×U1

16(3)
∣∣∣
SO10×U1

10(−2)
∣∣∣
SU5×U1

3/5

B-1-2-2 27(−1)
∣∣∣
E6×U1

16(3)
∣∣∣
SO10×U1

10(3)
∣∣∣
SU5×U1

3/4

B-2-1-1 27(2)
∣∣∣
E6×U1

16(1)
∣∣∣
SO10×U1

10(−2)
∣∣∣
SU5×U1

3/5

B-2-1-2 27(2)
∣∣∣
E6×U1

16(1)
∣∣∣
SO10×U1

10(3)
∣∣∣
SU5×U1

3/4

We see that the option B-1-1-1 is the only one which gives the correct value of
the Weinberg angle. It is interesting that this option corresponds to the minimal
possible absolute values of the U1 charges.
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Details of the symmetry breaking in the option B-1-1-1

Group Quantum numbers Couplings

E8 248 e8

E7 × U1 1(0) 1(2) 1(−2) 133(0) 56(1) 56(−1) e7 = e8/
√
5(

e
(7)
1 = e7/4

√
3
)

E6 × U1 1(0) 1(−3) 1(3) 78(0) 27(−1) 27(1) e6 = e7/
√
2

1(0) 27(−2) 27(2)
(
e
(6)
1 = e6/6

√
2
)

27(−1) 1(0) 1(0)

27(1) 1(−3) 1(3)

SO10 × U1 9 × 1(0) + 3 × 1(4) + 3 × 1(−4) + 45(0) + 3 × 10(−2) e10 = e6/
√
3

+3 × 10(2) + 3 × 16(−1) + 3 × 16(1) + 16(3) + 16(−3)
(
e
(10)
1 = e10/4

√
3
)

SU5 × U1 16 × 1(0) + 4 × 1(5) + 4 × 1(−5) + 24(0) + 6 × 5(2) e5 = e10/
√
2

+6 ×5(−2) + 4 × 5(−3) + 4 ×5(3) + 10(4) +10(−4)
(
e
(5)
1 = e5/2

√
10

)
+4 × 10(−1) + 4 ×10(1)

SU3 × SU2 × U1 25 × [1, 1](0) + 5 × [1, 1](1) + 5 × [1, 1](−1) e3 = e2 = e5

+[1, 3](0) + 10 × [1, 2](1/2) + 10 × [1, 2](−1/2)
(
e
(Y )
1 = e5

√
3/5

)
+10 × [3, 1](−1/3) + 10 × [3, 1](1/3) + 5 × [3, 1](2/3) sin2 θW = 3/8

+5 × [3, 1](−2/3) + 5 × [3, 2](1/6) + 5 × [3, 2](−1/6)

+[3, 2](−5/6) + [3, 2](5/6) + [8, 1](0)

Wonderfully, this option is the only one which contains all representations needed
for the accommodation of all chiral MSSM super�elds.
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Details of the symmetry breaking for the options B-1-1-2, B-1-2-1, and

B-2-1-1

The options B-1-1-2, B-1-2-1, and B-2-1-1 lead to the same value of the
Weinberg angle sin2 θW = 3/5 and to the same branching rule of the
representation 248 with respect to SU3 × SU2 × U1,

248
∣∣∣
E8

= 19× [1, 1](0) + 8× [1, 1](1/2) + 8× [1, 1](−1/2) + 12× [1, 2](0)

+4× [1, 2](1/2) + 4× [1, 2](−1/2) + [1, 3](0) + 8× [3, 1](1/6)

+8× [3, 1](−1/6) + 6× [3, 1](−1/3) + 6× [3, 1](1/3)

+[3, 1](2/3) + [3, 1](−2/3) + 2× [3, 2](−1/3) + 2× [3, 2](1/3)

+4× [3, 2](1/6) + 4× [3, 2](−1/6) + [8, 1](0)
∣∣∣
SU3×SU2×U1

.

In this case the representation [1, 1](−1) needed for the super�elds corresponding
to the right charged leptons is absent. Therefore, these options are not acceptable
for phenomenology.
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Details of the symmetry breaking for the options B-1-2-2 and B-2-1-2

The options B-1-2-2 and B-2-1-2 lead to the same value of the Weinberg angle
sin2 θW = 3/4 and to the same branching rule for the representation 248 with
respect to SU3 × SU2 × U1,

248
∣∣∣
E8

= 17× [1, 1](0) + 9× [1, 1](1/3) + 9× [1, 1](−1/3) + [1, 2](1/2)

+[1, 2](−1/2) + 9× [1, 2](1/6) + 9× [1, 2](−1/6) + [1, 3](0)

+9× [3, 1](0) + 9× [3, 1](0) + 3× [3, 1](1/3) + 3× [3, 1](−1/3)

+3× [3, 1](−1/3) + 3× [3, 1](1/3) + 3× [3, 2](−1/6)

+3× [3, 2](1/6) + 3× [3, 2](1/6) + 3× [3, 2](−1/6)

+[8, 1](0)
∣∣∣
SU3×SU2×U1

.

In this case there are no representations [1, 1](−1) needed for the super�elds
corresponding to the right charged leptons and no representations [3, 1](2/3)
corresponding to the right upper quarks. Therefore, all these options are not
acceptable for phenomenology.
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Conclusion

Using the group theory we analyzed a possibility of the symmetry
breaking pattern

E8 → E7 × U1 → E6 × U1 → SO10 × U1 → SU5 × U1 → SU3 × SU2 × U1

provided that only parts of the representation 248 can acquire vacuum
expectation values. Also we assume that all U1 groups in the considered
chain are di�erent.

Among 6 di�erent options for the symmetry breaking there is the only
one which leads to the correct value of the Weinberg angle and produces
all representations needed for the accommodation of all MSSM chiral
super�elds. This option corresponds to the minimal absolute values of all
U1 charges of the �elds responsible for the symmetry breaking.

Presumably, the considered symmetry breaking pattern could allow to
understand how a low-energy chiral theory appears.
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Conclusion

The representation 248 of the group E8 is fundamental and adjoint
simultaneously. Moreover, more than one 248 representations are needed,
so that ther is an interesting possibility to use the �nite N = 4 SYM with
the group E8 for the Grand Uni�cation.

We did not study dynamics of the considered symmetry breaking pattern
and made the investigation only using the group theory methods.

Some other similar symmetry breaking patterns like

E8 → E7 × U1 → E6 × U1 → SO10 → SU5 × U1 → SU3 × SU2 × U1

can also be considered.
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Thank you for the attention!
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P.S. All group theory relations were taken from

R. Slansky, Phys. Rept. 79 (1981), 1.

K.V.Stepanyantz The gauge coupling uni�cation in Grand Uni�ed


