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Abstract

A famous “early” arrival of a neutrino burst from the supernova SN1987A (before

the light burst) was observed in a detector under Mont Blanc, as reported in [V.

L. Dadykin et al., JETP Lett. 45, 593 (1987)]. This event still provides some

grounds for speculations about a possible tachyonic (faster-than-light) nature of at

least some of the known neutrino species. It is well known that quantum

mechanical wave packets describing massive particles disperse while propagating

on cosmic distance scales, in contrast to the deterministic trajectories of classical

particles. This applies both to tachyonic (superluminal) and tardyonic

(subluminal) massive relativistic wave packets. This constitutes quite a

fundamental question, in fact, which is relevant for tardyons and tachyons alike.

Hence, on the basis of the dispersion of quantum-mechanical wave packets, it is

interesting to ask to which extent quantum dispersion of the wave packets could

contribute to the uncertainties of arrival times of cosmic rays consisting of

massive particles on Earth, possibly even “mimicking” superluminal propagation,

purely due to dispersion of the wave packet. Furthermore, it is interesting to ask

about possible general formulas describing the quantum mechanical spreading of

wave packets on cosmic scales, in the ultrarelativistic limit.
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Shining a Laser at the Moon. . .

Question: Why can we shine a laser at the moon and measure the distance,
without having to worry about dispersion?
Answer: Because the phase and group velocities of luxons (massless
particles) in intrastellar space are equal to the speed of light, and there is
no spatial dispersion of a traveling wavepacket.

vg = vp =
dω

dk
=
ω

k
= c .
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Nonrelativistic Dispersion. . .

“Herd of cows”: The faster cows will form the tip of the herd, while the
slower cows will stay behind. The same can be said about the different
momentum components of a nonrelativistic wave packet under free
propagation.

Units with ~ = c = ε0 = 1:
Energy E = ω, wave number k = p.

ω =
p2

2m
, vg =

dω

dp
=

p

m
6= vp =

ω

p
=

p

2m
.

Huge dispersion of the wave packet:

vp ∝ vg ∝ p .

The wave packet will disperse considerably under free propagation!
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Ultrarelativistic Case

Dispersion relation (+: tardyons, − tachyons):

E =
√
p2 ±m2 .

Group velocity is almost the speed of light:

vg =
dE

dp
=

p√
p2 ±m2

=
p

E
≈ 1 .

Phase velocity is almost the speed of light:

vp =
E

p
=

√
p2 ±m2

p
≈ 1 .

. . . but there is some dispersion!
Tardyons: “The bigger cows are faster than the smaller ones, the group
velocity approaches the speed of light from below as the energy increases.”
Tachyons: “The bigger cows are slower than the smaller ones, the group
velocity approaches the speed of light from above as the energy increases.”
How does this work out in practice?
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Anticipating the Main Result

Let us suppose a neutrino is created in a supernova in the Large Magellanic
Cloud. Its initial momentum is p0, and its momentum spread is δp. It
travels for a time t. The mass of the particle (tardyonic or tachyonic) is m.
The particle travels in the “x direction” toward Earth. It is being detected
under the Mont Blanc [Dadykin et al., 1987].

Result: Irrespective of whether the particle is a tachyon or tardyon, the
positional uncertainty at the arrival on Earth is given by the approximate
formula

σx(t) =
√
〈x(t)2〉 − 〈x(t)〉2 ≈ m2 c3 δp

p30
t .

This result describes the uncertainty in the detection position σx(t), where
δp is the initial momentum spread of the wave packet in statu nascendi, m
is the particle mass, c is the speed of light, and p0 is the central value of the
momentum of the wave packet.

This result holds independently for tachyons and tardyons. It is
proportional to m2 and has the correct massless limit.
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Symmetry 14, 2596 (2022)
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Detour: Looking at Neutrinos

What if v 6= c or c 6= 1 for neutrinos?
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Looking at Neutrinos

I Neutrinos are very elusive particles.

I Speculation about tachyonic nature
[Chodos, Hauser, Kostelecky, PLB 1985]

I Lorentz–Violating Extension of Standard Model (SME)
developed with strong inspiration from neutrinos.

I Anyway, decay among neutrino mass eigenstates
kinematically allowed due to their mass differences.

I However, decay rates for “ordinary” neutrinos
(both Dirac as well as Majorana)
exceed lifetime of Universe by orders of magnitude.

I We look only at Lorentz-conserving neutrinos (tachyonic).

I Lorentz-violating neutrinos undergo stronger
decay and energy loss mechanims than “ordinary” neutrinos
because of their dispersion relation E ≈ p v with v > 1
(at high energy), which makes a number of decays
kinematically possible.
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Looking at Neutrinos

I Early arrival of the 1987A neutrinos from the supernova.

I Consistent (statistically insignificant) experimental results δν & 0 by
various groups. (vν =

√
1 + δν .)

I Neutrinos cannot be used to transmit information (at least not easily)
because of their small interaction cross sections. Superluminality of
neutrinos would not necessarily lead to violation of causality.

I Cutoff in the cosmic spectrum seen by IceCUBE at about 2 PeV.
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Lorentz Violation Constrained by Decay

Left: LPCR=Lepton–Pair Cerenkov Radiation
Right: NPCR=Neutrino–Pair Cerenkov Radiation

11



Phys. Rev. D 100, 035036 (2019)
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Particles 3, 630 (2020)
Strict bound on Lorentz violation: δν < 2.0× 10−20

13



End of the Detour

Now we again assume v = c = 1 for neutrinos.
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Tachyonic and Tardyonic Dirac Equations

Tardyons:
For spin-1/2, satisfy the Dirac equation

(iγµ∂µ −m) ψ(x) = 0 .

Dispersion relation:

E =
√
p2 +m2 .

Tachyons:
For spin-1/2, satisfy the Dirac equation(

iγµ∂µ − γ5m
)

Ψ(x) = 0 .

Dispersion relation:

E =
√
p2 −m2 .
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Tachyonic Dirac Solution

Helicity basis (θ and ϕ belong to ~p):

a+(~p) =

(
cos
(
θ
2

)
sin
(
θ
2

)
eiϕ

)
, a−(~p) =

(
− sin

(
θ
2

)
e−iϕ

cos
(
θ
2

) )
.

Propagating in the x direction:

Ψ(t, x) =

∫
dp

2π

f(p)

2


−
√

(p−m)/p√
(p−m)/p√
(p+m)/p

−
√

(p+m)/p

 exp
(
−i
√
p2 −m2 t+ ip x

)
.

Normalization:∫
dx |Ψ(t, x)|2 =

∫
dxΨ+(t, x) Ψ(t, x) =

∫
dp

2π
|f(p)|2 = 1 .

Approximation of bispinor prefactor:

Ψ(t, x) ≈
∫

dp

2π

f(p)

2
u exp

(
−i
√
p2 −m2 t+ ip x

)
.
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Gaussian Envelope

Here, we employ the Gaussian envelope function

f(p) =
(2π)1/4√

δp
exp

(
− (p− p0)2

4 δp2

)
,

which is normalized to unity ∫
dp

2π
|f(p)|2 = 1 ,

and has the property
〈p2〉 − 〈p〉2 = δp2 .

The mean-square momentum uncertainty is equal to δp2.
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Tachyonic Standard Wavepacket
Standard wave packet:

Ψ(t, x) =
(2π)1/4

δp

∫
dp

2π
exp

(
−i
√
p2 −m2 t+ ip x− (p− p0)2

4δp2

)
Interesting expectation values: 〈X(t)〉 =

∫
dxx |Ψ(t, x)|2 and

〈X(t)2〉 =
∫

dxx2 |Ψ(t, x)|2. We are interested in 〈X(t)〉 and 〈X(t)2〉.
Secret to the integration: Do the x integral first, using∫

dxx exp
(
i(p− p′)x

)
= −i

∂

∂p
δ(p− p′) .

formulating the bra and ket wavepackets with momentum integration
variables p and p′. Then apply the Dirac-δ function, reducing the problem
to a one-dimensional p integral with an exponential weight factor. In the
last step, one does the remaining p integral under the appropriate
ultrarelativistic approximations. Initially no saddle point approximation!
Result:

〈[X(t)]2〉 =
1

4δp2
+ t2 +

m2 t2

p20
+
m4 + 3m2δp2

p40
t2 +O(p−6

0 ) ,

for the mean square position, and for the square:

[〈X(t)〉]2 = t2 +
m2 t2

p20
+
m4 + 3m2δp2

p40
t2 +O(p−6

0 ) .
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Tachyonic Uncertainty

Inclusion of p−6
0 terms leads to the result:

δX(t)2 = 〈[X(t)2]〉 − [〈X(t)〉]2 =
1

4δp2
+
m4 δp2 t2

p60
+O(p−8

0 ) .
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Tardyonic Standard Wavepacket
Standard wave packet:

ψ(t, x) =

√
2π

δp

∫
dp

2π
exp

(
−i
√
p2 +m2 t+ ip x− (p− p0)2

4δp2

)
.

Interesting expectation values: 〈X(t)〉 =
∫

dxx |Ψ(t, x)|2 and
〈X(t)2〉 =

∫
dxx2 |Ψ(t, x)|2. We are interested in 〈X(t)〉 and 〈X(t)2〉.

Secret to the integration: Do the x integral first, using∫
dxx exp

(
i(p− p′)x

)
= −i

∂

∂p
δ(p− p′) .

formulating the bra and ket wavepackets with momentum integration
variables p and p′. Then apply the Dirac-δ function, reducing the problem
to a one-dimensional p integral with an exponential weight factor. In the
last step, one does the remaining p integral under the appropriate
ultrarelativistic approximations. Initially no saddle point approximation!
Result:

〈[x(t)]2〉 =
1

4δp2
+ t2 − m2 t2

p20
+
m4 − 3m2δp2

p40
t2 +O(p−6

0 ) ,

for the mean square position, and for the square:

[〈x(t)〉]2 = t2 − m2 t2

p20
+
m4 − 3m2δp2

p40
t2 +O(p−6

0 ) .
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Tardyonic Uncertainty

Inclusion of p−6
0 terms leads to the result:

δx(t)2 = 〈[x(t)2]〉 − [〈x(t)〉]2 =
1

4δp2
+
m4 δp2 t2

p60
+O(p−8

0 ) .
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Result of Propagation
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Cosmic Limit

We remember (universally for tachyons and tardyons):

δX(t)2 ≈ δx(t)2 ≈ 1

4δp2
+
m4 δp2 t2

p60
≈ m4 δp2 t2

p60

for large t, but also large p0, which suppresses the higher-order terms in δp,
which are accompanied by inverse powers of p0.
We choose as the cosmic travel time an interval of 168,000 light years,
which is the distance to the Large Magellanic Could, where the supernova
1987A originated. One finds

δX(t)

c

∣∣∣∣
t=168,000 yr

≈ δx(t)

c

∣∣∣∣
t=168,000 yr

≈ 5.298× 10−6 δξ

ξ

(
χ

ξ

)2

s ,

where “s” of course is the symbol for the unit “second”, δξ is the
momentum spread in GeV/c, ξ is equal to the central momentum p0 in
GeV/c, and χ is the mass of the particle, measured in eV/c2. It means
that, if the particle wave function is centered about a well-defined
ultrarelativistic mean momentum p0 � m (i.e., δξ/ξ � 1 and χ/ξ � 1),
then the detection time uncertainty amounts to less than a microsecond
even for cosmic travel over appreciable distances (here, as an example, the
distance to the Large Magellanic Could).
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Conclusions

I The universal result

σx(t) ≈ m2 c3 δp

p30
t

has been found for the dispersion of ultrarelativistic tardyonic and
tachyonic wave packets on cosmic scales.

I This applies to all Lorentz-conserving wave packets (tardyons and
tachyons).

I The dispersion for the neutrinos from the supernova SN1987A is small
and cannot explain the early arrival.
This finding also is reassuring for the timing of other cosmic events.

I However, the dispersion cannot be ignored if the wave packet is created
with considerable momentum uncertainty, and the travel time exceeds
a few billion years.
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