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Minimal Supersymmetric Standard Model (MSSM)

MSSM is the simplest supersymmetric extension of the Standard Model. It is a
gauge theory with the group SUs x SUz x Uy and softly broken supersymmetry.
Consequently, there are 3 gauge coupling constants es3, ez, and e; in MSSM
(their number is equal to the number of factors in the gauge group). Quarks,
leptons, and Higgs fields are components of the chiral matter superfields:

Superfield | SUs | SUz | Uy (Y) || Superfield | SUs | SU> | Ur (V)
3xQ 3 2 —-1/6 3x N 1 1 0
3xU 3 1 2/3 3x FE 1 1 —1
3x D 3 1 -1/3 Hy 1 2 1/2
3x L 1 2 1/2 H, 1 2 | —1/2

where for the superfields which include left quarks and leptons we use the brief

notations B _
U N
-(8) o (3)
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Anomaly cancellation in MSSM

Quantum numbers of various MSSM superfields are not accidental. They satisfy,
e.g., the anomaly cancellation conditions

tr(TA{TB,TC}) =0,

where T are the generators of the representation in which the chiral matter
superfields lie. For MSSM the nontrivial relations needed for this equation to be
satisfied have the form

N TRV _ Loy (2ol , 1
2% SUs+Ur: (A2 )(YU+YD+2 YQ)74tr(>\ A )(3 5 =2 6)
—0;
1 1 11
2 ;faﬁ(.y Y):faﬂ—~f 7):~
X SUs+Ur: 1(0%0")(3- Yo+ Vi 4(00)( 3-c+35)=0;
3x Uy ZY?’=3.Y5+3.Y3+Y§+6.Y§+2-Y5

213 143 3 143 113
Sa B e (B e () e () o

3 (3) +3 ( 3) + (=) +6 6 + 2 0

(The contributions of Hy and H, cancel each other and are not written here.)

Therefore, there is a question if these quantum numbers are accidental and how
they appear.
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Grand Unification based on the group SUs

Similarly to the nonsupersymmetric case first considered in the paper

H.Georgi and S.L.Glashow, Phys. Rev. Lett. 32 (1974), 438. ‘

the analysis of MSSM superfield quantum numbers demonstrates that the
superfields of a single generation (including the right neutrino) can be
accomodated in 3 irreducible representations of the group SUs

1+5+10
D 0 Us —Us ﬁl 51
D, -Us 0 v, U®* D?
1~N; 5i~| Ds |; 107~ v, -U; o U* D?
E -U' -U? -Us 0 E
-N D' -D* -D¥ —E 0

In this case after the symmetry breaking SUs — SUs x SUs x Uy all fields of
the low-energy theory will have correct quantum numbers.
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Grand Unification based on the group SUs

By a vacuum expectation value of the Higgs field in the adjoint representation
24 the SUs symmetry can be broken down to the subgroup SUs x SUz x Uy
with the elements

( wge_i’BY/S 0
ws =

0 w*eiBY/Q > € SU3z x SUy x Uy C SUs.
2

Then, from the SUs tensor transformations
N — N; 5, — (W5)¢j5j; l_Oij — (w;)ki(w;)lj ]._Okl
one obtains that with respect to the subgroup SUs x SUz x Uy all chiral superfields

have the same quantum numbers as the MSSM superfields.

The further symmetry breaking SUs x SUs x Uy — SU3 x U;™ is usually made
by vacuum expectation values of the Higgs superfields in the representations 5
and 5. However, in this case the doublet-triplet splitting requires fine tuning.

The anomaly cancellation in this model occurs due to the relation

w(THTP, TV +u(@T?, 19| =0
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Gauge coupling unification in SU; GUT

Because the group SUs is simple, there is the only gauge coupling constant es
in the SUs Grand Unified Theory (GUT). This implies that in the low-energy
SUs x SUs x Uy theory 3 coupling constants should be related to each other.
This relation is written as

a2 = as; sin® Oy = 3/8,
B . . 5 €l
where tg 0w = e1/ea. If we introduce the notation a1 = 3 In then the gauge
7I

coupling unification condition takes the simplest form a1 = as = a3 = 5. This
condition is in a good agreement with the well-known renormalization group
behaviour of the running gauge couplings in MSSM.

sM MSSM: mg=M, ;=2 TeV, Ag=0, tan(=30
60 60
T 0y
%
50 L 50
40 = 40
] 2 3
2 . =
20 , 20
0 10
o ) L sormmans o ) L oeprse
0 5 10 15 0 5 10 15
log,g(Q/GeV) log,o(QIGeV)
Figure 94.1: Running couplings in SM and MSSM using two-loop RG evolution. The SUSY thresh-

old at 2 TeV is clearly visible on the MSSM side.
created using SOFTSUSY [61].)

We thank Ben Allanach for providing the plots
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The SO19 Grand Unified Theory

The field content of the SUs GUT implies a possibility of the existence of a
theory with a wider SO19 symmetry

H.Fritzsch, P.Minkowski, Annals Phys. 93 (1975), 193;
H.Georgi, AIP Conf. Proc. 23 (1975), 575.

because the superfields of a single generation can be accommodated into a single
irreducible (spinor) representation

16 =1(5) +5(—3) + 10(1)

‘so10 SUsxU;

However, the symmetry breaking pattern
SO10 — SUs — SU3 x SU3 x Uy

has some drawbacks. In particular, for the symmetry breaking one needs

(super)fields in sufficiently large representations (no less than 45 and
SO10

24 ), and the simplest (supersymmetric) SUs model is excluded by the
SUs
modern experimental limits on the proton lifetime.
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The flipped SUs model

A more convenient symmetry breaking pattern is
5010 — SU5 X U1 — SU3 X SUQ X U1.

It corresponds to the flipped SU5; model

S.M.Barr, Phys. Lett. B 112 (1982), 219; l|.Antoniadis, J.R.Ellis, J.S.Hagelin,
D.V.Nanopoulos, Phys. Lett. B 194 (1987), 231; B.A.Campbell, J.R.Ellis,
J.S.Hagelin, D.V.Nanopoulos, K.A.Olive, Phys. Lett. B 197 (1987), 355; J.R.Ellis,
J.S.Hagelin, S.Kelley, D.V.Nanopoulos, Nucl. Phys. B 311 (1988), 1.

In this case the chiral matter superfields are accommodated in the representations
3 x (ﬁu) +5(=3) + 1(5)) in a different way,

U 0 Ds -Dy U' D'
Uz -Ds 0 D U* D?
1~E 5~ U |; T0'~| D, -Dy 0o U® D?
E ' -U?* -U* 0 N
-N -D* -D* -D* -N 0

We see that the superfields corresponding to the right up and down quarks and
leptons are swapped. (That is why this model is called “flipped™.)
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The flipped SUs model

The SUs x Uy symmetry is broken down to SUs x SUs x Ul(Y_) by vacuum
expectation values of Higgses in the representations 10(—1) and 10(1), and the

group Ul(y> appears as a superposition of the SU(5) transformations with

ws = ex {W—Y 2-1s 0 }
5= P 30 0 —3-1,

and the U; transformations with wy = exp(—iQay /5), where Q is the U; charge
normalized as was pointed above. This model

1. allows to naturally split Higgs douplet and triplet;

2. does not require higher representations for the breaking of the SUs symmetry;
3. satisfies present limits on the proton lifetime.

The flipped SUs model has 2 coupling constants e5; and ei. However, if it is
considered as a remnant of the SO1g theory, then they are related to each other

as
€10 €5 €10

—; el = = .
V2 T o104V

Then for the residual SUs x SUz x U; theory we obtain the standard relations

€5 =

a2 = as; sin? Ow = 3/8.
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The E-series of the simple compact Lie algebras and the flipped Es GUT

It is known that the Lie algebras used for constructing various GUTs belong to
the E-series if we also include in it some classical Lie algebras

cotoooo oolooo oolo

Eg E7 Eg
o—o—i—o O—O—I °
o—oO
D5 = SOy SU;s x SUy

We will investigate a possibility of constructing GUT based on the group Fs
assuming that

1. The symmetry breaking pattern is
Eg%E7><U1—>E6XU1—>5010><U1—>SU5><U1—>SU3><SU2><U1.

2. Vacuum expectation values responsible for the various symmetry breakings
can be acquired only by certain parts of the fundamental representation of the
group Eg (of the dimension 248).
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The I'-matrices in diverse dimensions

Let us construct the I'-matrices in the space of a dimension D with the Euclidean
signature, which satify the condition

(T4, T;} =265 - 1,

For an even D they have the size 2°/2 x 2P/2 and for an odd D their size is
2(P~1)/2 5 9(P=1/2 For D = 2,3 as the I-matrixes one can choose the Pauli
matrices,

Fgg) =o01; Fg) = 02; ng) =01; Fés) = 09; Fé3> = 03.

For the other values of D the I'-matrices are constructed with the help of
mathematical induction. Suppose that they have been constructed in an odd
dimension D. Then in the even dimension D + 1 the I'-matrices are defined as

(D) .
(D+1) _ 0 Iy . ) o+ _ (0 —i
r _<F§D) ) > i=1,...,D; s _(i 0

and have the size in two times larger, than in the previous (odd) dimension.
Moreover, in this case there is the matrix

D+1 1 0
FSD+2):<O _1)'
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The I'-matrices in diverse dimensions

The matrix F},D_:;l) satisfies the conditions

{rPA, et =0, i=1,..D+1;  (TPEY) =1

Therefore, in the next (odd) dimension D + 2, as I'-matrices, one can take
the I-matrices from the previous (even) dimension, FZ(.D+2> = FEDH) (where
t = 1,...D + 1), and add to them F<DD++22> = F(DDj;). This completes the
induction step.

The I'-matrices constructed in this way are Hermitian, (I';)* = T';. For even i
they are antisymmetric, and for odd i they are symmetric. In an even dimension
D the charge conjugation matrix is defined as

C=IIs...T'p
and satisfies the conditions
cr;c'=—(-1)P*@)";  ct=ct=0"=(-1)PPV5C.
Also (for even D) the following equations take place:
(Tirio...ix C)T = (—1)<1772k>(1772k72)/8 Diyig...i,, C;

(Fmgui,‘,FDHC)T _ (_1)(D—2k)(D—2k+2)/8 Filiz“ikrDHC.
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The generators of the fundamental representation are denoted by ta, where
A =1,...,dimG. They are normalized by the condition

1
tr(tats) = 594s,

where gap = gpa is a metric. The matrix inverse to gap is denoted by g4&.
The generators T'a of an arbitrary representation R satisfy the equations

tr(TaTs) = T(R)gaB;  ¢°P(TaTls)i’ = C(R)i’;  [Ta,Te]=ifasTc,

where fap© are the structure constants. The expression fapc = gcp fas®
is totally antisymmetric, and

(Tagj a)° B =ifaB®; Coga = —fac® fep°.

In particular, from these equations we obtain gAB[Ta, [Ts,Tc]] = C2Tc.
For irreducible representations

dimG

C(R)i? = C(R)67, where C(R)=T(R)- e
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The group FEg

The fundamental representation of the group Ejs coincides with the adjoint
representation and has the dimension 248. The group Eg has the maximal
subgroup SO1s C FEs, with respect to which

248) =120+ 128 .

Eg SO16

Here 120 is the adjoint representation of SO16, and 128 is its representation by
Majorana-Weyl (right, for the definiteness) spinors. Therefore,

ta={ta, ti; },

where 7,57 = 1,...,16 and a = 1,...,128. The commutation relations of the
group Eg are written as

%
[tij,tra] = Vv <6iltjk — djitik — Sintj + 5jktu>;
7
ES [tij7ta] = 7\/@(1—‘5]16))0‘1)”’7
{ 16
[taytb} = *NT%(F.EJ- )0(16>)abtz’j~
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The group FEg

Here €19 s the (symmetric) charge conjugation matrix in D = 16, and the
matrices FE;G)C“G) are antisymmetric. The corresponding metric has the form

. 0ik0j1 — 0105k 0 )
gAB 0 (0(16))ab )
AB ! (6651 — Sitdjn) 0
g — 4 .
0 (C(IG))ab

In particular, it is easy to verify the identity

1 1
§*Brate = gty + (C0) uty = 3,

which is certainly equivalent to the equations

1 . 1
o ltis [t ta]] + (CUYPltq, [ty, ta]] = o ks
1 . 1
g[tm [tij, ta]] + (CUO) P [ta, [to, ta]] = ta-
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The group Er

To describe the group E7, we use the subgroup SO12 x SO3 C E7. Then

56

= [12,2) + [32,1] ;
SO12%x 803

= [1,3] + [32',2] + [66, 1]

E7

E7

133

SO12xS05

where 32 and 32 are right and left spinor representations of SO12. The indices
of the left SO12 spinors are denoted by dots. Therefore,

ta={tij,ta,t,4}, where a,b=1,2 o« f=1,...,3 ij=1,...,12.

7
[ta,ts] = ﬁeaﬂwt% [ta,tij] = 0;
1 b i (12)\ B
tart, 4] = — Go)atyis [t t,al = — iy By
. [ A] 2\/5( ) bA [ J A] 2@( J )A B
7 .
1
[tij, trt] = NGT datjn — djitin — Gartji + 5jktz‘z);
7 12 1
[toistys] = r/ﬂ(az)ab(rgj 00Dy ptis + 72\/5(0‘12))@(%02)@%.
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The group Er

The corresponding metric has the form

0ikdj1 — dubjr O 0
gAB — 0 0ap 0 ;
0 0 —(02)an(C™) 45
1
—(6irbj1 — 6ubje) O 0
AB 4
g — 0 0ap 0 N
0 0 (JQ)ab(C(m))AB

Note that the matrices oo = icios and C''? are antisymmetric, while the
matrices oo02 and FS”C“” are symmetric,

(12) T (12), (12) 2 . (12) (12) T _ (12) (12)
(COT = —cUD; (M) =1 (P EUN)T — D002,

Therefore, the above metric is really symmetric.
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The group Er
In the explicit form the generators of the fundamental representation 56 are

written as
; (8:1051 — 0i16%)88 X 0
ti = — )
v 0 SIGP AP

{o— 1 ( 5kl(0a)ab 0 >
¢ 24/12 0 0 )’

fo i 0 (02)aa (T ™)
W oyie \ ety , L6h 0 '
As a check, one can verify that
AB 1 ab ~(12)\AB 19 1 133
= — Flijliy ala toitvg = = = =" —+-
0(56) g tAtB Qt Jt J Flala+ (0—2) (C ) aA"bB 16 2 56
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The symmetry breaking Es — E7 x Uj

Let us investigate if it is possible to break the Es symmetry by the vacuum
expectation value of the representation 248. For this purpose we consider the
embedding
Es D 5016 D SO12 x SO3 ><SO$7
CE7
for which

248 =120+ 128
Eg SO16

= [L1,3]+ [1,3,1] + [66,1,1] + [32/,2,1] + [12,2,2] + [32,1,2] :
NI 5012 xS03xS03

[1,3] +[133,1] +[56,2]
E7xS0g3

Let us present a scalar field in the representation 248 in the form
1 a
¢ =pag’Pip = 5 iitii + pa(C1),

and suppose that
(4,013,14)0 = (9015,16)0 = Us.
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The symmetry breaking Es — E7 x Uj

Let us construct the corresponding little group. By definition, a vacuum
expectation value should be invariant under its transformations. Therefore, it is
necessary to find all Es generators which commute with oo = vs(t13,14+t15,16).

Evidently, ¢;; commute with oo if i,7 = 1,...,12. These generators form the
subgroup SO12. Also the little group includes
t = L(1513 16 — t14,15); ty = L( — t13,15 — t14,16);
5 (s, : /2 , :
ts = L(1513 14 — t15,16); ty = L(*1513 14 — t15,16)-
v2©o ’ V2 ’ ’

They form the subgroup SOs; x Ui of the little group,

tout = —F—€qa t~.
[ ﬁ] \/@ Byly

However, the little group is wider than SO12 x SO3 x Uy because some generators
t, also commute with the vacuum expectation value. Really,

[%7?0} = 07

_ _ g (16) (16) \ b
Jta] = vs [tis1a + tis.16,ta] = — o 4+r t.
[0, ta] 8 [ 13,14 15,16 } 2\/m( 13,14 15,16)a b
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The symmetry breaking Es — E7 x Uj

Substituting the explicit form of the I'-matrices we see that

1 16 16 1 0 1 12
Seri) = (o & ) 5(ieri).

This implies that the generators ¢, which belong to the little group form two left
SO12 spinors (each of them having 32 nontrivial components). It is possible to
verify that with respect to SOj3 they lie in the spinor representation 2. Therefore,
we obtain the little group E7 x Ui because

133 =1[1,3]+ [32'7 2] 4 [66, 1]
E7 SO12xS03
Thus,
Es — E7 x Uy.

Now, let us relate 2 coupling constants of the resulting theory with the original
coupling constant es. Comparing the commutation relations of the generators
t;; for the groups Eg and E7 we see that
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The symmetry breaking Es — E7 x Uj

Because A, = ieAjj‘tA and the generators t;; are normalized by the same
condition

1
tr(tijte) = 5(5“@5]'1 — bubjk),
the coupling constants for the groups E7 and Es are related as

€8

N
(7)

Therefore, we should only find the value of the coupling constant e;"’ which
corresponds to the subgroup U;. This constant depends on the normalization of
the Uy charge. Let us choose the SO3 generators in the subgroup F7 xSO3 C Eg
in such a way that

€7 =

= 721'504%,.

ta| _, =0ai  (ta)g,| .

R=2

In this case
[te, ths] = 2icapyt,.

As a generator of the U; component of the little group we take t5. Then

248]  =1(0) + 1(2) + 1(—2) + 133(0) + 56(1) + 56(—1)

Eg E7xUy
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The symmetry breaking Es — E7 x Uj

The generators of the SO3 subgroup in E7 x SO3 C Eg normalized in the same
way as all Es generators satisfy the commutation relations

> 37 1 27
0,1 = ——eap L.
[ ﬁ] \/@ Bty
Comparing them with the commutation relations for ¢/, at the previous slide we
see that 1
77 /
t3 = ——=t3.
VAT
Therefore, the corresponding couplings are related by the equation
oM €8 _ €T
a1 43
Thus, at this stage of the symmetry breaking we finally obtain
ar = 28, oM = &7
T VTS

For investigating the next symmetry breaking stage E7 x Uy — Eg x Uy we will
need some information about the group Eg, which is presented below.
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The group Fg

The group Eg has the maximal subgroup SO1o x Uy, with respect to which

271 =1(4) + 10(=2) + 16(1 ’ :
e (4) +10(=2) + 16( )Somel

27| =1(—4)+10(2) + 16(—1 :
b = U 0@+ Y|

78| = 1(0) + 16(—3) + 16(3) + 45(0) ,
Eg SO10xU;

where 16 and 16 are the right and left spinor representations of SO19. However,
now we will use a single spinor index a = 1,...,32, so that

ta = {tij,ta,t},
7
[tij, tet] = ﬁ (6ilt]‘k — Ojitik — dintj + 5jktiz)§

1 o) » { (10)\ b
tij, t] = 0; t,ta] = (T o to; tij, ta] = — To7)a te;
Es [ J ] 0 [ } 4( 11 ) b [ J } 2\/ﬁ( ij ) b

10 1,0
175 T O antis + TRV C) .

[tav tb} = -
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The group Fg

In this case the metric has the form

0ik0j1 — 0u1djk 0 0
gAB — 0 (C1), ;
0 0 1
1
B 1 (5ik5jl — éiléjk) 0 0
g — 0 (C(IO))ab 0 s
0 0 1
and in D =10
(C(IO))T _ C(10)7 (010)2 _ 17
(FE;O)C(I()))T _ —FEJI-O)C(M))% (Fﬁo)c(m))T _ —F<1110>C(10).
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The group Fg

The generators of the fundamental representation 27 have the form

0 0
ty = i 0 ki — 6udim 0 :
V12 1
0 0 27 a+ri?)
4 0 0
t= L 0 —20 0 ;
12 1 10y b
0 0  F4+TL
0 0 V2(1+1H7) 0
_ 1 (10) CONE
=7 0 0 [Fk (1+ 1 )L
V2[a+ri™eo] - [a+ririceo] 0

As a check, it is easy to verify that

1 o 1
C(27) = g*Ptatp = Stistis + (CUN by 17 = ~ =5 5
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The symmetry breaking E7 x U; — FEg x Uy

The group E7 contains the maximal subgroup Es x Uy, with respect to which

56| =27(1) +27(—1) + 1(3) + 1(-3)

Er

133

;
EgxU;

= 1(0) 4 27(—2) +27(2) + 78(0)

E7

EgxUjy

We see that the representation 56 contains two Eg singlets with nontrivial Uy
charges. If one of them acquires a vacuum expectation value, then the little group
will contain the factor Fg. Let the vacuum expectation value v7 is acquired by
the representation 56(1) of the group E7 x U1, and the corresponding scalar field
lies in the representation 1(3) of the group Es x U1 C E7. Under the Uy x U
transformations in

E; x Up D(Ea)( Ul)X U, .
~~ ~~ ~~

B§7) B;7) 657)
the vacuum expectation value changes as v7 — exp (iﬁy) + 32‘@7)) V7.

Therefore, it is invariant under the transformations with BY) + 35&7) = 0.
Evidently, they constitute the group Uy C Ui x Us.
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The symmetry breaking E7 x U; — FEg x Uy

Let us compare the coupling constants in the original E7 x U; theory and its
E¢ x Uy remnant. The relation between the couplings for the groups E7 and Fs
is obtained from the comparison of the commutation relations for the generators

tij:

t L N e

ij ij €6 = —=

B V2 V2

because

. A . A

Ay = ze7AM ta - A, = zegAH ta
Er 7 Eg Eg

To find the coupling constant e( ) we write the branching rule for the
representation 56(1) with respect to the subgroup Fs x Uy x Uq,

=27(1,1) + 27(1,—1) + 1(1,3) + 1(1, -3)

E7xU;y

56(1)

EgxUj xUy

Therefore, the charge with respect to the little group can be chosen in the form

©) _ 2( 3Q<17>+Q<7>)

where the normalization is chosen in such a way that it is an integer and the
least possible integer.
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The symmetry breaking E7 x U; — FEg x Uy

Earlier we saw that the coupling constant for the Uy component of E7 x U; is

(1) _ _er

(& —_— .
1 4\/§

Therefore, the charge Q(17) is an eigenvalue of the operator 4v/3t{”, where
is the generator of the U factor in E7 x Uy which is normalized in the same way
as the generators of the group E7.

Let ¢

t§7) tY)

be the generator of the U; factor in the subgroup Es x U1 C E7
U,CE7
normalized in the same way as all E7 generators. Then

3 0 0 0 1

t :i 0 =300 acting on 1
s, 121 0 0 1 0 27
0 0 0 -1 27

This generator is correctly normalized because

o((

2 1 2 2 2 2)
= (1. 1-(— 27 -1 2717 ) = — = —.
U1CE7>) 144( 1 (=3 +27 +27
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The symmetry breaking E7 x U; — FEg x Uy

Due to the branching rule

=27(1) +27(—1) + 1(3) + 1(—3)

Er

56

9y
EgxUy

. Therefore, the little

Ui1CE7
ULCE7>

Note that in the right hand side the operator in the brackets is normalized in
the same way as the generators of the group E-7. therefore, the coefficient 12 is
equal to the ratio of the couplings e7 and 656),

the charge Qg) is an eigenvalue of the operator 12¢

group charge is an eigenvalue of the operator

) - 12<— v3,m L
U1 CE7 2

1
5(—3-4\/§zt§7>+12t ;

(6) _ €7
€y 15

Thus,

or, equivalently,
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The symmetry breaking E7 x U; — FEg x Uy

Next, we construct the branching rule of 248 with respect to the subgroup Eg x
Ui x Uy C Erx Uy,
—~ —~~ =%

ﬁ§7> 5;7) 3§7)

28| = [1(0,0) £1(2,0) + 1(—270)] + [1(0,0) +27(0,-2) + 27(0,2)

Es

+78(0,0)] + [27(1, 1)+ 27(1, 1) + 1(1,3) + 1(1, —3)]

+[27(—1, 1)+ 27(=1, 1) + 1(—1,3) + 1(—1, —3)}

EgxUy xUy

Calculating the charge with respect to the little group for each term we obtain
the decomposition

=4x1(0)+2x 1(3) +2 x 1(=3) +2 x 27(—1) + 2 x 27(1) +27(2)

Esg

248

+27(—2) + 78(0) .
EgxUy

The further symmetry breaking Eg x Uy — SO10 X U1 can be produced by two
different ways. Namely, vacuum expectation values can be acquired by 27(—1)
or 27(2). For the next symmetry breaking steps the number of options becomes
larger.
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The representations for the further symmetry breaking

The further investigation of the symmetry breaking is made similarly. Vacuum
expectation values are acquired by the representations which are present in the
branching rules of 248 and contain singlets with respect to the non-Abelian
components of the little group with nontrivial Uy charges:

For the symmetry breaking Fs x U1 — SO19 x Uy

27

=1(4) +10(-2) + 16(1)‘

Eg SO10xUL

For the symmetry breaking SO x U1y — SUs x Ui

16‘ = 1(=5)+ 5(3) + 10(—1)‘

SO10 SUsxU;

For the symmetry breaking SUs x Uy — SUsz x SUs x Uy

10| = [1L,1(6) + [3,1(~4) + [3,2](1)

SUs SU3xSUsxU;

Note that we avoid involving higher representations of various groups present in
the symmetry breaking pattern.
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Relations between the coupling constants of the non-Abelian groups

The relations between the coupling constants for the non-Abelian groups
are obtained by comparing the commutation relations for the corresponding
generators using the explicit form of the embeddings.

For instance, the SO10 generators (ti;)x = % (8:ik0;1 — 6i18;k) normalized with
the metric

AB

gaB — 0indji — 6ubjk; g — (6ik5jl - 5115]%)

N

satisfy the commutation relations
7
[tig, tua] = 5 (5iltjk — Ojtik — ity + 5jktz-z).

Comparing this equation with the corresponding relation for Es we conclude that

1 6
tij = —=tlij — e = —,
Eg \/g SO19 \/g
because in this case
AH = zegAftA — AH’ = Z€10AftA = —e10 (AH)..tij .
Eg Eg SO10 SO10 2 w1804
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Relations between the coupling constants of the non-Abelian groups

Let us construct the embedding Us C SOio. For this purpose we consider a
complex 5-component column z = x + iy in the fundamental representation of
the group Us,

z=x+iy — Qsz = (B+iC)(z + iy) = (Bx — Cy) + i(By + Cx),

where the 5 x 5 matrix Q5 € Us was written as the sum of the real part B and
the purely imaginary part iC. Note that from the condition QF Q5 = 1 we obtain
that the real matrices B and C' satisfy the constraints

BB+ CcTC =1; BTCc =C"B.

The above transformation of 2 can equivalently be presented as the
transformation of a real 10-component column

z\ B -C T

Yy ¢ B y )
From the above constraints on the matrices B and C' it is easy to see that the
matrix in this equation is orthogonal. Moreover, its determinant is equal to 1

because the Us group manifold is connected. Therefore, this matrix belongs to
the group SOq0.
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Relations between the coupling constants of the non-Abelian groups

The properly normalized generators of SO1( corresponding to the subgroup SUs
can be written in the form

1 tas 0 1
* = T(t
(5 )= T

if ta5 is purely imaginary;

ta
SU5CSO10 i 0 tas 1
° ) = T(tas),
At T ) = a0
if ta5 is real,
where t45 (with A = 1,...,24) are the generators of the SUs fundamental

representation normalized by the condition

1
tr(tA,5tB,5) = E(SAB.

(Certainly, it is convenient to choose them in such a way that they are either
real or purely imaginary). Due to the factor 1//2 coming from the normalization
condition, the coupling constants for the group SO1o and its SUs subgroup are
related by the equation

€10

7

€5 =
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Relations between the coupling constants of the non-Abelian groups

We also see that the properly normalized generator of the U; subgroup is

¢ _ (3 ( 0 —15 )
U1CSO19 - V20 15 0 '

Similarly, the last embedding SU3 x SU> x Uy C SUs

()
w e~ 2P g 0
5 = . o (5)
0 €382 (g

€2 = €3 = €5.

gives

Thus, for the coupling constants corresponding to the non-Abelian groups we
obtain the relations

€10 €6 €7
€2 = €3 = €5 = = =

Ve V6 Vi2

which can equivalently be rewritten in the form

68
V60’

Q10 Qg ar Qas

g = Q3 = (x5 =

2 6 12 60
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How to obtain the coupling constants for the U; groups

For the symmetry breaking G x Uy — H x U; the coupling constants for the Uy
groups are calculated according to the following algorithm:

1. It is necessary to construct decomposition of the representation which acquires
the vacuum expectation value with respect to the subgroup H x U; x U1 C
G x Ul.

2. Next, one should find the expression for the little group charge. At all steps
except for the last one it is chosen in such a way that this charge takes minimal
possible integer values. At the last step the charge normalization is chosen so
that the number of MSSM representations in the decomposition of 248 with the
U, charges coinciding with the hypercharge will be as much as possible.

3. After this, we construct the generators of the group U; X U; normalized in
the same way as the generators of the group G.

4. Then we construct the generator of the little group and extract from it the
operator normalized in the same way as the generators of the group G. The
coefficient before it gives the ratio ec/e(lH)

With the help of this algorithm for each option of the symmetry breaking we

obtain a sequence of the U; charges. For each of them finally we calculate
_ (Y)

tg O = [ /62.
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Options for the further symmetry breaking

Option Fg x Uy SO19 x Uy SUs x Uy sinQ Ow
B-1-1-1 | 27(—1 16(—1 ’ 10(—1 ’ 3/8
( ) Egx Uy ( ) SO19xU; ( SUsxUy /
B-1-1-2 | 27(—1 16(—1 ‘ 10(4 ’ 3/5
( ) EgxU; ( ) SO10x Uy ( ) SUsxUy /
B-1-2-1 | 27(—1 16(3 ’ 10(72)’ 3/5
Egx U1 5010x U1 SUsx U,
B-1-2-2 | 27(—1 16(3 ’ 10(3)’ 3/4
Egx Uy SO190xUp SUs xUy
B-2-1-1 | 27(2 16(1 ‘ 10(—2 ’ 3/5
( ) EgxUy ( SO10xU; ( ) SUsx Uy /
B-2-1-2 | 27(2 16(1 ‘ 10(3 ’ 3/4
( ) EgxU; ( ) SO10xU; ( ) SUsxUy /

We see that the option B-1-1-1 is the only one which gives the correct value of
the Weinberg angle. It is interesting that this option corresponds to the minimal
possible absolute values of the U; charges.
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Details of the symmetry breaking in the option B-1-1-1

Group Quantum numbers Couplings
Eg 248 es
E7 x Uy 1(0) 1(2) 1(—2) 133(0) 56(1) 56(—1) er = eg/VB
(ef7) = er/4v3)
Eg x Uy 1(0) | 1(=3) 1(3) 78(0) 27(—1) 27(1) e = e7r/V2
1(0) 7(—2) | 27(2) ({9 = es/6v2)
27(—1) 1(0) 1(0)
27(1) 1(—3) 1(3)
SO19 X Uy 9 x 1(0) + 3 x 1(4) + 3 x 1(—4) + 45(0) + 3 x 10(—2) e10 = eg/V3
43 % 10(2) +3 x 16(—1) + 3 x 16(1) + 16(3) + 16(—3) (e = e19/4v3)
SUs x Uy 16 X 1(0) +4 x 1(5) + 4 x 1(=5) + 24(0) + 6 x 5(2) es =e10/V2

46 X 5(—2) +4 x 5(—3) +4 x 5(3) + 10(4) +10(—4)
+4 x 10(—1) + 4 x 10(1)

(ef”) = e5/2v/10)

SU3 x SUs x Uy

25 % [1,1](0) + 5 x [1,1](1) + 5 x [1,1](—1)
+[1,3](0) + 10 x [1,2](1/2) + 10 x [1,2](—1/2)

+10 x [3,1](—1/3) 4 10 x [3,1](1/3) + 5 x [3,1](2/3)
+5 x [3,1](=2/3) + 5 x [3,2](1/6) + 5 x [3,2](—1/6)
+[8,2](—5/6) + [3, 2](5/6) + [8, 1](0)

ez = ez = ep

(e(lY> =e5 \/3/5)

sin? 6y = 3/8

Wonderfully, this option is the only one which contains all representations needed
for the accommodation of all chiral MSSM superfields.
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Details of the symmetry breaking for the options B-1-1-2, B-1-2-1, and

B-2-1-1

The options B-1-1-2, B-1-2-1, and B-2-1-1 lead to the same value of the

Weinberg angle sin®fy = 3/5 and to the same branching rule of the
representation 248 with respect to SUs x SUs x Uy,

28|, =19 [1,1)(0) + 8 x [1,1](1/2) + 8 x [1,1](—1/2) + 12 x [1,2](0)
+4 % [1,2)(1/2) + 4 x [1,2](—=1/2) + [1,3](0) + 8 x [3,1](1/6)
+8 x [3,1](=1/6) + 6 x [3,1](~1/3) + 6 x [3,1](1/3)
+[3,1](2/3) 4+ [3,1](=2/3) + 2 x [3,2](~1/3) + 2 x [3,2](1/3)
+4 % [3,2](1/6) +4 x [3,2](—1/6) + [8,1](0)

SU3><SU2><U1’

In this case the representation [1, 1](—1) needed for the superfields corresponding

to the right charged leptons is absent. Therefore, these options are not acceptable
for phenomenology.
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Details of the symmetry breaking for the options B-1-2-2 and B-2-1-2

The options B-1-2-2 and B-2-1-2 lead to the same value of the Weinberg angle
sin? O = 3/4 and to the same branching rule for the representation 248 with
respect to SUs x SUsz x Us,

248| =17 x [1,1](0) + 9 x [1,1](1/3) + 9 x [1, 1](—1/3) + [1,2](1/2)

8 +[1,2](—1/2) + 9 x [1,2](1/6) + 9 x [1,2](—1/6) + [1, 3](0)
49 % [3,1](0) + 9 x [3,1](0) + 3 x [3,1](1/3) 4+ 3 x [3,1](=1/3)
+3 % [3,1](=1/3) + 3 x [3,1](1/3) + 3 x [3,2](—1/6)
+3 % [3,2](1/6) + 3 x [3,2](1/6) + 3 x [3,2](—1/6)

8,1](0 .
+ 11( )SUg><5‘U2><U1

In this case there are no representations [1,1](—1) needed for the superfields
corresponding to the right charged leptons and no representations [3,1](2/3)

corresponding to the right upper quarks. Therefore, all these options are not
acceptable for phenomenology.
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Conclusion

@ Using the group theory we analyzed a possibility of the symmetry
breaking pattern

E8%E7XU1*>E6><U1*>SO10XU1*>SU5XU1*>SU3XSUzXUl

provided that only parts of the representation 248 can acquire vacuum
expectation values. Also we assume that all U; groups in the considered
chain are different.

@ Among 6 different options for the symmetry breaking there is the only
one which leads to the correct value of the Weinberg angle and produces
all representations needed for the accommodation of all MSSM chiral
superfields. This option corresponds to the minimal absolute values of all
Ui charges of the fields responsible for the symmetry breaking.

@ Presumably, the considered symmetry breaking pattern could allow to
understand how a low-energy chiral theory appears.
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Conclusion

@ The representation 248 of the group FEs is fundamental and adjoint
simultaneously. Moreover, more than one 248 representations are needed,
so that ther is an interesting possibility to use the finite N'= 4 SYM with
the group Es for the Grand Unification.

@ We did not study dynamics of the considered symmetry breaking pattern
and made the investigation only using the group theory methods.

@ Some other similar symmetry breaking patterns like
Eg%E7><U1—>E6XU1—>SO]0—>SU5XU1—>SU3XSU2XU1

can also be considered.
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Thank you for the attention!




P.S. All group theory relations were taken from

R. Slansky, Phys. Rept. 79 (1981), 1.
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