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We use the following notations throughout the book (if not directly stated
otherwise):

h̄� c � 1.

The signature of metric tensor in the Minkowski space is chosen in the form

⒧1ÿ �1ÿ �1ÿ �1⒭.

The connection between Newton constantGN and Planck massMP is

GN � M�2
P .

The interval in the synchronous reference frame

ds2
� dt2 � γ αβ dxα dxβ .
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In the presence of eternity, the mountains are
as transient as the clouds.

Robert Green Ingersoll
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Modern cosmology is the field of researches which is quickly develop-
ing. New technical devices and tools supply community by new experi-
mental data measured with high accuracy. On the other hand, a number
of theoretical models increases exponentially. Thus, on one hand, we have
substantial amount of observational data needed selfconsistent explana-
tion. On the other hand, the theoretical models are able to explain most of
them, meantime producing huge amount of new predictions. Only small
amount of them corresponds reality, what will be revealed only in future.
Nevertheless, this boiling kettle of theoretical researches and experimental
efforts produces ideas that seems to be preserved for the following gener-
ations.

The aim of this book is to acquaint reader with those ideas which seem
more or less firm. The first two chapters devoted to necessary tools in
the inflationary paradigm, were we tried to discuss not only widespread
problems, but also those which usually not considered in details. The fol-
lowing chapters concern new ideas of the large scale structure formation
and crucial role of quantum fluctuations in creation of our Universe.

The regular course of lectures "Introduction to Cosmoparticle physics"
in Moscow Engineering Physics Institute and courses "Physics of Prim-
ordial Universe" in the 1 and 3 Rome Universities, given by one of us
(M.Yu.Kh.), helped us to make the book content eligible for a wide audi-
ence of students and PhD students, specializing in physics and astronomy.

We hope that this book helps reader being easily involved in the fascin-
ating problems discussed nowadays.

Authors
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Chapter 1

PRINCIPLES OF COSMOPARTICLE
PHYSICS

Cosmoparticle physics originates from the well established relationship between
microscopic and macroscopic descriptions in theoretical physics. Historic-
ally, it reminds the links between statistical physics and thermodynamics, or
between electrodynamics and theory of electron. To the end of the XX Cen-
tury the new level of this relationship was realized, linking the science on the
Universe as a whole and physics of elementary particles.

Now it has become evident that large scale properties of the observed Uni-
verse can not be understood without the proper model of elementary particles.
The modern Standard Model of Big Bang Universe is based on inflationary
cosmology with baryosynthesis, dark matter and possibly dark energy. Such
model can find its physical grounds only beyond the world of known element-
ary particles in the hypothetical predictions of particle theory. Particle theory
that will provide such grounds should use in its turn cosmological tests as the
important and in many cases unique way to probe its predictions.

The convergence of the frontiers of our knowledge in micro- and macro-
worlds leads to the wrong circle of problems, illustrated by the mystical Uhro-
boros (self-eating-snake). The Uhroboros puzzle may be formulated as fol-
lows: The theory of the Universe is based on the predictions of particle theory,
that need cosmology for their test. Cosmoparticle physics [1, 2, 3] offers the
way out of this wrong circle. It studies the fundamental basis and mutual
relationship between micro- and macro-worlds in the proper combination of
physical, astrophysical and cosmological signatures.

1. Particle Physics in Big Bang Universe

Let us specify in more details the links between the properties of funda-
mental particles and their cosmological effects.

1
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1.1 Particles - Gauge Symmetry
of the Standard Model

To the end of the XX Century the set of experimentally proven ideas about
elementary particles and their transformations was fixed in the Standard Model,
which is based on the extension of the principle of gauge symmetry of quantum
electrodynamics to the case of weak and strong interactions (see [4] for re-
view).

This set of ideas implies the fundamental notion of particle symmetry, ascrib-
ing the observed difference in particle properties and interactions to the differ-
ence in symmetry properties, as well as to the mechanism of symmetry break-
ing.

The fundamental role of particle symmetry follows naturally from the basic
principles of quantum field theory (QFT). The way QFT describes particles
in terms of creation and annihilation operators made a revolutionary change in
the notion of "elementary particle". From antiquity to the XX century the basic
idea of elementary particle was to consider it being eternal. Elementary pieces
of a conserved quality could not be destructed or created, and the conservation
of quality was the natural consequence of eternity of its elementary bricks. So,
the conservation of electric charge simply followed from the eternal nature of
elementary charged particles - electrons.

The formalism of QFT allows electrons to be created and annihilated. It re-
volves the picture and attributes the priority to charge conservation. So, electric
charge should be conserved in all the processes of creation and annihilation of
charged particles. The theoretical reasoning for charge conservation comes
from the gauge invariance of quantum electrodynamics(QED) (see [5] for re-
view). Strict U(1) gauge symmetry, assumed for free charged particles, made
it possible to introduce the electromagnetism as gauge interaction, mediated
by the gauge boson – quantum of the electromagnetic field.

This picture could be naturally extended to the processes of particle trans-
formation, in which a particle of one type converts itself into a particle of
another type, provided that the both types of particles are related by symmetry.
Say, the process of weak interaction, in which incoming neutrino converts into
outgoing electron, can be described in a way similar to QED, if we assume
a symmetry between the neutrino and the electron and treat them as differ-
ent states of one (lepton) field. Such gauge SU(2) symmetry for free leptons
implies the existence of an intermediate gauge boson of weak interaction, cre-
ated or annihilated in the elementary act of weak interaction, when the initial
neutrino is converted into the final electron.

Weak interaction of elementary particles is short-ranged, because, unlike
the massless photon, W-boson of weak interaction is massive. The mass of
W-boson reflects the scale of the symmetry breaking. It is just this scale that
determines the masses of quarks and leptons. Another difference is the group
of symmetry: U(1) is an Abelian group, and SU(2) is a non-Abelian group.
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Gauge theory, based on non-Abelian group of symmetry, possesses confine-
ment. The scale of confinement determines the fundamental energy scale, even
if the non-Abelian symmetry is unbroken. This property is important in the
modern theory of strong interaction - quantum chromodynamics (QCD). The
non-Abelian nature of SU(3)c gauge group of QCD implies QCD confinement
at the energy scaleΛQCD » 300 MeV. QCD confinement explains the absence
of free quarks – owing to confinement of their colors they can be found only
in the bound states. The energy scale of confinement determines the effective
mass of quarks in the bound state. It is just this constituent quark mass that
determines the mass of the proton.

The Standard Model assumes that the known elementary particles of matter
(the three families of leptons and quarks) possessSU⒧3⒭c

Q

SU⒧2⒭
Q

U⒧1⒭
local gauge symmetry, implying the existence of gauge bosons of strong (SU⒧3⒭c
– gluons), and electroweak (SU⒧2⒭

Q

U⒧1⒭ – W-, Z- bosons
indexz-boson and photon) interaction. TheSU⒧2⒭

Q

U⒧1⒭ symmetry of elec-
troweak interaction is broken by Higgs mechanism of spontaneous symmetry
breaking. It implies the existence of elementary scalar particle, called Higgs
boson.

The majority of the experimental data about elementary particles can be
reproduced by the Standard Model. However, it seems to be evidently incom-
plete, and this opens the door to the new physics.

1.2 Particles - Beyond the Standard Model
The new physics arises from the necessity to extend the Standard Model.

The white spots in the representations of symmetry groups, considered in the
extensions of the Standard Model, correspond to new unknown particles. The
extension of the symmetry of gauge group puts into consideration new gauge
fields, mediating new interactions. Global symmetry breaking results in the
existence of massless Goldstone boson fields.

For a long time the necessity of extending the Standard Model had purely
theoretical reasons. Aesthetical arguments favored embedding of the sym-
metry group of the Standard Model within a larger group of unifying symmetry
in order to reach full unification of fundamental interactions.

Practically, introduction of new particles and fields was used to save the
Standard Model from internal theoretical inconsistencies. So, introduction of
axion provides solution for the problem of strong CP violation in QCD [6, 7, 8]
(see [3, 9] for review), and supersymmetric partners compensate divergences in
the quantum corrections to the mass of Higgs boson (see review and references
in [10]).

Theoretical description of neutrino mass also implies new physics (see re-
view in [11, 3]). In particular, new particles – heavy right handed neutrinos
– are introduced to explain the smallness of neutrino mass in the see-saw
mechanism of neutrino mass generation. New physical property - Majorana
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mass, violating conservation of lepton number arises in this mechanism. Neut-
rino and its antiparticle (antineutrino) are identified with left- and right-handed
states of the same particle - massive neutrino. This identification is possible if
neutrino does not possess conserved charge.

The Standard Model cannot provide sufficient physical basis for the modern
cosmology. One has to go beyond the Standard Model to explain inflation,
baryosynthesis and nonbaryonic dark matter.

Recently a set of experimental evidences for the existence of neutrino os-
cillations (see for recent review e.g. [12], [13], [14],[15] ), of cosmic WIMPs
[16], and of double neutrinoless beta decay [17] appeared. Whatever is the ac-
cepted status of these evidences, they indicate that the experimental searches
may have already crossed the border of new physics.

In particle physics direct experimental probes for the predictions of particle
theory are most attractive. The predictions of new charged particles, such as
supersymmetric particles or quarks and leptons of new generation, are access-
ible to experimental search at accelerators of new generation if their masses are
in 100GeV� 1TeV range. However, the predictions related to higher energy
scale need non-accelerator or indirect means for their test. Moreover, discovery
of new particles even at accelerators implies hard efforts in the interpretation
of experimental data making them more and more ’indirect’.

The search for rare processes, such as proton decay, neutrino oscillations,
neutrinoless beta decay, precise measurements of parameters of known particles,
and experimental searches for dark matter represent the widely known forms
of such means. Cosmoparticle physics offers the nontrivial extensions of indir-
ect and non-accelerator searches for new physics and its possible properties.
In experimental cosmoarcheology the data has to be obtained, to link the cos-
mophenomenology of new physics with astrophysical observations (See [18]).
In experimental cosmoparticle physics the parameters that are fixed from the
consistency of cosmological models and observations, define the level at which
the new types of particle processes should be searched for (see [19]).

Future theory should provide the complete physical basis for cosmology.
The problem is that the string theory [20] is now in the form of a "theoretical
theory", for which the experimental probes are widely doubted to exist. The
development of cosmoparticle physics can remove these doubts. In its frame-
work there are two directions to approach the test of the theories of everything.

One of them is related to the search for the experimentally accessible effects
of heterotic string phenomenology.

The mechanism of compactification and symmetry breaking leads to the
prediction of homotopically stable objects [21] and shadow matter [22, 23],
which are accessible to cosmoarcheological means of cosmoparticle physics.

The condition to reproduce the Standard Model naturally leads in the het-
erotic string phenomenology to the prediction of fourth generation of quarks
and leptons [24] with a stable massive 4th neutrino [25]. The comparison
between the rank of the unifying groupE6 (r � 6) and the rank of the Stand-



Principles of Cosmoparticle Physics 5

ard Model (r � 4) implies the existence of new conserved charges and new
(possibly strict) gauge symmetries. New strict gauge U(1) symmetry (sim-
ilar to U(1) symmetry of electrodynamics) is possible if it is ascribed to the
fermions of 4th generation. The lightest particle, possessing this new charge
(4th neutrino) should be absolutely stable. New strictly conserved local U(1)
gauge symmetries can also arise in the development of D-brane phenomeno-
logy [26, 27].

Following the hypothesis [24] quarks and leptons of 4th generation are the
source of a new long range interaction (y -electromagnetism), similar to the
electromagnetic interaction of ordinary charged particles. This can be the sub-
ject of a complete experimental test in the near future. If proved, the practical
importance of this property could be hardly overestimated.

It is interesting that heterotic string phenomenology embeds even in its
simplest realization both supersymmetric particles and the 4th family of quarks
and leptons, in particular the two types of WIMP candidates: neutralinos and
massive stable 4th neutrinos. The multicomponent analysis of WIMP effects
is therefore favorable in the framework of this phenomenology.

In the above approach some particular phenomenological features of simplest
variants of string theory are studied. The other direction is to elaborate the ex-
tensive phenomenology of theories of everything by adding to the symmetry
of the Standard Model the (broken) symmetries, which have serious reasons to
exist. The existence of (broken) symmetry between quark-lepton families, the
necessity in the solution of strong CP-violation problem with the use of broken
Peccei-Quinn symmetry, as well as the practical necessity in supersymmetry to
eliminate the quadratic divergence of Higgs boson mass in electroweak theory
is the example of appealing additions to the symmetry of the Standard Model.
The horizontal unification and its cosmological consequences represent the
first step on this way, illustrating the approach of cosmoparticle physics to the
elaboration of the proper phenomenology for theories of everything [28].

1.3 New Particles in the Universe

Physical processes in the Big Bang Universe are determined by the condi-
tions of cosmological expansion and by matter and radiation content. As we
will see, the opposite is also true in the modern cosmology: the conditions
of expansion and the physical content of the Universe are realized in the res-
ult of processes determined by the physical laws, underlying the cosmological
scenario.

The set of astrophysical data fixes the main stages of the cosmological evol-
ution. These data prove the basic picture of the Big Bang Universe that follows
from the extrapolation to the past the trend of the modern cosmological expan-
sion and the presence of thermal electromagnetic background radiation. In the
course of such extrapolation we inevitably come to the hot period of radiation
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dominant stage, when the radiation energy density exceeded substantially the
density of matter.

The old picture of Big Bang Universe was physically self-consistent. It con-
sidered only baryonic matter and radiation and it applied to the cosmological
evolution the known laws of atomic physics, nuclear physics, thermodynam-
ics, hydrodynamics and kinetics (see review in [29]). Matter and radiation
were treated, respectively, as nonrelativistic and relativistic homogeneous and
isotropic fluids. At early stages it was easily checked that baryonic matter was
ionized and had the form of plasma. It could be also easily checked that plasma
and radiation were in thermal equilibrium.

The thermal history of the Universe, qualitatively confirmed by the obser-
vational data, included the period of very early Universe (the first second of
expansion), when the temperature wasT �� 1 MeV, the period of Big Bang
nucleosynthesis (the famous ”first three minutes”), when primordial chemical
composition (dominantly hydrogen and helium) was formed, the period of ra-
diation dominance stage, that ended when the matter density began to exceed
the energy density of radiation, and the period of recombination of hydrogen,
when electron-proton plasma recombined into gas of neutral hydrogen atoms.
After the recombination period, the radiation pressure could not prevent devel-
opment of gravitational instability of neutral gas, so that galaxies and all the
observed matter inhomogeneities were formed in the result of growth of small
initial density fluctuations.

The cosmological expansion and its initial conditions provided the back-
ground in the old Big Bang scenario, on which the evolution of plasma and
radiation took place. The whole set of known fundamental particles, most
of which are unstable, was taken into account in the conditions of thermody-
namic equilibrium, and the number of particle species entered the relationship
between the temperature and cosmological time.

The properties of stable particles cause much more influence on the physics
of expansion. At initially given baryon to photon ratio the baryon mass de-
termines the change of equation of state in the transition from the radiation to
matter dominance.

The rate of beta-reactions the frozen out ratio of neutrons and protons. To-
gether with the nuclear reaction rates this ratio enters the parameters of prim-
ordial nucleosynthesis. Nuclear Coulomb interaction determines the Coulomb
barrier in reactions with electrically charged nuclei, suppressing production of
elements heavier than helium. In that way nuclear physics data determine the
primordial chemical composition.

The hydrogen recombination period is determined by the mass and Cou-
lomb interaction of electron. The scale of gravitational instability is defined
by the dissipation scale, being in turn determined by photon-electron Compton
scattering. In the framework of Standard Model of particle interactions the
above microphysical parameters reflect the QCD and electroweak scales. In
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the early Universe, when the temperature was of the order of these scales the
QCD and electroweak phase transitions should have taken place.

The expansion of the Universe is governed by Einstein’s equations (see for
review [30, 31, 32]). The role of particle content in the Einstein’s equations is
reduced to its contribution into the energy-momentum tensor. So, the set of re-
lativistic species, dominating in the Universe, realizes the relativistic equation
of statep � ε�3 and the stage of relativistic expansion. In the equilibrium the
contribution of various relativistic bosons and fermions differs by their statistic
weight. The treatment of different species of particles as equivalent degrees of
freedom of the equilibrium relativistic gas physically assumes a strict sym-
metry between them.

Such strict symmetry is not realized in Nature. There is no exact symmetry
between bosons and fermions (e.g. supersymmetry). There is no exact sym-
metry between various quarks and leptons. The symmetry breaking implies the
difference in particle masses. The particle mass pattern reflects the hierarchy
of symmetry breaking.

Noether’s theorem relates the exact symmetry to conservation of respective
charge. The lightest particle, bearing the strictly conserved charge, is abso-
lutely stable. So, the electron is absolutely stable, and this reflects the conser-
vation of the electric charge. In the same manner, the stability of proton is con-
ditioned by the conservation of baryon charge. The stability of ordinary matter
is therefore protected by the conservation of electric and baryon charges, and
its properties reflect the fundamental physical scales of electroweak and strong
interactions. Indeed, the electron mass is related to the scale of the electroweak
symmetry breaking, whereas the proton mass reflects the scale of QCD con-
finement.

Extensions of the Standard Model imply new symmetries and new particle
states. The respective symmetry breaking induces new fundamental physical
scales in the particle theory. If the symmetry is strict, its existence implies
new conserved charge. The lightest particle, bearing this charge, is stable. The
set of new fundamental particles, corresponding to the new strict symmetry, is
then reflected in the existence of new stable particles, which should be present
in the Universe and taken into account in the total energy-momentum tensor.

Most of the known particles are unstable. For a particle with the massm
the particle physics time scale ist » 1�m, so in the particle world we call
particles with lifetimeτ �� 1�m as metastable. In order to have cosmological
significance, metastable particles should survive after the temperatureT of
the Universe fell down belowT » m, which means that the particle lifetime
should exceedt » ⒧MP�m⒭ .

⒧1�m⒭. Such a long lifetime should find its
reason in the existence of some (approximate) symmetry. From this viewpoint,
cosmology is sensitive to the most fundamental properties of microworld, to
the conservation laws reflecting strict or nearly strict symmetries of particle
theory.
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However, the mechanism of particle symmetry breaking can also have a
cosmological impact. Heating the condensed matter leads to restoration of its
symmetry. When the hot matter cools down, the transition to the phase of
broken symmetry takes place. In the course of the phase transitions, corres-
ponding to given type of symmetry breaking, topological defects could form.
One can directly observe formation of such defects in liquid crystals or in
superfluids. In the same manner the mechanism of spontaneous breaking of
particle symmetry implies restoration of the underlying symmetry [33, 34]
(see review in [35, 36]). When the temperature decreases in the course of
cosmological expansion, transitions to the phase of broken symmetry could
lead (depending on the symmetry breaking pattern) to the formation of to-
pological defects in the very early Universe [37]. These defects can repres-
ent new form of stable particles (as it is in the case of magnetic monopoles
[38, 39, 40, 41, 42, 43, 44]), or the form of extended structures, such as cosmic
strings [37, 45, 46] and cosmic walls [47, 37].

2. Physics of the Modern Cosmology

In the old Big bang scenario the cosmological expansion and its initial
conditions were givena priori. In the modern cosmology the expansion of
the Universe and its initial conditions are related to the process of inflation
[48, 49, 50, 51, 52, 53, 54, 55]. The global properties of the Universe as well
as the origin of its large scale structure (LSS) are the result of this process
(see review in [56, 57, 58]). The matter content of the modern Universe is also
originated from the physical processes: the baryon density is the result of bary-
osynthesis [59, 60] and the nonbaryonic dark matter represents the relic species
of physics of the hidden sector of particle theory (see review in [36, 3]). Phys-
ics, underlying inflation, baryosynthesis and dark matter are referred to the
extensions of the Standard Model, and the variety of such extensions makes
the whole picture ambiguous in general.

However, in the framework of each particular physical realization of infla-
tionary model with baryosynthesis and dark matter, the corresponding model
- dependent cosmological scenario can be specified in all the details. In such
scenario the main stages of cosmological evolution, the structure and the phys-
ical content of the Universe reflect the structure of the underlying physical
model. The latter should necessarily include main features of the Standard
Model, which describes the properties of baryonic matter, and the extensions
of the Standard Model that are responsible for inflation, baryosynthesis and
dark matter. In no case the cosmological impact of such extensions is reduced
to reproduction of these three phenomena only. The nontrivial path of cosmo-
logical evolution, specific for each particular realization of inflationary model
with baryosynthesis and nonbaryonic dark matter, always contains some ad-
ditional model - dependent cosmologically viable predictions, which can be
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confronted with astrophysical data. The part of cosmoparticle physics, called
cosmoarcheology, offers the set of methods and tools probing such predictions.

2.1 New Physics and cosmological evolution
Cosmoarcheology considers the results of observational cosmology as the

sample of the experimental data on the possible existence and features of hy-
pothetical phenomena predicted by particle theory. To undertake theGedanken
Experimentwith these phenomena some theoretical framework should be as-
sumed in order to treat their origin and evolution in the Universe. As it was
pointed out in [18] the choice of such framework is a nontrivial problem in the
modern cosmology.

Indeed, in the old Big Bang scenario any new phenomenon predicted by
particle theory was considered in the course of the thermal history of the Uni-
verse, starting from Planck times. The problem is that the bedrock of the mod-
ern cosmology, namely inflation, baryosynthesis and dark matter, is also based
on experimentally unproven part of particle theory, so that the test for possible
effects of new physics is accomplished by the necessity to choose the phys-
ical basis for such test. There are two possible solutions for this problem: a)
a crude model - independent comparison of the predicted effect with the ob-
servational data and b) the model dependent treatment, when the considered
effect and physical mechanisms of inflation, baryosynthesis and dark matter
arise from the same physical model.

The basis for the approach (a) is that whatever happened in the early Uni-
verse, its results should not contradict the observed properties of the mod-
ern Universe. The set of observational data and, especially, the light ele-
ment abundance and thermal spectrum of microwave background radiation put
severe constraint on the deviation from thermal evolution after 1 second of
expansion, what strengthens the model - independent conjectures of approach
(a).

2.2 Cosmophenomenology of new physics
To study the imprints of new physics in astrophysical data one should spe-

cify the forms and means in which new physics leaves such imprints. So,
the important tool of cosmoarcheology in linking the cosmological predictions
of particle theory to observational data is theCosmophenomenologyof new
physics. It studies the possible hypothetical forms of new physics, which may
appear as cosmological consequences of particle theory, and their properties,
which can result in observable effects.

The simplest primordial form of new physics is the gas of new stable massive
particles originated from early Universe (see [61] for review). For particles
with massm, at high temperatureT � m the equilibrium conditionn.σ v. t � 1
is valid if their annihilation cross sectionσ � 1�⒧mMP⒭ is sufficiently large
to establish the equilibrium. AtT � m such particles go out of equilibrium
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and their relative concentration freezes out. More weakly interacting species
decouple from plasma and radiation atT � m, whenn . σ v . t » 1, i.e. at
Tdec » ⒧σ MP⒭

�1. The maximal temperature, which is reached in the infla-
tionary Universe, is the reheating temperature,Tr , after inflation. So, the very
weakly interacting particles with the annihilation cross sectionσ � 1�⒧Tr MP⒭,
as well as very heavy particles with the massm �� Tr can not be in thermal
equilibrium, and the detailed mechanism of their production should be con-
sidered to calculate their primordial abundance.

Decaying particles with the lifetimeτ , exceeding the age of the Universe,
tU , τ � tU , can be treated as stable. By definition, primordial stable particles
survive to the modern epoch and should be present in the modern Universe.
The net effect of their existence is given by their contribution into the total
cosmological density. They can dominate in the total density being the dom-
inant form of cosmological dark matter, or they can represent its subdominant
fraction. In the former case the particles determine dynamics of galaxy and
LSS formation. In the latter case more detailed analysis of their distribution
in space, of their condensation in galaxies, of their capture by stars, Sun and
Earth, as well as of the effects of their interaction with matter and of their
annihilation provides more sensitive probes for their existence.

In particular, hypothetical stable neutrinos of the 4th generation with the
mass about 50 GeV are predicted to form the subdominant form of the modern
dark matter, contributing less than 0,1 % to the total density. However, direct
experimental search for cosmic fluxes of weakly interacting massive particles
(WIMPs) may be sensitive to the existence of such component [62], [16], and
may be even favors it [16]. It was shown in [25, 63, 64, 65] that annihilation
of 4th neutrinos and their antineutrinos in the Galaxy can influence and even
explain the observed spectrum of galactic gamma-background and of cosmic
ray positrons. 4th neutrino annihilation inside the Earth should lead to the flux
of underground monochromatic neutrinos of known types, which can be traced
in the analysis of the already existing and future data of underground neutrino
detectors [64].

New particles with electric charge and/or strong interaction can form an-
omalous atoms and contain in the ordinary matter as anomalous isotopes. For
example, if the lightest quark of 4th generation is stable, it can form stable
charged hadrons, serving as nuclei of anomalous atoms of e.g. crazy helium
[66].

Primordial unstable particles with the lifetime less than the age of the Uni-
verse,τ � tU , can not survive to the present time. But, if their lifetime is suf-
ficiently large to satisfy the conditionτ �� ⒧MP�m⒭ .

⒧1�m⒭, their existence in
early Universe can lead to direct or indirect traces. Cosmological flux of decay
products contributing into the cosmic and gamma ray backgrounds represents
the direct trace of unstable particles. If the decay products do not survive to
the present time, their interaction with matter and radiation can cause indirect
trace in the light element abundance or in the fluctuations of thermal radiation.
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If the particle lifetime is much less than 1 second the multi-step indirect traces
are possible, provided that particles dominate in the Universe before their de-
cay. On the dust-like stage of their dominance, black hole formation takes
place, and the spectrum of such primordial black holes(PBH) [67, 68, 69]
traces the particle properties (mass, frozen concentration, lifetime) [70, 71].
The particle decay in the end of dust like stage influences the baryon asym-
metry of the Universe. PBH evaporation [72] in the Universe after 1 second
of expansion is accessible to observational test similar to unstable particles,
decaying in this period. In any way cosmophenomenoLOGICAL chains link
the predicted properties of even unstable new particles to the effects accessible
in astronomical observations. Such effects are important in the analysis of the
observational data.

Presumable existence of unstable hypothetical particles ravel an interpret-
ation of observational data. So, the only direct evidence for the accelerated
expansion of the modern Universe comes from the distant SN I data [73]. The
data on the cosmic microwave background (CMB) radiation and LSS evolution
(see e.g. [74]) prove in fact the existence of homogeneously distributed dark
energy and the slowing down of the LSS evolution forz �

�

3. Homogeneous
negative pressure medium (Λ-term or quintessence, see review [75]) leads to a
relativeslowing down of the LSS evolution due to an acceleration of the cos-
mological expansion. However, both homogeneous component of dark matter
and slowing down of the LSS evolution naturally follow from the models of
Unstable Dark Matter (UDM) (see [3] for review), in which the structure is
formed by unstable weakly interacting particles. The weakly interacting decay
products are distributed homogeneously. The loss of the most part of dark mat-
ter after decay slows down the LSS evolution. The dominantly invisible decay
products can contain a small ionizing component [76]. Thus, UDM effects will
deserve special attention, even if the accelerated expansion is proved.

One can specify the new phenomena by their net contribution into the cos-
mological density and by forms of their possible influence on parameters of
matter and radiation. In the first aspect we can consider strong and weak phe-
nomena. Strong phenomena can put dominant contribution into the density of
the Universe, thus defining the dynamics of expansion in that period, whereas
the contribution of weak phenomena into the total density is always subdom-
inant. The phenomena are time dependent, being characterized by their time-
scale, so that permanent (stable) and temporary (unstable) phenomena can take
place. They can have homogeneous and inhomogeneous distribution in space.

The phenomena can influence the properties of matter and radiation either
indirectly, say, changing of the cosmological equation of state, or via direct
interaction with matter and radiation. In the first case only strong phenomena
are relevant, in the second case even weak phenomena are accessible to ob-
servational data. The detailed analysis of sensitivity of cosmological data to
various phenomena of new physics are presented in [3].
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The basis for the approach (b) is provided by a particle model, in which in-
flation, baryosynthesis and nonbaryonic dark matter are reproduced. Any real-
ization of such physically complete basis for models of the modern cosmology
contains with necessity additional model dependent predictions, accessible to
cosmoarcheological means. Here the scenario should contain all the details
specific to the considered model, and the confrontation with the observational
data should be undertaken in its framework. In this approach complete cosmo-
particle physics models may be realized, where all the parameters of particle
model can be fixed from the set of astrophysical, cosmological and physical
constraints. Even the details related to cosmologically irrelevant predictions,
such as the parameters of unstable particles, can find a cosmologically import-
ant meaning in these models. So, in the model of horizontal unification [28],
the parameters of t- and b- quarks fix the properties of the dark matter, forming
the LSS of the Universe.

2.3 Primordial Structures in the Universe
The important feature of cosmological consequences of particle theory is its

ability to explain the origin of the LSS formation in the FRW Universe.

In the simplest case, particle theory determines the parameters of inflation
that fix the spectrum of small primordial density fluctuations. The effective
growth of these fluctuations, leading to the LSS formation, implies another
prediction of particle theory – the prediction of dark matter particles. Suffi-
ciently stable weakly or superweakly interacting particles can play this role
(see [3] for review).

The parameters of new stable and metastable particles are determined by
the pattern of particle symmetry breaking. This pattern is also reflected in the
succession of phase transitions in the early Universe. The phase transitions of
the first order proceed through the bubble nucleation, which can result in black
hole formation. The phase transitions of the second order can lead to formation
of topological defects, such as walls, string or monopoles. The observational
data put severe constraints on magnetic monopole and cosmic wall production,
as well as on the parameters of cosmic strings. The succession of phase trans-
itions can change the structure of cosmological defects. More complicated
forms, such as walls-surrounded-by-strings, can appear. Such structures can
be unstable, but their existence can leave the trace in the nonhomogeneous dis-
tribution of dark matter and in large scale correlations in the nonhomogeneous
dark matter structures, such asarchioles[77, 78]. The large scale correlations
in topological defects and their imprints in primordial inhomogeneities is the
indirect effect of inflation, if phase transitions take place after reheating of the
Universe. Inflation provides in this case the equal conditions of phase trans-
ition, taking place in causally disconnected regions.

If the phase transitions take place on the inflationary stage, new forms of
primordial large scale correlations appear. The potential of the field, breaking
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the symmetry, may have a valley in the period of inflation. Fluctuations of
the field along this valley can be of arbitrary large scale, if they take place on
inflationary stage. As we will show in the present book it provides the specific
initial conditions for the phase transitions after the end of inflation. Under
these conditions LSS and correlations can appear.

We will discuss the example of global U(1) symmetry, broken spontan-
eously in the period of inflation and successively broken explicitly after re-
heating. In this model, considered in [79], [80], fluctuations on the inflation-
ary stage result in the formation of arbitrary large closed domain walls. After
their size equals the horizon, closed walls could collapse into black holes. This
mechanism can lead to formation of primordial black holes of a whatever large
mass (up to the mass of AGNs [80]). Such black holes appear in the form of
primordial black hole clusters, exhibiting fractal distribution in space [81]. It
can shed new light on the problem of galaxy formation.

Primordial strong inhomogeneities can also appear in the baryon charge dis-
tribution. The appearance of antibaryon domains in the baryon asymmetrical
Universe, reflecting the inhomogeneity of baryosynthesis, is the profound sig-
nature of such strong inhomogeneity [82]. On the example of the model of
spontaneous baryosynthesis (see [83] for review) the possibility for existence
of antimatter domains, surviving to the present time in inflationary Universe
with inhomogeneous baryosynthesis was revealed in [79]. Evolution of suf-
ficiently dense antimatter domains can lead to formation of antimatter glob-
ular clusters [84]. The existence of such cluster in the halo of our Galaxy
should lead to the pollution of the galactic halo by antiprotons. Their annihila-
tion can reproduce [85] the observed galactic gamma background in the range
tens-hundreds MeV. The prediction of antihelium component of cosmic rays
[84, 86], accessible to future searches for cosmic ray antinuclei in PAMELA
and AMS II experiments [87, 88, 89, 90], as well as of antimatter meteorites
[91] provides the direct experimental test for this hypothesis.

One can easily find that the existence of strong primordial inhomogeneities
is compatible with the FRW picture of cosmological evolution. Indeed, the
amplitude of density fluctuationsδ ù

ù

ù δñ�ñ measures the level of inhomo-
geneity relative to the total density,ñ. The partial amplitudeδ i ù

ù

ù δñi�ñi

measures the level of fluctuations within a particular component with density
ñi , contributing into the total densityñ � ∑i ñi . The caseδ i �

�

1 within the
consideredi-th component corresponds to its strong inhomogeneity. Strong
inhomogeneity is consistent with the smallness of total density fluctuations, if
the contribution of inhomogeneous component into the total density is small:
ñi �� ñ, so thatδ �� 1.

So the primordial strong inhomogeneities in the distribution of total, dark
matter and baryon density in the Universe is the new important phenomenon
of cosmological models, based on particle models with hierarchy of symmetry
breaking.
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One can find that from the very beginning to the modern stage, the evolution
of Universe is governed by the forms of matter and by physical laws, which
we still don’t know. Observational cosmology offers strong evidences favoring
the existence of processes, determined by new physics, and the experimental
physics approaches to their investigation.

Cosmoparticle physics [1, 2], studying the physical, astrophysical and cos-
mological impact of new laws of Nature, explores the new forms of matter and
their physical properties, which opens the way to use new sources of energy
and new means of energy transfer. It offers the great challenge for the new
Millennium.

The present book represents one of the directions in the development of
Cosmoparticle physics. It treats in a systematic way the relationship between
the fundamental symmetry of microworld, its realization in stochastic process
and its macroscopic, large scale and global signatures in the Universe. We
will see that even for the simplest possible pattern of U(1) symmetry breaking,
fluctuations on the inflationary stage can result in a rich variety of nontrivial
astrophysical effects.

We will reveal the mutual relationship between the choice of the Universe
and the laws of physics in it. It turns out that not only particle theory fixes
the pattern of cosmological evolution. In the Universe, possessing accelerator
expansion, the inverse is possible – the realization of inflationary cosmology
specifies the parameters of particle theory.

The important role of inflation, projecting the pattern of particle theory on
the modern sky, is illuminated in this book and provides the new set of meth-
ods to study particle physics by astrophysical means. It sheds new light on
the old astronomical problems, offering new insight on the physical nature of
astrophysical processes.



Chapter 2

BASIS OF INFLATION

Inflationary phenomena were discovered in 70-th of the previous century but
the true triumph of inflation came in 80-th. Its success in the explanation of
the observable Universe was so impressive that the majority of scientists has no
doubts on its correctness, at least as the basic principle. Unfortunately (or may
be, on the contrary, fortunately) the mechanism of inflation may be put into
practice by a variety of ways. It led to overproduction of inflationary models,
a number of which increases constantly. Below we discuss the properties of
inflationary scenario on the basis of chaotic inflation. Some other models are
considered in Chapter 10 to give imagination on beauty and rich possibilities
of the inflationary paradigm.

1. Equations for uniform media
First of all, we have to discuss the relativistic framework of the modern cos-

mology and to consider cosmological evolution of media with different prop-
erties. The only requirement is their homogeneity. An inclusion of gravity
leads to nontrivial dynamical processes in such media. Thus we have to start
with Einstein’s equations that couple gravity with matter and play determin-
ative role in cosmology. Metric tensorgµν is those dynamical variable that
represents gravitational field. By definition, it determines an interval between
two space-time points marked by 4-vectorsxµ andx′µ in curved space – time

ds2
� gµν dxµ dxν

ÿ (2.1)

wheredxµ
� xµ

� x′µ . Einstein’s equations have the form

Gν

µ
ù

ù

ù Rν

µ
�

1
2

δ
ν

µ
R� 8πGTν

µ
� Λδ

ν

µ
ÿ

which can be found in any textbook devoted to gravity. HereRν

µ
is the Ricci

tensor,R is scalar curvature, both of them depend on the metric tensor andTν

µ
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is energy - momentum tensor determined by properties of a medium. Recent
observations indicate possible existence ofΛ - term and we include it in the
equations from the beginning. Equivalent form of Einstein’s equations is

Rµν �

1
2

gµν R� 8πGTµν � Λgµν (2.2)

Stress tensor of ideal liquid has the form [30]

Tµ

ν
� ⒧p� ρ⒭uµuν � pδ

µ

ν
ÿ (2.3)

wherep is pressure of the medium,ρ - its energy density andu is a 4-velocity
of the medium. In a local comoving coordinate system (i.e. those measured
by a local observer who experiences the action of gravitational forces only)
4-velocity is u � ⒧1ÿ 0ÿ 0ÿ 0⒭ by definition and stress tensor possesses only
diagonal components

T0
0 � ρ; Tr

r � Tθ

θ
� Tϕ

ϕ
� �p. (2.4)

Consider the case of an uniform medium which is important for cosmology
as the realistic zero-order approximation in the description of the Universe.
The fact is that the Universe is homogenous only in average. For example, the
modern Universe contains large scale inhomogeneities like galaxies and galaxy
clusters and may be considered as uniform only after an averaging by a scale of
hundreds megaparsec. In this case metric tensorgµν could be simplified. Here
we only outline a prove. Using coordinate transformations one can reduce
most general form of an interval to a form [31], [32]

ds2
� dt2 � a⒧t⒭2 f 2

⒧r ⒭dr2
� r 2dΩ2 .

Ricci tensor depends on two functions -a⒧t⒭ÿ f ⒧r ⒭ that could be found from
Eq. (2.2).The scale factora⒧t⒭ plays significant role in the cosmology.Uni-
form liquid is locally at rest so thatu � ⒧1ÿ 0ÿ 0ÿ 0⒭ and hence nonzero com-
ponents of energy-momentum tensor are only those represented in expression
(2.4). To determine the form of the functionf ⒧r ⒭ one only needs equalities
Rrr � Rθ θ � Rϕϕ [32]. The final result isf ⒧r ⒭ � 1�⒧1� kr2

⒭ with constant
k � 0ÿ

ù

�1ÿ so that interval is usually written as

ds2
� dt2 � a⒧t⒭2

dr2

1� kr2 � r 2
⒧dθ

2
� sin2

θ dϕ
2
⒭ . (2.5)

This metric is fixed by the parameterk and functiona⒧t⒭ and is known as
Friedmann – Robertson – Walker (FRW) metric. The form of the metric tensor
is obtained by comparison of expressions (2.1) and (2.5)

g00 � 1ÿ grr �
�a⒧t⒭2

1� kr2 ÿ

gθ θ � �a⒧t⒭2r 2
ÿ gϕϕ � �a⒧t⒭2r 2 sin2

θ . (2.6)



Basis of inflation 17

Tensor Ricci can be easily expressed now in the terms of the scale factor

R0
0 � 3ä�a; (2.7)

Rr
r � Rθ

θ
� Rϕ

ϕ
� ä�a� 2ȧ2

�a2
� 2k�a2.

There are only three essentially different values of the parameterk, k � 0ÿ
ù

�1.
Time evolution of the scale factora⒧t⒭ is determined from Einstein’s equations
and depends on properties of mediadescribed by the stress tensorTµν . Space
points are marked by variablesrÿ θ ÿϕ . Their physical meaning is clarified if
one calculates a square of a surface at specific momentt: S� 4π a⒧t⒭r 2 . For
r � Constphysical radius of the sphere grows asa⒧t⒭. Physical frame is used
when measuring in terms of

R⒧t⒭ ùùù a⒧t⒭r . (2.8)

If two observers with local velocities equals to zero are disposed at distancer
they measure the physical distance growing with time according to (2.8). The
value R⒧t⒭ is known as the ’physical distance’ and it does not coincide with
instantaneous ’physical’ radius of the sphere

Rinst � a⒧t⒭
@ r

0

dr
A

1� kr2
. (2.9)

This distance is measured by a set of observers who are placed along the radius.
Its analytical form depends on the value of the parameterk

Rinst �

0

O

O

O

O

<

O

O

O

O

2

a⒧t⒭ arcsin⒧r ⒭ÿ k � 1

a⒧t⒭rÿ k � 0ÿ

a⒧t⒭arcsh⒧r ⒭ÿ k � �1

A third kind of the distance is measured by traveller who moves from a
center of the surface. It can be easily found for the traveller who moves with
a speed of light along the radius (dθ � dϕ � 0). Due to the fact that for the
light ds� 0 and from Eq. (2.5) it is obvious that

@ t

0

dt
a⒧t⒭

�

@ r

0

dr
A

1� kr2

what immediately gives physical distance travelled by light during time inter-
val ⒧0ÿ t⒭

R⒧t⒭hor ù
ù

ù a⒧t⒭r �

0

O

O

O

O

O

O

<

O

O

O

O

O

O

2

a⒧t⒭ sin
�

? t
0 dt�a⒧t⒭

�

k � 1;

a⒧t⒭
? t

0 dt�a⒧t⒭ÿ k � 0

a⒧t⒭sh
�

? t
0 dt�a⒧t⒭

�

ÿ k � �1.

(2.10)
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Here is the appropriate place to determine a notion of horizon. We have to
warn about two meanings of this word, both of them are widely used. The
first one is "horizon is a distance travelled by light during specific time". For
example, the horizon of our Universe is about 1028cm. This value is increasing
constantly. Another meaning of horizon is "geometrical set of points which
could be reached by light during infinitely large time interval". Schwarzschild
radius of a black hole is the typical illustration for the second definition. The
valueR⒧t⒭hor determines horizon size of the Universe in its first meaning.

After some algebra with Einstein equations one can obtain using Eq. (2.6)
first order differential equations that are valid for homogeneous Universe

ȧ2

a2 �
k
a2 �

8πG
3

ρ �
Λ
3
ÿ (2.11)

dρ

da
�

3⒧ρ � p⒭
a

� 0. (2.12)

De Sitter [239] has considered hypothetic space with zero stress energy - mo-
mentum tensor andΛ ô� 0. Being as simple as possible, this space possesses
interesting and important features which are widely used in modern theories.
The first of Eq. (2.11) is simplified significantly

ȧ2
� H2

0 a2
� �kÿ H2

0
ù

ù

ù

Λ
3
� Const. (2.13)

There are three types of solutions corresponding to three possible values of
constantk: 1) k � 0 - Flat Universe -

a⒧t⒭ � Const. exp⒧H0t⒭ÿ (2.14)

2) k � �1 - Open Universe -

a⒧t⒭ � H�1
0 sinh⒧H0t � Const′⒭ÿ (2.15)

3) k � 1 - Closed Universe -

a⒧t⒭ � H�1
0 cosh⒧H0t � Const′′⒭. (2.16)

The constants can be found from initial conditions. The values ofConst′ and
Const′′ are usually chosen to be zero andConst� H�1

0 . In this case all the
three possible forms of the scale factor tend to the unique one at large times

a⒧t⒭ � H�1
0 exp⒧H0t⒭ÿ t �� H�1

0 . (2.17)

The physical distance between two points increases exponentially as it is evid-
ent from the expression (2.8) and from the form of the scale factor in de Sitter
space. On the other hand, these points are characterized by comoving dis-
tancesr1 andr2 that do not vary with time. This remark indicates once more
the difference between physical and comoving distance. It is very instructive
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to consider a distance travelled by light both in the comoving coordinate and
the physical frame. Keeping in mind flat Universe (k � 0) with the scale factor
a⒧t⒭ � H�1

0 exp⒧H0t⒭, we obtain

Lcomov⒧tÿ t
′

⒭ �

@ t′

t
dτ�a⒧τ ⒭ � e�H0t

� e�H0t′ (2.18)

for the light motion from the initial momentt to the final momentt′ in the
comoving frame. Horizon size

Lhor ù
ù

ù Lcomov⒧tÿ t
′

}±⒭ � e�H0t (2.19)

is finite and moreover, the later the light was emitted, the smaller path it will
cover. It may be said that the horizon is decreasing with time in the comoving
frame. The result for the physical frame is as follows

Lphys⒧tÿ t
′

⒭ � a⒧t′⒭Lcomov⒧tÿ t
′

⒭ � H�1
0 exp⒧H0⒧t

′

� t⒭⒭ � 1 .

The horizon tends to infinity according to

Lphysÿhor⒧tÿ t
′

}±⒭ � H�1
0 exp⒧H0t′⒭. (2.20)

and depends on the differencet′ � t only. The horizon size is very important
value that strongly influences all physical phenomena. The horizon size equals
infinity when physical processes run in the Minkowski space. The situation
differs drastically for FRW and for inflationary stages. As we will see below an
interplay between the horizon size and the spatial scale of physical processes
must be taken into account at these stages. One has to keep in mind from the
beginning what frame is chosen for given consideration.

2. Inflation
Decades have passed since it was understood that our Universe has very

productive and interesting history before Big Bang. It was realized that the
expansion of the Universe is not able to explain many intrinsic problems of its
evolution. Rather complete list of them is represented in [57],[3] as well as in
many other textbooks devoted to the very early Universe. The main conclusion
is that a period of very quick expansion of the Universe must have taken place
before Big Bang. It could be easily achieved by postulating de Sitter space in-
stead of Minkowski one. On the other side, the Universe expands rather slow in
the modern epoch and the geometry of the space is - almost - flat. The De Sit-
ter space possesses higher symmetry of space-time, than the Minkowski space.
Such symmetry may be realized, if the energy density of physical vacuum is
non-zero. The first ideas to combine the above mentioned desired features of
the cosmological evolution were based on the postulate that the initial state of
the Universe was maximally symmetric and on the possible interpolation from
this state to FRW regime of expansion [48, 49] (see [109] for review). A.I.
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Bugrii and A.A. Trushevsky [95] found the possibility to realize the regime
of quick expansion in the course of high temperature phase transition in had-
ronic era. Though based on the unrealistic extrapolation of pre-QCD physics
of strong interactions, it may have been the first attempt to realize inflation as
the effect of high temperature phase transition, predicted by a particle physics
model. It was found in [50, 51] that De Sitter vaccum dominated stage may
be realized as theR2 effect of quantum corrections to the gravitational field,
whereR is the scalar curvature. However, it was the work of A. Guth in 1981
[52], aimed to solve the problem of magnetic monopoles (see further Section
5 of this Chapter), that revealed the set of the general internal problems of
the Big Bang cosmology and proclaimed the essential features of inflationary
scenario. It initiated the transition from the principal possibility to the vital ne-
cessity of inflation as the element of the Standard Big Bang Cosmology. The
transparent and appealing idea of inflation, its principal ability to provide the
self-consistent framework for Big Bang Cosmology is so impressive that sci-
entific majority is now convinced in its correctness at least in general issues in
spite of some remaining difficulties of its realization [58]. Scalar field coupled
with gravity provides us the simplest way to describe the physics of inflation.
The standard Lagrangian density of scalar field coupled with gravity is

L �
A

�g

"

R
16πG

�

1
2

gµν
∂µϕ∂ν ϕ � V⒧ϕ⒭

#

ÿ (2.21)

whereG is Newton constant. Equation of motion of scalar field can be written
in the form

∂µ

A

�ggµν
∂ν ϕ �

A

�gV′⒧ϕ⒭ � 0. (2.22)

In FRW Universe nonzero values of the metric tensorgµν are (see (2.6))

g00
�

1
g00

� 1ÿ g11
�

1
g11

� �

1� kr2

a⒧t⒭2
; (2.23)

g22
�

1
g22

� �a⒧t⒭�2r�2
ÿ (2.24)

g33
�

1
g33

� �a⒧t⒭�2r�2 sin�2
θ ; (2.25)

A

�g�
A

�g00grr gθ θ gϕϕ � �

a⒧t⒭3
A

1� kr2
r 2 sinθ . (2.26)

In the important case of uniform distribution of the fieldϕ , i.e. ϕ � ϕ⒧t⒭, the
equation (2.22) is simplified significantly

ϕ̈ � 3Hϕ̇ � V′⒧ϕ⒭ � 0ÿ H ù

ù

ù

ȧ
a

. (2.27)

The Hubble parameterH is one of the most important parameter influenced
the evolution of our Universe. The energy density of the scalar field is equal to
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ρ �
1
2ϕ̇

2
� V⒧ϕ⒭ and Eq. (2.11) in the form

H2
�

8πG
3

 

1
2

ϕ̇
2
� V⒧ϕ⒭

!

(2.28)

may be considered as the second equation of the system to find dynamical
variablesϕ⒧t⒭ÿ a⒧t⒭. The termΛ�3 was included into the potentialV.

It was noticed that in case of slow motion of fieldϕ the behavior of the
system (2.27), (2.28) is very similar to those for de Sitter space even ifΛ � 0.
Indeed, slow motion takes place if "friction term" 3Hϕ̇ is large enough, i.e.

3Hϕ̇ �� ϕ̈ (2.29)

what leads to the inequality

ϕ̇
2
�� V⒧ϕ⒭. (2.30)

The latter results inV »ù Constand, keeping in mind Eq. (2.28), in approxim-
ately constant Hubble parameter

H ù

ù

ù

ȧ
a
»

ù

D

8πG
3

V⒧ϕ⒭. (2.31)

We obtain exponential growth of scale factora⒧t⒭ ² exp⒧Ht⒭ as in the exact
de Sitter case. Scalar field dynamics is much more rich than simple de Sitter
case and reveals new interesting features. In particular, the fieldϕ governed
by the equation of motion, slowly moves to the potential minimum and hence
inequality (2.30) becomes wrong inevitably at some small values of the poten-
tial. Thus, exponential grows is not eternal and inflation is finished at some
values of the field close to the minimum of the potential. The field evolution
during inflation is governed by equation

3Hϕ̇ � V′⒧ϕ⒭ � 0 (2.32)

obtained from Eq. (2.27), where secondary derivative is omitted due to slow
motion of the fieldϕ .

Slow roll conditions can be derived as follows. From Eq. 2.32 represen-
ted in the form

ϕ̇ � �
V′⒧ϕ⒭
3H⒧ϕ⒭

one can easily obtain expression for the second derivative

ϕ̈ �
V′⒧ϕ⒭

3H2
⒧ϕ⒭

H ′

⒧ϕ⒭ϕ̇ �
V′′⒧ϕ⒭
3H⒧ϕ⒭

ϕ̇ .

Both terms in rhs must be small comparing with the term 3Hϕ̇ to sup-
ply slow roll condition. Bearing in mind expression (2.31) for the Hubble
parameter, slow roll condition could be represented in standard form

ε ù
ù

ù

M 2
P

16π

V′⒧ϕ⒭2

V⒧ϕ⒭2
�� 1; η ù

ù

ù

M 2
P

8π

H

H

H

H

V′′⒧ϕ⒭
V⒧ϕ⒭

H

H

H

H

�� 1. (2.33)
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It is worth estimating those field value for which ε � 1ÿ η � 1. When
the field reaches this value the inflation is finished. For the potential in the
form V⒧ϕ⒭ � λϕ

n slow rolling is substituted by a quick classical motion of
the inflaton when

ϕ end½
n

4
A

π
MP.

Evidently, the inflation takes place at those field values which yield rather
big value of potential.

The scale factor evolves according to Eq. (2.31)

a⒧t⒭ � H⒧ϕ in⒭
�1 exp

@ t

tin

H⒧ϕ⒭dt . (2.34)

When the inflation is finished, say, at timete, initial space domain of a size
H⒧ϕ in⒭

�1 has been expanded up to the sizeR⒧te⒭ � a⒧te⒭H⒧ϕ in⒭
�1. Com-

monly used value of the Hubble parameter at the end of inflation isHe »

1013GeV. For most estimations it is enough to suppose approximatelyH⒧ϕ in⒭ ½

He � Constduring last stage of inflation. Another useful value ise-folding,
N that is determined as

N ù

ù

ù ln
a⒧t f ⒭

a⒧tin⒭
. (2.35)

This value indicates a factor of the Universe expansion during time interval
⒧tinÿ t f ⒭ in logarithmic scale. It can be expressed in terms of inflatonϕ in the
following manner

N ù

ù

ù ln
a⒧t f ⒭

a⒧tin⒭
�

t f
@

tin

Hdt �

ϕ f
@

ϕ in

H
dϕ

ϕ̇
�

�

ϕ f
@

ϕ in

3H⒧ϕ⒭2dϕ

V′⒧ϕ⒭
� �

8π

M 2
P

ϕ f
@

ϕ in

V⒧ϕ⒭
V′⒧ϕ⒭

dϕ . (2.36)

Equations (2.31) and (2.32) may be solved for different forms of potentials.
As an example, if the potential has the form

V⒧ϕ⒭ �
1
2

m2
ϕ

2 (2.37)

the solution is

ϕ⒧t⒭ � ϕ in �
mMP
A

12π
t. (2.38)

Remind that this solution is valid until inequality (2.29) is fulfilled. If the last
is true, stress tensor has diagonal form approximately

T »
�

8

M

M

:

V⒧ϕ⒭ 0 0 0
0 �V⒧ϕ⒭ 0 0
0 0 �V⒧ϕ⒭ 0
0 0 0 �V⒧ϕ⒭

9

N

N

;
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We have to notice that any media with stress tensorTµν ² gµν implies inflation.

3. Scale factor
Our Universe is supposed to be uniform and isotropic in majority of models.

In this case physical distanceR between any two points is governed by scale
factora. Simple formula

R⒧t⒭ � a⒧t⒭r (2.39)

expresses physical distance in terms of comoving distancer . At the modern
epoch this expression is valid at the scale much large than the galaxy scale.
Below we consider a time dependence of the scale factor at the main stages of
cosmological evolution.

The main equations for the discussion below follow from Einstein equa-
tions (2.11), (2.12). There are three unknown functiona⒧t⒭ÿ ρ⒧t⒭ and p⒧t⒭
and third equation is needed to solve the problem. Widespread choice
is the connection between energy density and pressure, representing the
equation of state of the Universe. This connection, which we write in the
form

p� ρ � γ ρÿ (2.40)

is valid in many (but not in all) cases. Numerical value of the parameterγ
depends on properties of a medium in question. We will see below that the
scale factor grows rapidly so that the curvature term (the second term in
the left – hand side of the first equation in Eq. (2.11)) can be freely omitted.
As the result, the main system acquires final form

ȧ2
�

8πG
3

ρa2
ÿ (2.41)

dρ

da
� �3γ

ρ

a
(2.42)

with the obvious solution

ρ �
C

a3γ
. (2.43)

Unknown constantC may be defined using initial condition:C � ρ ina3γ

in ,
where index′in′ determines initial value for considered stage that is supposed
to be equal final value of a previous stage. The transitions between neighboring
stages is not sharp, of course, what is neglected often. Substituting expression
(2.43) into the first equation of system (2.41) one finds time dependence of
scale factor

a⒧t⒭ � a⒧tin⒭
3γ �2

�

2
3γ

D

8πG
3

C⒧t � tin⒭

2
3γ

ÿ
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where timetin marks the beginning of a considered stage. The final formula
may be readily written as

a⒧t⒭ � ain 1�
2
3γ

D

8πGρ in

3
⒧t � tin⒭

2
3γ

. (2.44)

The majority of processes happened in early Universe indicate quick grows of
the scale factor so that more simple formula appears to be more practical

a⒧t⒭ »ù ain
2
3γ

Hin .
⒧t � tin⒭

2�3γ

. (2.45)

Here Hin ù
ù

ù H⒧tin⒭ �
B

8πGρ in�3 is Hubble parameter at the beginning of
specific stage. The value of the parameterγ is strongly dependent on the stage
of the Universe. There are four main stages of evolution that should be present
with necessity in the inflationary Universe: inflation, reheating (or preheat-
ing), stage of radiation dominance and matter-dominance stage.Inflationary

stagewas discussed above in detail. The scale factor of this stage is described
by formula (2.34).

3.1 Reheating
The period of inflation is finished when the friction term appears to be small.

After that the inflaton field starts oscillating coherently about its potential min-
ima. This process is accompanied by high energy particle emission and leads
to heating the Universe. The stage of reheating (or preheating, if the Universe
has been never hot earlier) is finished when the energy density of particles is
comparable with the energy density of the field oscillations. Before this we
may roughly suppose dominance of the energy density of field oscillations. It
means that the equation

ϕ̈ � 3H⒧t⒭ � V′⒧ϕ⒭ � 0 (2.46)

is still valid. Using formulae for pressurep� 1
2ϕ̇

2
�V⒧ϕ⒭ and energy density

ρ �
1
2ϕ̇

2
� V⒧ϕ⒭, this equation is easily transformed into the already known

form (2.12)
dρ

dt
� �3H⒧t⒭⒧p� ρ⒭. (2.47)

Auxiliary conditionρ�p� γ ρ takes place only approximately if one averages
by a period of oscillations and find model-dependent parameterγ . Indeed,

γ »ù

T
?

0
⒧ρ � p⒭dt

T
?

0
ρdt

�

T
?

0
ϕ̇

2dt

T
?

0

1
2ϕ̇ 2

� V⒧ϕ⒭ dt

�

ϕ max
?

0
ϕ̇

2dϕ

ϕ max
?

0
dϕ

1
2ϕ̇ 2

� V⒧ϕ⒭ �ϕ̇

(2.48)



Basis of inflation 25

If the oscillations are very quick comparing with expansion of the Universe we
may use the law of energy conservation in the form ˙ϕ �

B

2 V⒧ϕ max⒭ � V⒧ϕ⒭ .
The potential may be approximated by a polynomialV⒧ϕ⒭ »

�

λϕ
ν in a vicinity

of its minima and we came to the simple formula

γ
»

�

2ν

ν � 2
. (2.49)

Let us determine the scale factor as a function of time. At the beginning of the
reheating, scale factor was the same as at the end of inflation,a⒧tin⒭ � aI ⒧te⒭ �

H⒧ϕU⒭
�1eNU . We suppose that the visible Universe emergesNU e-folds be-

fore the end of inflation with the sizeH⒧ϕU⒭
�1 and at the field valueϕU . En-

ergy density equals to the potential energy at the end of inflation,ρ⒧tin⒭ �

ρ⒧te⒭ � V⒧ϕ e⒭. Finally we obtain scale factorareh⒧t⒭ at the stage of reheating
in the form (2.44) withain � H⒧ϕU⒭

�1eN andρ in � V⒧ϕ e⒭. When this stage
is finished (at the timetreh), initial space domain of a sizeH�1

e has been ex-
panded up to the sizeR⒧te⒭ � areh⒧treh⒭H�1

e . More practical expression for
the formula (2.45) may be written in the form

areh⒧t⒭ �

 

2
3γ

He

!2�3γ

H⒧ϕU⒭
�1eNt2�3γ .

The reheating stage gives most uncertain estimation of the scale factor as com-
pared with other stages. Indeed, factorγ , being effective value, reflects such
features as the form of the potential and the decay rate of the inflaton into light
particles, what is strongly model dependent. The products of decay heat the
medium what gives additional uncertainties.

3.2 Radiation – dominated stage
Up to now we were able to express energy density in terms of field theory

to solve Eq. (2.46) and to find behavior of scale factor. The decay of field
oscillations transforms their energy density into the energy density of high
energy particles, dominating in the Universe after the field oscillations faded
out. At this stage it seems reasonable to consider the hot Universe introducing
temperature and utilizing standard results of statistical physics and thermody-
namics. The problem is that we can use the concept of temperature only in
equilibrium what is not strictly true in our case due to expansion of the Uni-
verse. Fortunately, the characteristic processes are so quick that the state is
very close to equilibrium. Indeed, consider the collision time of electron and
photontγ e and cosmological timetcosm» MP�T2 at the moment with tem-
peratureT. The collision time is evaluated astγ e » nσ v, wheren » T3 is
electron density,σ » α

2
�T2 is the Compton cross section andv »ù 1 is the

electron velocity. One could deal with ’temperature’ only iftγ e �� tcosm. It
takes place ifT �� α

2MP » 1017GeV. Meantime the temperature at FRW
stage hardly exceeded 109GeV what means that the concept of temperature
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could be used freely. To find scale factoraRD⒧t⒭ one can apply formula (2.44)
with γ � 4�3 for the radiation-dominated Universe. This value of factorγ

follows from the equation of statep � ρ�3 for the gas of highly relativistic
particles and from the formula (2.40). The initial conditions for this stage are:
tin � trehÿ ρ in � ρ⒧treh⒭ andain � a⒧treh⒭, wheretreh corresponds to the end
of reheating stage. The final expression for the scale factor could be written
in the form (2.58). Energy density of relativistic plasma is connected with the
temperatureT in the standard way

ρ �
π

2

30
g*T

4
ÿ (2.50)

whereg* is the number of relativistic species with the account of their statistic
weights. Thus, if quick oscillations of the inflaton field heat the medium to
the temperatureTreh, formula (2.50) determines energy densityρ⒧treh⒭ which
is the final one for the reheating stage and the initial one for the radiation-
dominated stage. Let us show also that the entropy is constant after reheating.
Indeed, in our caseρ » a�4

⒧γ � 4�3⒭, on the other handρ » T4 and hence

aT � Const. (2.51)

Keeping in mind connection of entropy density and temperature

s�
2π

2

45
g*T

3
ÿ (2.52)

one immediately obtains

S» sa⒧t⒭3 � Const. (2.53)

This statement confirms the conclusion made above that the processes of particle
interaction which could change the entropy of the system are much slow as
compared with the expansion of the Universe. Another useful formula is also
evident from Eq. (2.51)

T⒧t⒭ �
a⒧treh⒭

a⒧t⒭
Treh. (2.54)

This connection between the scale factor and the temperature is very important
for cosmological estimations. The temperature dependence on time is ruled by
the formula

T �

 

45
32π 2g*

!1�4
D

MP

t
. (2.55)

This formula is obtained from the combination of formulae (2.50), (2.41) and
(2.58).
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3.3 Matter – dominated stage
Matter – dominated period of the Universe can be treated as a dust-like

period with good accuracy. It means that pressurep equals zero and the para-
meterγ � 1 in Eq. (2.40) (see [3] for more details). In full analogy with
radiation – dominated stage one can find scale factoraM D⒧t⒭ by applying for-
mula (2.44) withγ � 1 for the pressureless Universe. The observational
data do not exclude and various cosmological scenarios do admit the existence
of early dust-like stages (see review in [3]). But in any case the relationship
between the energy densities of matter,ρm, and radiation,ργ , in the modern
Universe,ρm �� ργ , indicates that radiation dominance has been inevitably
finished, when matter dominance stage began. The initial conditions for this
stage are

tin � tRDÿ ρ in � ρ⒧tRD⒭ �
π

2

30
g*T

4
RDÿ ain � aRD⒧tRD⒭ÿ

wheretRD corresponds to the end of radiation – dominated period. Formula
(2.51) is also valid providedT is the temperature of relic photons. Let us bring
together the main formulae for the scale factor based on more vivid expression
(2.45), valid att �� tin. Inflation stage

a⒧t⒭ ùùù aI ⒧t⒭ � H�1
U exp⒧

@

Hdt⒭ ½ H�1
e eNU . (2.56)

Here NU ½ 60ÿ He ½ 1013GeV for ordinary inflationary models Reheating
stage

a⒧t⒭ ùùù areh⒧t⒭ � aI ⒧te⒭

 

2
3γ

He

!2�3γ

⒧t � te⒭
2�3γ . (2.57)

Radiation-dominated stage

a⒧t⒭ ùùù aRD⒧t⒭ � areh⒧treh⒭
1
2

H⒧treh⒭

1�2

⒧t � treh⒭
1�2. (2.58)

Matter-dominated stage

a⒧t⒭ ùùù aM D⒧t⒭ � aRD⒧tRD⒭
2
3

H⒧tRD⒭

2�3

⒧t � tRD⒭
2�3 (2.59)

It is worth mentioning that recent observational data are widely interpreted in
favor of the existence of a "dark energy", a medium with the negative pressure,
such as a cosmological termΛ. Moreover, its contribution to the total energy
density of the Universe is estimated about 70% . Simplest supposition is that
the energy density of this medium does not vary with time, i.e. that it is just
the cosmological term (see however the discussion in [93, 94] and references
in the review [92]). If it is like this, the immediate conclusion is that we are
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coming into a new de Sitter stage. Indeed, the matter and radiation contribution
into the total energy density decreases with time, while the energy density
associated withΛ term remains constant. It means that Hubble parameter tends
to constant as well

H }

E

8π

3
ρΛ

M 2
P

. (2.60)

Inverse Hubble parameter characterizes the size of causally connected volume.
Simple estimation of this value gives

H�1
½ 1028cm.

Note that this value coincides approximately with the size of the visible part of
our Universe and hence we never obtain any information that is contained in a
larger volume. The distanceR0 between two pointlike objects governed only
by gravitation in the modern epocht0 is

R0 � a⒧t0⒭r (2.61)

(see (2.8)). It is the valueR0 that is measured these days. What could one
says about valuesa⒧t0⒭ andr? The formulae for scale factor written above are
useful if only one specific stage is analyzed. To determine the valuea⒧t0⒭ one
needs to know all values in formulae (2.56), (2.57), (2.58) and (2.59). Mean-
time, even the value ofaRD⒧tRD⒭ that seems to be fixed by the observations
of CMB and large scale structure can actually vary owing to the possible ex-
istence of unstable dark matter. This value also depends on the choice of the
model for the dark energy. The parameters of inflationary and post-inflationary
stages are much more model dependent, and the main uncertainty in these para-
meters is related with the reheating stage. Another question is connected with
the numerical value of coordinater . These problems could be avoided if we
consider expression (2.61) as a substitution of the variables - instead of math-
ematical coordinater we will use observational valueR0. In this case physical
distance between the two points at arbitrary time is

R⒧t⒭ �
a⒧t⒭
a⒧t0⒭

R0.

For example, distances at matter - dominated period looks like

R⒧t⒭ �

 

t � tRD

t0 � tRD

!2�3

R0 »ù

 

t
t0

!2�3

R0.

Very often dimensionless value

a⒧t⒭ ùùù
a⒧t⒭
a⒧t0⒭
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is denoted as scale factor. Now let us answer the question: - What is the
connection between the scale factor and temperature? We already have the
answer for radiation - dominated period - see formula (2.51). The only what
remains is to determine this dependence at matter - dominated period. To
proceed, we have to notice that in this period recombination took place, when
protons and electrons were coupled into hydrogen atoms and thus decoupled
from radiation. So, photons do not interact with matter starting from the period
of recombination. Up to this period they were in the thermal equilibrium with
plasma. Their distribution was nothing but Planck one and to the moment of
recombination, corresponding to the temperatureTrec, it took a form

dN⒧trec⒭ � Vrec
E2

rec

π 2

dErec

exp⒧Erec�Trec⒭ � 1
. (2.62)

Here dN is a number of the photons with energy betweenErec and Erec �

dErec within a volumeVrec. After the recombination their interaction with
surrounding neutral atoms is negligible. The energy of a photon decreases
with time according to the following

E⒧t⒭ � p⒧t⒭ �
2π

λ⒧t⒭
�

2π

a⒧t⒭
a⒧trec⒭

λ⒧trec⒭
�

a⒧trec⒭

a⒧t⒭
Erec. (2.63)

Number of free particles is a conserved value, so that

dN⒧t⒭ � dN⒧trec⒭.

The volumeV grows with time as

V⒧t⒭ �

 

a⒧t⒭
a⒧trec⒭

!3

Vrec.

Combining all the formulae written above one obtains the photon distribution
at the instantt

dN⒧t⒭ � V⒧t⒭
E⒧t⒭2

π 2

dE

exp E⒧t⒭ a⒧t⒭
a⒧trec⒭

�Trec � 1
. (2.64)

It is evident now that Planck distribution of relic photons still takes place with
the temperature

T⒧t⒭ �
a⒧trec⒭

a⒧t⒭
Trec. (2.65)

Thus the law (2.51) takes place both in radiation - dominated and matter -
dominated stages of the evolution of our Universe. The constant could be
determined from the normalization to the modern epochConst� a0T0.
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4. Does expansion during de Sitter stage really
exist?

De Sitter space may be imagined as the space with gravity being produced
by constant potential densityV � Λ � Const. One of possible forms of the
interval is

ds2
� dt2 � e2Ht dr2

� r 2
⒧dθ

2
� sin2

θ dϕ
2
⒭ ÿ (2.66)

whereH �

B

Λ�3 (see (2.13)). Note that this widespread form of the in-
terval for flat Universe (k � 0) implies that scale factor is dimensionless
value a⒧t⒭ � eHt while coordinate radius is dimensional one. It does not
lead to misunderstanding usually. It can be easily shown that particle traject-
ory xi

⒧t⒭ � constin comoving coordinates⒧tÿ xi
⒭ is the solution of geodesic

equation of motion
d2xi

ds2 � Γi
µν

dxµ

ds
dxν

ds
� 0ÿ

because Γi
tt � 0 for metric (2.66). It means that a distance between two

particles at rest does not vary with time in comoving coordinates. On the
other side, physical frame implies measuring in terms of physical coordinates
xi

phys� H�1eHt xi what indicates unambiguously an increase of the distance
between the two particles. This contradiction could be strengthened if one
realizes that the form (2.66) for the interval is only one among many. For
example, one of possible forms is

ds2
�

�

1� H2r 2
�

dt2 �
�

1� H2r 2
�

�1
dr2

� r 2
⒧dθ

2
� sin2

θ dϕ
2
⒭ÿ

that is obviously static. There exist another coordinate systems where dis-
tances decrease with time. How could we understand whether our Universe
really expands if distances depend on coordinate system? To solve this prob-
lem we have to find another indicator of space expansion besides the distance.
This indicator should not depend on a frame. For this, consider a system of
test particles uniformly distributed in the Universe with some constant density
and small but nonzero interaction between them. If we find out a decline of
interaction with time, it may be interpreted as the uniform expansion of the
Universe what leads to increasing of the interparticle distances. To this end,
consider a behavior of a horizon with time in the comoving coordinates. Most
simple way to determine the size of the horizon is to find a distance that light
travels from the momentt. By definition, the propagation of light corresponds
to the intervalds � 0. Hence, Eq. (2.66) gives the connectiondt � eHtdr
and

@ RH

0
dr �

@

±

t
dt′e�Ht′ .

Horizon size
RH � H�1e�Ht (2.67)
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decreases with time. But average distance between the test particles in the
comoving space is shown to be constant. Consequently, when the horizon ap-
pears to be smaller than this distance, the particles turn out to be placed in
causally disconnected area and the interaction between them must be absent.
Hence, initially nonzero interaction between particles tends to zero with time.
It indicates (or determines if one wishes) that the Universe is really expanding
during de Sitter stage. Evidently, this statement should not depend on coordin-
ate system - the conclusion is the same for physical and comoving frames.

5. Why do we need inflation?
5.1 Flatness problem

The old Big - Bang cosmology suffered several troubles that can not be
recovered in its framework. The inflationary paradigm resolves these problems
in a natural manner. Here we consider only a couple of them – the so called
"flatness" problem, i.e. the problem, why the density is so close to the critical
one – and the monopole problem to show how it works. Let us consider the
equation (2.11) withΛ � 0. Critical energy density is determined as those that
leads to flat Universe, i.e.k � 0 . It means that

ρcrit ù
ù

ù

3
8π

M 2
PH2 (2.68)

(Remind thatG � 1�M 2
P andȧ�a � H). Eq. (2.11) leads immediately to the

equality
H

H

H

H

ρcrit � ρ⒧t⒭
ρcrit

H

H

H

H

� ȧ⒧t⒭�2 (2.69)

for k �
ù

�1. Modern observational value of energy density is close to the
critical density [74], so that the inequality

H

H

H

H

ρcrit � ρ⒧tnow⒭

ρcrit

H

H

H

H

� ȧ⒧tnow⒭
�2
� 1 (2.70)

is established rather firmly. Combining the two equations (2.69), (2.70) one
can easily obtain

H

H

H

H

ρcrit � ρ⒧t⒭
ρcrit

H

H

H

H

�

1
ȧ⒧t⒭2

�

ȧ⒧tnow⒭
2

ȧ⒧t⒭2
.

To simplify the situation, suppose that there are only radiation - dominated
stage so thata⒧t⒭ ²

A

t. The temperature at the beginning of this stage was not
less than 106 GeV, while modern temperature is about 10�13 GeV. Hence, the
last inequality leads to a very unnatural situation at the beginning of the RD
stage:

H

H

H

H

ρcrit � ρ⒧tRD⒭

ρcrit

H

H

H

H

�

ȧ⒧tnow⒭
2

ȧ⒧tRD⒭
2 �

tRD

tnow
�

 

Tnow

TRD

!2

» 10�19. (2.71)
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The question is why real energy density of our Universe was so close to the
critical one in the past?

There are two possible answers to this question. The first one concerns with
more general problem of fine tuning of parameters of the Universe discussed
in Chapter 9. Another way is to reveal some mechanism that gives rise to
such a small values. Fortunately, the inflationary paradigm supplies us mighty
tool to resolve problems like that. Let our Universe had the inflation stage
with scale factor (2.34)a⒧t⒭ � H�1 cosh⒧Ht⒭, with the Hubble parameter
H � Const that is approximately valid in most inflationary models. In this
case the behavior of ratio (2.69) with time is

H

H

H

H

ρcrit � ρ⒧t⒭
ρcrit

H

H

H

H

� sinh�2
⒧Ht⒭.

This function tends to zero exponentially while the inflation lasts and we real-
ize that inflationary paradigm is able to explain small value in estimation (2.71).

Other problems like problem of primordial density fluctuations in the Uni-
verse, a horizon problem and a monopole problem are also solved by supposi-
tion of inflationary stage.

5.2 Monopole problem
As we have already mentioned above, the early approaches to inflation have

at most demonstrated the principal possibility of quick cosmological expan-
sion. They were motivated either by aesthetical reasoning to relate the begin-
ning of the Universe with the maximally symmetric state, or offered some pos-
sible mechanisms for quick expansion. The common understanding that infla-
tion should be the necessary element of the Standard Big Bang scenario came
after the problem of relic magnetic monopole overproduction [42, 43, 44] (see
[3] for review) was revealed as the dramatic disaster for the old Big Bang cos-
mology and after inflation was offered [52] as the resolution for this trouble.
The possible existence of magnetic monopoles – isolated poles of magnet –
was discussed at each step of the development of the theory of electromag-
netism. So, Coulomb has offered the inverse distance-squared law for mag-
netostatic force between "magnetic charges", being similar to the electrostatic
force between electric charges. In the quantum theory of electromagnetism
Dirac has found that quantization of electric charge inevitably leads to the ex-
istence of Dirac monopole – isolated pole of magnet with the magnetic charge

g�
ù

�

h̄c
2e
ÿ (2.72)

wheree is the electric charge of electron. The mass of Dirac monopole was a
free parameter. One could ascribe the absence of Dirac monopoles among the
particles, created at accelerator experiments, to such a large value of monopole
mass that it corresponds to the energy threshold of their creation, exceeding the
energy, accessible at the given accelerator. It made magnetic monopole search
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the challenge for each new accelerator, at which higher energy range was
reached. Since magnetic charge conservation should be as strict as the conser-
vation of electric charge, the lightest particle, possessing the magnetic charge,
should be absolutely stable. Monopole should be created in pair with its anti-
particle (antimonopole) that bears magnetic charge of the opposite sign. Mono-
pole and antimonopole should annihilate into particles, having no magnetic
charge. According to the old Big Bang scenario, in the early Universe, when
the temperature exceeded the energy threshold of monopole-antimonopole pair
production, i.e. atT �� m, wherem is the monopole mass, these pairs should
have been in the equilibrium with the relativistic plasma. When in the course
of expansion the temperature fell down belowm, monopole abundance should
have been frozen out. It should have been happened, when the rate of cosmo-
logical expansion exceeded the rate of monopole-antimonopole annihilation.
Owing to their absolute stability primordial monopoles (and antimonopoles)
should have been retained in the Universe. They should have been present in
the modern Universe. Their absence in the terrestrial and lunar matter, in cos-
mic rays, as well as the very existence of galactic magnetic fields puts severe
constraint on the modern abundance of relic magnetic monopoles (see review
and references in [3]). t’Hooft [40] and Polyakov [41] have found that Dirac
monopole should inevitably appear as topologically nontrivial solution of the
field equation for that Higgs field that breaks spontaneously a non-Abelian
group of symmetry, unifying electromagnetism with other gauge interactions.
The necessary condition is that the unifying group of symmetry is compact.
The corresponding "hedgehog" solution [41] should have the mass

m»

Λ
e
ÿ (2.73)

whereΛ is the energy scale of the symmetry breaking ande is the unit electric
charge. In that case, magnetic monopoles can not exist in the early Universe at
the high temperatures, exceeding the critical temperature of symmetry break-
ing phase transition, i.e. atT � Tc » Λ. In the course of the phase transitions
monopoles (and antimonopoles) should be formed as topological defects [37].
All these possible ideas on the monopole productions in the early Universe
were taken into account in the calculation [42] of the frozen out concentration
of relic monopoles in the Universe. It was shown that the relative frozen out
concentration of magnetic monopolesr � nm�nγ , wherenγ is the concentra-
tion of relic photons, is given by (see the details in [3])

r �
m

g5MP
½ 10�9 m

1016GeV
. (2.74)

Hereg is the monopole magnetic charge, given for Dirac monopoles by the
Eq. (2.72). The result (2.74) was shown to be independent of the mechan-
ism of monopole production, provided that the initial monopole concentration
(originated from the equilibrium with plasma or from creation of topological
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defects in high temperature phase transition) exceeded this value. The U(1)
symmetry group of electromagnetism is not embedded within a compact group
in the Standard Model, but it is with the necessity embedded in such group in
GUT models. It makes the existence of magnetic monopoles with the mass
m » 1016GeV the general consequence of such models. The old Big Bang
scenario assumed that the temperature in the early Universe could be as high
as the critical temperature for the phase transition with GUT symmetry break-
ing. Then magnetic monopoles should have been created and their frozen out
concentration should have been given by (2.74). Substituting the value of GUT
monopole massm» 1016GeV into the Eq. (2.74) one could easily find [43, 44]
that the modern concentration of magnetic monopoles should be as high as the
concentration of baryons, while their mass is by 16 orders of magnitude higher,
than the mass of proton! It was just this contradiction that created the problem
of magnetic monopole overproduction in the old Big Bang scenario. The infla-
tionary solution for this problem, offered by Guth [52], assumed that the GUT
phase transition is strongly first order. It resulted in inflation, driven by the
potential of GUT Higgs field. Due to inflation the initial concentration of to-
pological defects (monopoles and antimonopoles) is then exponentially small.
Due to the supercooling, caused by inflation, the temperature after the phase
transition did not approach the GUT critical temperature, what also suppressed
the initial monopole concentration much below the value (2.74). These prin-
cipal features of Guth solution for magnetic monopole problem – inflationary
regime in the period of GUT phase transition and low temperature after pre-
heating – are retained in all the models of inflationary cosmology. It makes
inflationary cosmology free from the problem of magnetic monopole overpro-
duction. But there are still left the questions on the mechanisms of production
and actual abundance of magnetic monopoles in the inflationary Universe (see
[3] for review).

5.3 Main properties of the Universe with
inflation at the beginning

Let us consider two space points separated from the beginning by a physical
distancel0 in a causally connected region. The last is characterized by the
Hubble parameterH, so that

l⒧t � 0⒭ � l0 � H�1
ÿ

Here and below we suppose the Hubble parameter being a constant for simpli-
city. The coordinate distancer does not depend on time and the time depend-
ence of these quantities is ruled only by the scale factora⒧t⒭

l⒧t⒭ � a⒧t⒭r ; H⒧t⒭ ùùù
ȧ⒧t⒭
a⒧t⒭

. (2.75)
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Using these formulae one can easily find the ratiol⒧t⒭�H⒧t⒭�1 of the physical
distance between the particles and horizon

l⒧t⒭
H�1 � ȧ⒧t⒭r . (2.76)

Scale factor during the inflationary stage is

a⒧t⒭ »
�

H�1 exp⒧Ht⒭

and ratio (2.76) has the form
 

l⒧t⒭
H⒧t⒭�1

!

in f l

»

�

reH0t

and we reveal that the size between the two points grows exponentially com-
paring with the size of horizonH�1. Evidently, these two space points appear
to be causally disconnected, at some momentt1ÿ i.e. l⒧t1⒭ � H⒧t1⒭ even if they
were produced in causally connected region from the beginning. It is said that
the distance between the two points crosses the horizon.

When the inflation is finished, after reheating the scale factor behaves like

a⒧t⒭ ² tβ
ÿ

where parameter is in the range 0� β � 1 for any stage which takes place
after the inflation (see formulae (2.58), (2.59)). According to formula (2.76)
we have

 

l⒧t⒭
H⒧t⒭�1

!

FRW
² tβ�1

ÿ 0 � β � 1

and hence the size of the horizonH⒧t⒭�1 grows with time quicker than the
distance between the two points in FRW Universe. We come to very im-
portant feature of the Universe with inflation at a first stage - any extensive
phenomenon produced at inflationary stage stretches its size far from horizon.
After the inflation, the size of horizon is increased more quick comparing with
the space scale of the phenomenon. Thus, there is some time, sayt2ÿ when
the horizon crosses the scalel for the second time and the points are included
again within causally connected area.





Chapter 3

QUANTUM FLUCTUATIONS
DURING INFLATION

Quantum field theory teaches us that a classical motion of a system is dis-
turbed by quantum fluctuations. In the Minkowski space their role is rather
weak because quantum corrections are proportional to Planck constanth̄. In
addition, according to Heisenberg’s uncertainty principle, the larger the fluctu-
ation, the smaller time it exists. Much more interesting picture was discovered
in inflationary stage. As it was shown in Chapter 2, this stage may be approx-
imated by de Sitter space . Most important property of inflation is that any
inhomogeneity grows in space, going far beyond the horizon size. The fluctu-
ations are the specific sort of inhomogeneities as well. It seems reasonable that
their destiny differs from the destiny of the fluctuations in Minkowski space.
In de Sitter space, quantum fluctuations do not die out. On the contrary, their
size in space increases exponentially as compared with the size of horizon and
they contribute to classical constituent of the field. This process reminds a pair
creation in strong fields. The energy is conserved due to a work produced by
the field. In our case this field is evidently gravitational one. In this Chapter we
consider shortly important results on quantum fluctuations during inflationary
stage that are supported by modern observations.

1. Birth of quantum fluctuations
The simplest and widespread considered case is scalar fieldϕ which is gov-

erned by equation

ϕ̈ � 3Hϕ̇ � e�2Ht ∆ϕ � V′⒧ϕ⒭ � 0. (3.1)

The Eq. 3.1 follows from equations (2.22), (2.23) and (2.14) after simple cal-
culations. Slow variation of Hubble parameterH � ȧ�a during inflationary
stage is neglected. To proceed, let us decompose the field into a "classical" -
Φ - and a "quantum" -q - parts

ϕ⒧xÿ t⒭ � Φ⒧xÿ t⒭ � q⒧xÿ t⒭. (3.2)

37
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This decomposition is quite conventional. Classical partΦ is associated with
smooth, slow motion of a field. Most natural way to extract the classical,
coarse-grained part is to associate it with small momentak. Such a problem
can be solved for example by Fourier transform

ϕ⒧xÿ t⒭ �
@

d3k
⒧2π ⒭3�2

ak⒧t⒭e
�i⒧kx⒭

� a†
k⒧t⒭e

i⒧kx⒭ ; (3.3)

Φ⒧xÿ t⒭ �
@

k �k*

d3k
⒧2π ⒭3�2

ak⒧t⒭e
�i⒧kx⒭

� a†
k⒧t⒭e

i⒧kx⒭
ÿ

q⒧xÿ t⒭ �
@

k �k*

d3k
⒧2π ⒭3�2

ak⒧t⒭e
�i⒧kx⒭

� a†
k⒧t⒭e

i⒧kx⒭
ÿ

with a suitably chosen boundary momentumk* . The last is specific for each
problem. Functionsak⒧t⒭ » eik0t in Minkowski space, but simple plane wave
basis is not appropriate for de Sitter space. Thus our nearest aim is to choose
the proper basis. Most natural one is a set of solutions of Laplace equation

Ög⒧xÿ t⒭ � 0

in de Sitter space. This equation coincides with Eq. 3.1 in its comprehensive
form for zero potentialV. After Fourier transformation

g̃p⒧t⒭ �
@

d3xei⒧px⒭g⒧xÿ t⒭

the equation acquires the form

∂
2g̃p⒧t⒭
∂ t2 � 3H

∂ g̃p⒧t⒭
∂ t

� ⒧Hp⒭2e�2Ht g̃p⒧t⒭ � 0ÿ (3.4)

whereH is the Hubble parameter. Note that momentump is dimensionless, as
well as the comoving coordinatesx. Very often it is substituted by a value with
proper dimensionP ùùù Hp. The set of solutions to Eq. 3.4 can be expressed in
terms of Hankel functions [57]

H⒧2⒭
3�2⒧y⒭ � H⒧1⒭

3�2⒧y⒭
*
� �

E

2
π y

e�iy

 

1�
1
iy

!

.

One of most suitable solution has the form

g̃p⒧t⒭ �

A

π

2
Hη

3�2 c1⒧p⒭H
⒧1⒭
3�2⒧ηP⒭ � c2⒧p⒭H

⒧2⒭
3�2⒧ηP⒭ .

Here ’conformal’ time
η � �H�1e�Ht

ÿ (3.5)

was introduced. This variable often simplifies equations and is used widely
in those analytical calculation where de Sitter space plays significant role.
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The solution contains two unknown constants that would be determined by
auxiliary conditions. They could be chosen in such a way to coincide with
Minkowski case atp } ±, i.e. at small distances:c1 � 0ÿ c2 � �1. Finally,
the set of orthonormal functions in the comoving frame is [57]

g̃p⒧t⒭ �
iH

P3�2
A

2

 

1�
P
iH

e�Ht

!

exp

 

iP
H

e�Ht

!

. (3.6)

If a fluctuation has characteristic (comoving) sizel , those functions of set
(3.6) with momenta p » 1�l mostly contribute to the Fourier transform-
ation of the field configuration represented the fluctuation.So it is worth
to discuss the time and momentum dependence of this function. The time be-
havior of the function ˜gp⒧t⒭ depends on a momentum interval. One can easily
see that a threshold value of the momentum is

P*
⒧t⒭ ùùù HeHt . (3.7)

More definitely, oscillations die out at small momentaP �� P* and the func-
tion tends to constant

g̃p⒧t⒭ »ù
iH

P3�2
A

2
ÿ P �� P*

ÿ (3.8)

while for large momentaP �� P* oscillations still take place. To clarify the
physical meaning of the picture described above, let us express all values in
terms of physical coordinates,Rphys� a⒧t⒭r . Evidently, physical momentum
Pphys is connected with comoving one,p as follows, Pphys � p�a⒧t⒭ �
P�⒧a⒧t⒭H⒭. In this Chapter we are working in pure de Sitter space and the
scale factora⒧t⒭ was chosen in the forma⒧t⒭ � H�1eHt. The threshold value
of physical momentumP*

physexpressed in terms of physical values is

P*
phys

ù

ù

ù

P*

a⒧t⒭H
� H.

This very simple and at the same time important result indicates that a value
of any fluctuation does not vary if their characteristic sizeLphys » P�1

phys is
greater than the horizon sizeH�1. Time dependence of any quantum fluctu-
ation could be determined qualitatively using expression (3.6). It can be easily
seen that an amplitude of the quantum fluctuations with arbitrary momenta
tends to constant (3.8) with time.On the other hand, the physical sizeLphys

of fluctuation is growing exponentially

Lphys» P�1
phys�

a⒧t⒭H
P

�

1
P

eHt . (3.9)

This behavior is rather different from those in the Minkowski space where the
life time of the fluctuations is about 1�∆E (∆E is an energy of the fluctuation).
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In the de Sitter space, quantum fluctuation exponentially stretches its size ac-
cording to expression (3.9). At the same time, its amplitude is determined by
expression (3.8). Now we can come back to the problem of the partition of the
scalar fieldϕ into classical and quantum parts. Following [56], its quantum
part - see (3.3) - can be taken in the form

q⒧xÿ t⒭ ùùù
@

d3p
⒧2π ⒭3�2

W⒧Pÿ t⒭ âpg̃p⒧t⒭e
�i⒧px⒭

� â†
pg̃*

p⒧t⒭e
i⒧px⒭ . (3.10)

Here we inserted the creation and annihilation operators ˆa†
pÿ âp as in standard

method of quantization. Instead of cutting off momenta by conditionP �

P* we use the functionW⒧Pÿ t⒭ with propertiesW⒧P } 0ÿ t⒭ } 0;W⒧P }

±ÿ t⒭ } 1. Suitable form is

W⒧Pÿ t⒭ � θ
�

P� ε HeHt� ; ε �� 1. (3.11)

As we will see later, final physical results do not depend on small but arbitrary
value of the parameterε . Substituting expressions (3.2) and (3.10) into Eq. 3.1
we obtain

∂ Φ
∂ t

�

1
3H

e�2Ht ∆Φ �

∂V⒧Φ⒭
∂ Φ

� y⒧xÿ t⒭; (3.12)

y⒧xÿ t⒭ ùùù
 

1
3H

∂
2

∂ t2 �
∂

∂ t
�

1
3H

e�2Ht ∆
!

q⒧xÿ t⒭.

This equation was simplified: we have omitted second time derivative due
to slow roll approximation and neglected higher powers of functiony⒧xÿ t⒭.
Eq. 3.12 describes classical motion of the fieldΦ under permanent influence
of random ’force’y. The last is supposed to be small so that we may find a
solution to the equation in a form [240]

Φ � Φdet� φ . (3.13)

Deterministic part of the classical fieldΦdet is governed by the equation

∂ Φdet

∂ t
�

1
3H

e�2Ht ∆Φdet�
∂V⒧Φdet⒭

∂ Φdet
� 0ÿ (3.14)

while its random partφ depends strictly on the quantum fluctuations according
to linear equation

∂ φ

∂ t
�

1
3H

e�2Ht ∆φ � V′′⒧Φdet⒭φ � y⒧xÿ t⒭ (3.15)

(here we consider a limitΦdet �� φ what is valid if random ’force’y⒧xÿ t⒭
is small). Performing calculations of the random ’force’ caused by quantum
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fluctuations as follows (see [240] for details)

y⒧xÿ t⒭ ù

ù

ù

 

1
3H

∂
2

∂ t2 �
∂

∂ t
�

1
3H

e�2Ht ∆
!

q⒧xÿ t⒭ � (3.16)

�

 

1
3H

∂
2

∂ t2 �
∂

∂ t
�

1
3H

e�2Ht ∆
!
@

d3p
⒧2π ⒭3�2

θ
�

P� ε HeHt� .

âpg̃p⒧t⒭e
�i⒧px⒭

� â†
pg̃*

p⒧t⒭e
i⒧ px⒭

»

ù

»

ù i
H3

ε
A

2
eHt

@

d3p

⒧2π p⒭3�2
δ
�

P� ε HeHt� âpe�i⒧px⒭
� â†

pei⒧px⒭ .

Here we used Eq. 3.4 what simplified the expression significantly. Second time
derivative is small being proportional toε 2. The valueP �

A

P2
�

B

⒧pH⒭2.
Approximation (3.8) was taken into account in the last line. Validity of this
approximation is justified by smallness of momenta due the argument ofδ -
function. Another important value is the correlator

D⒧xÿ tÿ x′ÿ t′⒭ ùùù
�

0
H

Hy⒧xÿ t⒭ÿ y⒧x′ÿ t′⒭
H

H 0
�

.

Using expression (3.16) obtained above and properties of the creation and an-
nihilation operatorsaÿ a† one can easily obtain analytical expression for this
value

D⒧xÿ tÿ x′ÿ t′⒭ �
H3

4π 2 δ ⒧t � t′⒭
sinε x� x′ eHt

ε x� x′ eHt ÿ ε �� 1. (3.17)

1.1 Uniform case
According to expression (3.17), the correlatorD⒧xÿ tÿ x′ÿ t′⒭ appears to be

very sharp function of distancex� x′ . The same reason permits to neglect
spatial derivatives in Eq. 3.15 and we come to much more simple equations
without spatial dependence. Thus uniform distribution,Φ � Φ⒧t⒭ has physical
meaning to be considered. It is governed by more simple equation

∂ Φ
∂ t

�

1
3H

∂V⒧Φ⒭
∂ Φ

� 0ÿ (3.18)

∂ φ

∂ t
�

m2

3H
φ � y⒧t⒭. (3.19)

Here we have denoted
m2
ù

ù

ù V′′⒧Φdet⒭.

This value is strictly constant for the simplest form of the potential

V⒧φ⒭ � V0 �
1
2

m2
φ

2.
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and it is almost constant during inflation in more general cases. The correlator
(3.17) of random functiony⒧t⒭ may be approximated as follows

�y⒧t1⒭y⒧t2⒭
 � D⒧xÿ tÿ xÿ t′⒭ �
H

4π 2 δ ⒧t1� t2⒭

in the limit ε �� 1. Delta function in the right hand side of this expression
indicates that random functiony⒧t⒭ is distributed according to Gauss’s law with
the density

W⒧y⒭ � Constexp �

1
2σ 2

@

y⒧t⒭2dt ÿ σ �
H3�2

2π
.

Probability distribution of functionφ is proportional to that of functiony⒧t⒭
due to their linear relationship given by (3.19). It means that the probability to
find functionφ⒧t⒭ inside some small interval is equal to, see [241]

dP⒧φ⒭ � Const.  φ exp �

1
2σ 2

@

∂ φ

∂ t
�

m2

3H
φ

2

dt .

The measure φ ù

ù

ù ∏N
i�1 dφ⒧ti⒭ÿ N } ±. Now we are ready to obtain the

probability to find field valueφ 2 at an instantt2 provided a valueφ1 at an
instantt1 is known. Evidently, we have to integrate over all values of the field
inside the time interval⒧t1ÿ t2⒭ except the valuesφ1 ù

ù

ù φ⒧t1⒭, φ 2 ù
ù

ù φ⒧t2⒭ and
come to the expression

dP⒧φ 2ÿ t2; φ1ÿ t1⒭ � (3.20)

Const. dφ 2

@

φ 2

φ1

 φ exp �

1
2σ 2

@ t2

t1

∂ φ

∂ t
�

m2

3H
φ

2

dt .

The constant factor in this equation is determined by normalization condition
@

±

�±

dφ 2P⒧φ 2ÿ t2; φ1ÿ t1⒭ � 1.

Functional integral (3.20) can be calculated exactly in standard manner [241]
by finding extremal trajectory of the integral in the exponent

φ̈ � µ
2
φ � 0; µ ù

ù

ù

m2

3H
with boundary conditions

φ⒧t1⒭ � φ1; φ⒧t2⒭ � φ 2.

Solution to this equation is

φ⒧t⒭ � Aeµt
� Be�µt

A�
φ 2 � φ1e�µT

2sh⒧µT⒭
ÿ B �

�φ 2 � φ1eµT

2sh⒧µT⒭
; T � ⒧t2 � t1⒭
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Substituting it into the integral in the exponent of expression (3.20) one obtains
desired probability

dP⒧φ 2ÿ t1� T; φ1ÿ t1⒭ � dφ 2 .
D

r
π

exp �r
�

φ 2 � φ1e�µT�2
ÿ

r ùùù
µ

σ 2

1
1� e�2µT ; (3.21)

µ �
m2

3H
»

ù Const; σ �
H3�2

2π
»

ù Const.

In the limit of massless field we obtain more simple formula

dP⒧φ 2ÿ t1� T; φ1ÿ t1⒭ � dφ 2

D

2π

H3T
exp �

2π
2

H3T
⒧φ 2 � φ1⒭

2 . (3.22)

This formula is widely used in the inflation scenarios where a motion of fields
must be slow and hence the second derivative of potential is negligible.

The picture of field evolution looks as follows. The field consists of two
parts, see expression (3.13). Deterministic partΦdet moves according to clas-
sical equation of motion (3.18) and is permanently disturbed by random ’force’
y. As it is shown above, its influence is described by random partφ that is
distributed with probability density (3.21). One can calculate average value
� φ

2
� to estimate a deviation fromΦdet with time. Explicit form of the

probability (3.21) permits doing it rather easy with the answer

� φ⒧t⒭2 � �

@

±

�±

φ
2dP⒧φ ÿ t1� t; φ1ÿ t1⒭ � (3.23)

�

1
2r
�

σ
2

2µ

�

1� e2µt
�

This formula can be significantly simplified in case of massless field. It is often
fulfilled approximately during inflation because the latter takes place only if
m�� H. Expanding the exponent in Eq. 3.23 we come to the result

C

� φ⒧t⒭2 � � σ �
H
2π

A

Ht. (3.24)

In terms ofe-folds, N ù

ù

ù Ht we obtain formula that will be used widely in the
following

C

� φ⒧t⒭2 � � σ �
H
2π

A

N. (3.25)

As a particular result, one can conclude that a fluctuation with an amplitude
» H�2π is formed in time intervalt » H�1

ÿ ⒧N � 1⒭. The expression
(3.7) gives us the moment when the fluctuation ceases its variation, so that
its space size does not vary after the the same time intervalt » H�1. The
space size of this fluctuation could be estimated as well. For this, one has
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to notice that correlator (3.17) is not small att » H�1 if the comoving dis-
tance x� x′

»

� 1. It means that those fluctuations with comoving size of
order unity are meaning. Their physical size grows with time in ordinary
manner

L f luct � a⒧t⒭ x� x′ ½ H�1eHt (3.26)

and it is equal H�1 at time t » H�1. This point is very important in applic-
ations. Note that results (3.25) and (3.26) could be approximately reproduced
rather easy even in the Minkowski space. Indeed, starting from Lagrangian
(2.21) for massless field, the estimation of action

S�
@

d4x
A

�g
1
2

gµν
∂µϕ∂ν ϕ

looks as follows.

S»
⒧∆ϕ⒭

2

H�2 H�4.

Here we denote as∆ϕ the fluctuation that is formed during time intervalt »
H�1. It was taken into account also that a size of the fluctuation is of order
H�1 for massless field distributed with speed of light. The probability of such
a fluctuation is not small if the actionS» 1 and we come to the estimation

∆ϕ » H

what is coincides with more accurate result (3.25) in order of magnitude. There
is another way performing the calculations which may be often met in literat-
ure. If one notes that equation (3.19) is represented nothing but Langevin equa-
tion it immediately follows that probability distribution must satisfy Fokker -
Planck equation

∂P
∂ t
�

H3

8π 2

∂
2P

∂ φ 2 �
m2

3H2

∂
2
⒧φ P⒭

∂ φ 2
. (3.27)

Our expression (3.21) for probability is the solution of this equation (dP �

Pdφ in our notations).

2. Classical evolution of quantum fluctuations
One of the conclusion of previous sections is the following. A density fluc-

tuation, being produced by quantum fluctuation, sharply increases its size.
During inflation, an amplitude of the fluctuation evolves independently after
its size prevail horizon . It takes place up to an instant of second crossing of
horizon what happens after the end of inflation. Let us briefly discuss evolution
of fluctuations between the two crossings a horizon. As a result of profound
discussion, it was established a relation that is used widely in modern literature

δ ρ

p� ρ
»

ù Const (3.28)
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This relation is correct during period of evolution of the fluctuation between
two horizon crossing. Here we show simple approximate way to obtain this
formula. To this end let us start with equation (2.12) in the form

dρ

p� ρ
� �

3da
a

.

Suppose that one-to-one correspondenceρ }| p exists (may be different for
different intervals). Hence, the pressure is some functionp⒧ρ⒭ and we can
integrate this equation

@

ρ⒧t⒭

ρ⒧t0⒭

dρ

p⒧ρ⒭ � ρ
� �3

@ a⒧t⒭

a⒧t0⒭

da
a
ÿ (3.29)

wheret0 is some moment during inflation stage andt is an arbitrary moment
such thatt � t0 �� 1�He, He is Hubble parameter at the end of inflation. We
would like to warn a reader that the last expression is not exact one. The fact
is that there is no one-to-one correspondenceρ }| p during short periods of
first order phase transitions that may have taken place in the Past as possible
cosmological effects of particle symmetry breaking. If quantum fluctuation
produced energy density perturbationδ ρ⒧t0⒭ in the manner discussed in the
previous section, last equation must be rewritten for those space domain which
was occupied by the fluctuation

@

ρ⒧t⒭�δ ρ⒧t⒭

ρ⒧t0⒭�δ ρ⒧t0⒭

dρ

p⒧ρ⒭ � ρ
� �3

@ a⒧t⒭�δ a⒧t⒭

a⒧t0⒭�δ a⒧t0⒭

da
a

. (3.30)

Now let’s attribute tot0 andt the meaning of the first and the second crossing
of the horizon by this fluctuation. One could expand both sides of Eq. 3.30
into a sum of three integrals to obtain

@

ρ⒧t0⒭

ρ⒧t0⒭�δ ρ⒧t0⒭

dρ

p⒧ρ⒭ � ρ
�

@

ρ⒧t⒭�δ ρ⒧t⒭

ρ⒧t⒭

dρ

p⒧ρ⒭ � ρ
�

�3
@ a⒧t0⒭

a⒧t0⒭�δ a⒧t0⒭

da
a
� 3

@ a⒧t⒭�δ a⒧t⒭

a⒧t⒭

da
a

.

Here Eq. 3.29, valid for the volume of larger size, was taken into account
to cancel third integrals in the both sides of the equations. Taking in mind
smallness of the fluctuations, these integrals can be easily estimated and we
come to equation

 

δ ρ

p� ρ
� 3

da
a

!

t0

»

ù

 

δ ρ

p� ρ
� 3

da
a

!

t
.

Scale factora grows very quickly so that we could neglect second terms in both
sides of this equation thus coming to the desired equation (3.28 ). Formula
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(3.28) written in the form
 

δ ρ

p� ρ

!

t f

»

ù

 

δ ρ

p� ρ

!

tin

(3.31)

could be useful to obtain characteristics of modern large scale fluctuation. Here
tin is time of the fluctuation formation at inflationary stage and its first cross-
ing of the horizon,t f is the time of second horizon crossing at Friedmann -
Robertson - Walker stage. Left hand side of this equality can be expressed
in terms of inflationary parameters and variables while right hand side is sim-
plified at matter - dominated stage due to the absence of pressure ,p � 0.
Expressions forδ ρ andp� ρ may be easily written in the inflationary stage in
terms of the scalar field (inflaton)ϕ � ϕ⒧tin⒭

δ ρ � V′⒧ϕ⒭δ ϕ ÿ

p� ρ � ϕ̇
2.

The quantityδ ρ�ρ t f which is important to evaluate is now expressed in terms
of inflaton field

 

δ ρ

ρ

!

t f

»

ù

 

V′⒧ϕ⒭δ ϕ

ϕ̇ 2

!

tin

These estimations are not exact and it is enough to limit ourselves with mass-
less case for estimation of fluctuations -δ ϕ ½ H⒧ϕ⒭�2π . Using equations of
motion for the inflaton field we obtain

 

δ ρ

ρ

!

t f

�

 

9H⒧ϕ⒭3

2πV′⒧ϕ⒭

!

tin

. (3.32)

The Hubble parameter H depends on the potentialV⒧ϕ⒭ and we have the
formula for calculation of the amplitude of energy density fluctuation.

 

δ ρ

ρ

!

t f

�

9
5

 

8
3

!3�2 A
λ

ν
ϕ

ν�2
2 (3.33)

The fluctuation is characterized by the field valueϕ at the moment of first
crossing of horizon. In this formula we have included the factor2�5 to take
into account the fact that the Universe was in matter - dominated stage
during second horizon crossing [57] though exact value of the numerical
factor is not important.

Another important parameter of the fluctuations is their size,l . The last
is connected with the momentstin and t f of the first and the second horizon
crossings correspondingly. The evaluation of the size of fluctuation for
time t such that tin � t � t f could be done by normalizing to the size of
our Universe, LU . Namely,

l � LU exp⒧N � NU⒭ÿ (3.34)
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where N is number of e-folds for the scalel during inflation, index ”U”
relates to the scale of our Universe,LU ½ 104M pc½ 1028cm.

On the other hand, the number ofe-folds is expressed in terms of the
inflaton field ϕ according to Eq. 2.35

N ½

4π

M 2
Pν

ϕ
2
ÿ

where potential is chosen in the formV⒧ϕ⒭ � λϕ
ν and inequality ϕ ù

ù

ù

ϕ in �� ϕ f is supposed. Substituting this formula and formula (3.34)
into expression (3.32) we come to the connection of the amplitude of the

fluctuation
�

δ ρ

ρ

�

t f

and its sizel [242],

 

δ ρ

ρ

!

t f

�

 

δ ρ

ρ

!

tU

 

1�
1

NU
ln ⒧l�LU⒭

!
ν�2

4

.

The second term in brackets is small comparing with unity if one takes
into account that NU ½ 60 and l�LU �

�

0.01 (only large scale are con-
sidered) We came to an important conclusion that the amplitude of large
scale fluctuations depends on its size very weakly. It is said that the spec-
trum of the fluctuations is almost flat.





Chapter 4

STRONG PRIMORDIAL
INHOMOGENEITIES
AND GALAXY FORMATION

The modern theory of the cosmological large-scale structure is based on the
assumption that this structure is formed as the result of development of grav-
itational instability from small initial perturbations of density or gravitational
potential. As a rule, these perturbations are Gaussian, but some versions of
non-Gaussian perturbations are also discussed.

In this Chapter we first analyze the problem, inherent to practically all the
cosmological cold dark matter models of invisible axion, that concerns primor-
dial inhomogeneity in the distribution of the energy of coherent oscillations of
the axion field. This problem, referred to as the problem ofarchioles, invokes
non-Gaussian component in the initial perturbations for axionic cold dark mat-
ter.

Archioles are the formation that represents a replica of percolation Brownian
vacuum structure of axionic walls bounded by strings, which is fixed in the
strongly inhomogeneous primeval distribution of cold dark matter. They re-
flect the unstable structure of topological defects, arising in the succession of
phase transitions in which symmetry of vacuum state changes. Such phase
transitions, resulting in formation and de-formation of topological defects, do
not necessary mean the existence of high temperature stage, on which the sym-
metry is restored. So, the structure of archioles can appear in the result of non-
thermal symmetry breaking effects on the post-inflationary preheating stage of
inflaton field oscillations.

Non-thermal phase transitions on inflationary stage can lead to spikes in
the amplitude of density fluctuations. Primordial black holes of arbitrary large
mass can originate from such spikes. Moreover, even in the absence of spikes
in the spectrum of density fluctuations, symmetry breaking on inflationary
stage can give rise to interesting alternative scenarios of structure formation
that relate the mechanism responsible for galaxy formation to unstable large
scale structures of topological defects.

49
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Such new mechanism describing the formation of protogalaxies is con-
sidered in this Chapter. It is based on the second order phase transition at
the inflationary stage and on the mechanism of a domain wall formation upon
the end of inflation. It leads to the formation of massive black hole clusters that
can serve as nuclei for the future galaxies. The number of black holes with the
massM » 103 Solar masses and more could be comparable with the number
of Galaxies in the visible part of the Universe.

The discussed mechanisms shed new light on the problem of primordial
black hole formation. Widespread opinion is that this process should take
place within the cosmological horizon. Since the mass within it is small in
the very early Universe, it seems to imply the smallness of black hole masses
formed at this stage of the cosmological evolution. However, if the appropri-
ate conditions for black hole formation are originated during inflationary stage
(spikes in the spectrum of density fluctuations or closed domain walls), they
could be extended to much larger scales than the scale of cosmological hori-
zon. It makes possible to form primordial black holes of arbitrary large mass
(with appropriate values of the model parameters) during FRW stages before
galaxy formation.

We have to underline that the following discussion leads to existence of
rather massive black holes before star formation. It will be shown that this
mechanism of black hole formation could be realized in most of modern mod-
els of inflation. Primordial fractal structure of galaxies is predicted in the
framework of developed models. This approach gives basis for a new scen-
ario of the galaxy formation in Big Bang Universe.

The discussion of physical basis for these scenarios begins our systematic
treatment of strong primordial inhomogeneities which can appear in inflation-
ary Universe as the reflection of particle symmetry breaking pattern.

1. Primordial archiole structure
1.1 Formation of archioles at high temperature

In the standard invisible axion scenario [9] the breaking of the Peccei-Quinn
symmetry is induced by the complexSU⒧3⒭

Q

SU⒧2⒭
Q

U⒧1⒭ – singlet Higgs
field φ with a "Mexican hat" potential

V⒧φ⒭ �
λ

2

�

φ
�

φ � F2
a

�2
. (4.1)

Such field can be represented asφ � Fa exp⒧iϑ⒭, whereϑ � a�Fa anda is the
angular Goldstone mode – axion. QCD instanton effects remove the vacuum
degeneracy and induce effective potential forϑ

V⒧ϑ⒭ � Λ4
1⒧1� cos⒧ϑ N⒭⒭. (4.2)

Below, following [78, 208], we will simply assume for standard axion that
N � 1 andΛ1 � ΛQCD. In the context of Big Bang scenario it is usually
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p

Figure 4.1. Mexican hat potential, the view from aside. The tilt provides maximum of the
potential when moving along the circle valley

assumed that the phase transition withU⒧1⒭ – symmetry breaking occurs when
the Universe cools below the temperatureT »

�

Fa. Thus, in this case the
crucial assumption is that from the moment of the PQ phase transition and
all the way down to the temperaturesT »

�

ΛQCD, the bottom of the potential
(4.1) is exactly flat and there is no preferred value ofa during this period (the
term given by (4.2) vanishes). Consequently, at the moment of the QCD phase
transition, when the instanton effects remove vacuum degeneracy,a rolls to
the minimum and starts coherent oscillations (CO) about it with energy density
[9, 208]

ρa⒧Tÿϑ⒭ � 19.57

 

T2
1 ma

MP

! 

T
T1

!3

T2F2
a . (4.3)

The coherent axion field oscillations turn on at the momentt̃ ½ 8.8 . 10�7s.
Note, that the existence of the term (4.2) atT �� ΛQCD could remove va-

cuum degeneracy and switch on axion field oscillations much earlier. The
condition H » ma, wherema is the axion mass, is fulfilled in this case at
T »

A

MPma, and the axion field would have started to move to its true va-
cuum states, giving rise to its CO.

It is generally assumed, that PQ transition takes place after inflation and
the axion field starts oscillations with different phase in each region, causally
connected atT »

�

Fa, so one has the average over all the values to obtain the
modern axion density. Thus in the standard cosmology of invisible axion, it
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is usually assumed that the energy density of coherent oscillations is distrib-
uted uniformly and that it corresponds to the averaged phase value ofϑ̄ � 1
(ρ̄a � ρ⒧ϑ̄⒭). However, the local value of the energy density of coherent os-
cillations depends on the local phaseϑ that determines the local amplitude of
these coherent oscillations. It was first found in [77], that the initial large-scale
(LS) inhomogeneity of the distribution ofϑ must be reflected in the distribu-
tion of the energy density of coherent oscillations of the axion field. Such
LS modulation of the distribution of the phaseϑ and consequently of the en-
ergy density of CO appears when we take into account the vacuum structures
leading to the system of axion topological defects.

As soon as the temperature of Universe becomes less thanFa, the fieldφ

acquires the vacuum expectation value (VEV)�φ
 � Fa exp⒧iϑ⒭, whereϑ

varies smoothly at the scaleF�1
a . The existence of noncontractable closed

loops that change the phase by 2π n leads to emergence of axion strings. These
strings can be infinite or closed. The numerical simulation of global string
formation [234] revealed that about 80% of the length of strings corresponds
to infinite Brownian lines. The remaining 20% of this length is contributed
by closed loops. Infinite strings form a random Brownian network with the
stepL⒧t⒭ ½ t. After string formation, when the temperature becomes as low as
T ½ ΛQCD, the term (4.2) makes a significant contribution to the total potential
so that the minimum of energy corresponds to a vacuum withϑ � 2π k, where
k is an integer – for example,k � 0. However, the vacuum value of the phase
ϑ cannot be zero everywhere, since the phase must change by∆ϑ � 2π upon
a loop around a string. Hence, we come from the vacuum withϑ � 0 to the
vacuum withϑ � 2π as the result of such circumvention. The vacuum value
of ϑ is fixed at all points with the exception of the pointϑ � π . At this point,
a transition from one vacuum to another occurs, and the vacuum axion wall is
formed simultaneously with CO turning on.

The width of such wall, bounded by strings, isδ
»

�

m�1
a . Thus, the ini-

tial value ofϑ must be close toπ near the wall, and the amplitude of CO in
Eq. (4.3) is determined by the difference of the initial local phaseϑ⒧x⒭ and the
vacuum value, which is different from the one of the true vacuum only in a
narrow region within the wall of thicknessδ »

�

m�1
a . Therefore in this region

we can write [77]ϑ⒧x⒭ � π � ε⒧x⒭, whereε⒧x⒭ � 2 tan�1
⒧exp⒧max⒭⒭ and

x »
�

m�1
a . Thereby the energy density of CO in such regions is given by

ρ
A
½ π

2
ρ̄a. (4.4)

So we obtain, following [77, 78, 208], that the distribution of CO of axion field
is modulated by nonlinear inhomogeneities in which relative density contrasts
areδ ρ�ρ � 1. Such inhomogeneities were calledarchioles[77].

In the other wordsarchiolesare a formation that represents a replica of the
percolational Brownian vacuum structure of axionic walls bounded by strings
and which is fixed in the strongly inhomogeneous initial distribution of axionic
CDM. The scale of this modulation of density distribution exceeds the cos-
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mological horizon because of the presence of 80% infinite component in the
structure of axionic walls bounded by strings. The superweakness of the ax-
ion field selfinteraction results in the separation of archioles from the vacuum
structure of axionic walls – bounded – by – strings. So these two structures
evolve independently.

The structure of walls, bounded by strings, disappears rapidly due to disin-
tegration into separate fragments and successive axion emission.

The structure of archioles remains frozen at the RD stage. On the large
scales, the structure of archioles is an initially nonlinear formation. It is a
Brownian network of quasi – one – dimensional filaments of dustlike matter
with the step

LA
⒧t⒭ � λ t̃ÿ (4.5)

whereλ
»

�

1. At the moment of creatioñt, the linear density of this quasilinear
filamentary formations is given by

µ A � π
2
ρ̄at̃δ . (4.6)

In accordance with this, the cosmological evolution of archioles in the expand-
ing Universe is reduced to the extension of lines along only one direction.

The spectrum of inhomogeneities that the density develops in response to
the large-scale Brownian modulation of the distribution of CO of axion field
was studied in [78]. Density perturbations, associated with Brownian network
of archioles, may be described in the terms of a two – point autocorrelation
function [78]. To obtain such autocorrelation function, it is necessary to per-
form averaging of energy density of infinite Brownian lines over all lines and
over the Winner measure, which corresponds to the position along of Brownian
line (see [78, 208]).

The two – point autocorrelation function in the Fourier representation has
the form [78, 208]

�

δ ρ

ρ0
⒧

Ëk⒭
δ ρ

ρ0
⒧

Ëk′⒭
 � 12ρ Aµ Ak�2
δ ⒧Ëk�Ëk′⒭t̃�1 f �2t4G2

ÿ (4.7)

whereρ0 is background density,f M D � 3�⒧32π ⒭ for dustlike stage,f RD �

⒧6π ⒭
�1 for RD stage,G is the gravitational constant,ρ A is the total energy

density of the Brownian lines. The mean-square fluctuation of the mass is
given by [78, 208]

 

δ M
M

!2

⒧kÿ t⒭ � 12ρ Aµ At̃�1 f �2G2kt4. (4.8)

1.2 Cosmological impact of archioles
Let us consider, following [208] a region characterized at instantt by a size

l and a density fluctuation∆. For anisotropy of relic radiation we then obtain



54 COSMOLOGICAL PATTERN OF MICROPHYSICS

[208]
δT
T
»

�

�∆
 

l
t

!2

. (4.9)

If l � t, we have δT�T »

�

∆ ; that is, the anisotropy of relic radiation
is equal to the density contrast calculated at the instant when the size of the
region is equal to the size of the horizon (Sachs – Wolf effect). To estimate
the quadrupole anisotropy that is induced in relic radiation by the structure
of archioles, we must find the amplitude of perturbations on the scale of the
modern horizon
 

δ M
M

!2

� 2.1 . 10�25
 

Fa

1010GeV

!4
� tRD

1s

�2�3� tpres

1s

�1�3
⒧khortpres⒭.

(4.10)
Thus Sachs-Wolf quadrupole anisotropy of relic radiation induced by archioles
will be [208]

δT
T
»

�

2.3 . 10�6
 

Fa

1010GeV

!2

. (4.11)

According to Relic-1 and COBE data (see for example [244, 245]), the meas-
ured quadrupole anisotropy of relic radiation is at the level of

δT
T
½ 5 . 10�6. (4.12)

If we take into account the uncertainties of the consideration [78, 208] such
as the uncertainties in correlation length scale of Brownian network (λ ½ 1 ..�
13) and in temperature dependence of axion mass, we can obtain a constraint
[78, 208] on the scale of symmetry breaking in the model of invisible axion

Fa �
�

1.5 . 1010GeV ..� 4 . 109GeV; ma �
�

410µeV ..� 1500µeV. (4.13)

This upper limit forFa is close to the strongest upper limits in [235, 236,
237], obtained by comparing the density of axions from decays of axionic
strings with the critical density, but it has an essentially different character.

The point is that the density of axions formed in decays of axionic strings
depends critically on the assumption about the spectrum of such axions (see
[235, 236]) and on the model of axion radiation from the strings (see [237]).
For example, Davis [235] assumed that radiated axions have a maximum wave-
length ofω⒧t⒭ »

�

t�1, while Harari and Sikivie [236] have argued that the mo-
tion of global strings was overdamped, leading to an axion spectrum emitted
from infinite strings or loops with a flat frequency spectrum² k�1. This leads
to an uncertainty factor of»ù 100 in the estimation of the density of axions
from strings and to the corresponding uncertainty in the estimated upper limit
on Fa

Fa �
�

2 . 1010
ςGeV; ma �

�

300�ς µeV. (4.14)
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Here,ς � 1 for the spectrum from Davis [235], andς ½ 70 for the spectrum
from Harari and Sikivie [236].

In their treatment of axion radiation from global strings, Battye and Shellard
[237] found that the dominant source of axion radiation are string loops rather
than long strings, contrary to what was assumed by Davis [235]. This leads to
the estimations

Fa �
�

6 . 1010GeV ..� 1.9 . 1011GeV; ma �
�

31µeV ..� 100µeV. (4.15)

Arguments of [78, 208] that lead to the constraint Eq. 4.13 are free from these
uncertainties, since they have a global string decay model – independent char-
acter.

At the smallest scales, corresponding to the horizon in the periodt̃, evolution
of archioles just in the beginning of axionic CDM dominance in the Universe
(at redshiftszM D

»

�

4 . 104) should lead to formation of the smallest gravita-
tionally bound axionic objects with the minimal massM »

ù ρat̃3
»

ù 10�6M
þ○

and of typical minimal sizẽt⒧1�zA⒭�⒧1�zM D⒭
»

�

1013cm. One can expect the
mass distribution of axionic objects at small scale to peak around the minimal
mass, so that the existence of halo objects with the mass (10�6M

þ○

..�10�1M
þ○

)
and size 1013 ..� 1015cm is rather probable, what may have interesting applica-
tion to the theoretical interpretation of MACHOs microlensing events.

Another interesting aspect of archioles is related with their possible impact
on the formation of antimatter domains in the baryon asymmetrical Universe.
As it was revealed in [233], the phaseϑ⒧x⒭ that determines further the amp-
litude of axionic CO plays the role of spatial dependent CP-violating phase
in the period starting from Peccei-Quinn symmetry breaking phase transition
until the axion mass is switched on atT ½ 1 GeV. The net phase changes
continuously and, if baryosynthesis takes place in the considered period, ax-
ion induced baryosynthesis implies continuous spatial variation of the baryon
excess given by [84]:

b⒧x⒭ � A� bsin ϑ⒧x⒭. (4.16)

Here A is the baryon excess induced by the constant CP-violating phase,
which provides the global baryon asymmetry of the Universe andb is the
measure of axion induced asymmetry. Ifb � A, antibaryon excess is gen-
erated along the directionϑ � 3π�2. The stronger is the inequalityb � A,
the larger interval ofϑ around the layerϑ � 3π�2 provides generation of an-
tibaryon excess [84]. In the caseb� A � δ �� A the antibaryon excess is
proportional toδ

2 and the relative volume occupied by it is proportional toδ .
The axion induced antibaryon excess forms the Brownian structure look-

ing like an infinite ribbon along the infinite axion string (see [77, 78]). The
minimal width of the ribbon is of the order of horizon in the period of baryo-
synthesis and is equal toMP�T2

BS atT ½ TBS. At T � TBS this size experiences
red shift and is equal to
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l h⒧T⒭ ½
MP

TBST
. (4.17)

This structure is smoothed by the annihilation at the border of matter and
antimatter domains. When the antibaryon diffusion scale exceedsl h⒧T⒭ the
infinite structure decays on separated domains. The distribution on domain
sizes turns to be strongly model dependent and was calculated in [84]. The
possible effect of such domains in the modern Universe will be discussed in
the Chapter 6.

1.3 Nonthermal effects of symmetry breaking
The inclusion of obtained restriction into the full cosmoparticle analysis can

provide detailed quantitative definition of the cosmological scenario, based
on the respective particle physics model. Consider, for example, a simple
variant of gauge theory of broken family symmetry (TBFS) [229], which is
based on the Standard Model of electroweak interactions and QCD, supple-
mented by spontaneously broken localSU⒧3⒭H symmetry for quark–lepton
families. This theory provided natural inclusion of Peccei-Quinn symmetry
U⒧1⒭H ù

ù

ù U⒧1⒭PQ, being associated with heavy "horizontal" Higgs fields and
it gave natural solution for QCD CP – violation problem. The globalU⒧1⒭H
symmetry breaking results in the existence of axion–like Goldstone boson –
archion,a.

TBFS turned to be a simplest version of the unified theoretical physical
quantitative description of all main types of dark matter (HDM–massive neut-
rinos, axionic CDM and UDM in the form of unstable neutrinos [229, 230, 28])
and the dominant form of the dark matter was basically determined by the scale
of the "horizontal" symmetry breakingVH , being the new fundamental energy
scale of the particle theory. For given value ofVH the model defined the relative
contribution of hot, cold and unstable dark matter into the total density. Since
in the TBFS the scale of horizontal symmetry breakingVH was associated with
Fa, from Eq. (4.13) followed the same upper limit onVH .

However, this limit assumed, that the considered inflationary model permits
topological defects and hence archioles formation due to the sufficiently high
reheating temperatureTRH �

�

VH . In the inflationary model, which occurs in
TBFS, we can achieveTRH » 1010GeV.

The "horizontal" phase transitions on inflationary stage lead to the appear-
ance of a characteristic spikes in the spectrum of initial density perturbations.
These spike–like perturbations, on scales that cross the horizon 60e– folds
before the end of inflation re-enter the horizon during the radiation or matter
dominant stage and could in principle collapse to form primordial black holes.
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The minimal interaction of "horizontal" scalars of TBFSξ
⒧0⒭, ξ

⒧1⒭, ξ
⒧2⒭ with

inflaton allows us to include them in the effective inflationary potential [246]:

V⒧φ ÿ ξ ⒧0⒭ÿ ξ ⒧1⒭ÿ ξ ⒧2⒭⒭ � �
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. (4.19)

The last term in the potential (4.18) implies the effect of symmetry restoration
at large amplitudes of inflaton field, similar to the effect of symmetry restor-
ation at high temperatures, induced by thermal corrections in QFT. At high
amplitudes of inflaton fieldφ , VEVs of ξ

⒧i⒭ are zero, but when the inflaton
amplitude rolls down below the critical valueφci � mi�νξ the transition to
the phase with broken symmetry takes place on the inflationary stage. Follow-
ing [247] such phase transition results in the spike in the spectrum of density
fluctuations.

The analysis of processes of primordial black holes formation from density
fluctuations, which can be generated by "horizontal" phase transitions at the in-
flationary stage gave rise to an upper limit on the scale of horizontal symmetry
breaking [246]

VH �
�

1.4 . 1013GeV. (4.20)

Therefore the range between the two upper limits Eq. 4.13 and Eq. 4.20)
turned to be not closed, and the following values seem to be possible

1011GeV�
�

VH �
�

1013GeV. (4.21)

The indicated range corresponds to the case when all the horizontal phase
transitions take place on the post-inflationary stage of the inflaton field oscil-
lations andφc2 �� MP. In this case the inflaton fieldφ oscillates with initial
amplitude» MP. According to [231, 246] it means that any time the amplitude
of the field becomes smaller thenφc2 �� MP, the last (axionξ ⒧2⒭) phase trans-
ition with symmetry breaking occurs, and topological defects are produced.
Then the amplitude of the oscillating fieldφ becomes greater thanφc2, and
the symmetry is restored again. However, this regime does not continue too
long. Within a few oscillations, quantum fluctuations of the fieldξ

⒧2⒭ will be

generated with the dispersion�
�

ξ
⒧2⒭
�2
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these fluctuations will keep the symmetry restored. The symmetry breaking

will be finally completed when�
�

ξ
⒧2⒭
�2

 will become small enough. Thus
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such phase transition leads to formation of topological defects and archioles
without any need for high – temperature effects.

Substituting the typical values for potential (4.18) such asm2
2 ½ 10�3V2

H ,
λξ

»

ù 10�3, νξ
»

ù 10�10, λφ
»

ù 10�12 (see [246]) we will obtain that the
condition (4.22) means that for the scales

VH �
�

2MP (4.23)

the phenomenon of non – thermal symmetry restoration takes place in simplest
inflationary scenario based on TBFS. Owing to this phenomenon oscillations
of the fieldξ

⒧2⒭ do not suppress the topological defects and archioles produc-
tion for the range (4.21). So the range (4.21) turned to be closed by comparison
of BBBR quadrupole anisotropy, induced by archioles, with the COBE data.
As a result, the upper limit on the scale of horizontal symmetry breaking is
given by (4.13).

The existence of neutrino oscillations, as indicated by [12, 13, 14, 15], may
rule out the simplest version of TBFS, considered here. However, the phe-
nomenon of archioles is general for a wide class of models with broken U(1)
symmetry, leading to large scale primordial inhomogeneity of dark matter in
the form of scalar field CO.

Note that formally the limit (4.23) admits the scales as high as the scales
of GUT symmetry breaking. However, non-thermal restoration of GUT sym-
metry at post-inflationary stage would inevitably lead to magnetic monopole
over-production (see Chapter 2), what puts constraints on the realization of
GUT physics in the framework of inflationary models.

There is another possible form of strong primordial inhomogeneities, arising
from the pattern of U(1) symmetry breaking in inflationary Universe. It is the
structure of primordial massive black hole clouds, to which we turn in the
successive sections of this Chapter.

2. Massive primordial black holes
Now there is no doubt that the centers of almost all galaxies contain massive

black holes [248]. An original explanation of the formation of such super-
massive black holes assumes the collapse of a large number of stars in the
galaxy centers. However, the mechanism of the galactic nuclei formation is
still unclear. According to Veilleux [249], there are serious grounds to believe
that the formation of stars and galaxies proceeded simultaneously. Stiavelli
[250] considered a model of the galaxy formation around a massive black hole
and presented arguments in favor of his model. Each of the two approaches
has certain advantages, while being not free of drawbacks.

Below we will consider a new model of very early formation of galactic
nuclei from primordial black holes (PBH), which serve as the nucleation cen-
ters in the subsequent formation of galaxies. This mechanism may prove to
be free from disadvantages inherent in the models based on the concept of a
single PBH being a nucleus of the future galaxy. Its foundation is the new
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mechanism [79] of the PBH formation that opens possibility of the massive
black hole formation in the early Universe. In the framework of this mech-
anism black holes are formed as a result of a collapse of closed walls arising
from the succession of second order phase transitions after the end of inflation.
The masses of such black holes may vary within broad limits, up to a level of
the order of» 106 Solar masses.

Let us assume that a potential possesses at least two different vacuum states.
Then there are two possible distributions of these states in the early Universe.
The first possibility is that the Universe contains approximately equal numbers
of both states, which is typical for phase transitions at high temperatures or for
non-thermal post-inflationary phase transitions, discussed in the previous Sec-
tion. The alternative possibility corresponds to the case when the two vacuum
states are formed with different probabilities. In this case, islands of less prob-
able vacuum state surrounded by the sea of another, more probable, vacuum
state appear. As it was shown in [79], an important condition for this distri-
bution is the existence of valleys in the scalar field potential during inflation.
Then the background de Sitter fluctuations lead to the formation of islands rep-
resenting one vacuum in the sea of another vacuum. The phase transition takes
place after the end of inflation in the FRW Universe.

We will show below that other potentials exhibit the ability to produce
closed walls. The conclusion is that this effect is almost inevitable for po-
tentials possessing at least two minima. If this is so, the two vacuum states
are separated by a wall after the phase transition. The size of this wall may
be significantly greater as compared to the cosmological horizon at that period
of time. After the whole wall "enters" the horizon, it begins to contract be-
cause of the surface tension. As a result, provided that friction is absent and
the wall does not radiate a considerable part of its energy in the form of scalar
waves, almost all energy of this closed wall may be concentrated within a small
volume inside the gravitational radius. This is the sufficient condition for the
black hole formation.

The mass spectrum of black holes formed by this mechanism depends on
parameters of the scalar field potential determining the direction and size of the
potential valley during inflation and the postinflationary phase transition. The
presence of massive PBHs is a new factor in the development of gravitational
instability in the surrounding matter and may serve a base for new scenarios
of the formation and evolution of galaxies. Although we deal here with the so
- called pseudo-Nambu-Goldstone field, the proposed mechanism possesses a
sufficiently general character.

2.1 Closed wall formation

Now we will describe a mechanism accounting for the appearance of massive
walls with the size markedly greater than the horizon at the end of inflation.
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Let us consider a complex scalar fieldϕ with the Lagrangian

Lϕ �

1
2

∂ϕ
2
� V⒧ ϕ ⒭ÿ (4.24)

whereϕ � reiϑ . The potential is chosen in the form

V⒧ ϕ ⒭ � λ⒧ ϕ
2
� f 2

�2⒭2 � δV⒧ϑ⒭ÿ (4.25)

δV⒧ϑ⒭ � Λ4
⒧1� cosϑ⒭ .

Hereλ and f are parameters of the Lagrangian. Instanton effects are respons-
ible for the additional term proportional to additional parameterΛ4 (see details
and refs in [83]). As it is evident from Figure 4.1 this potential possesses the
saddle point at the phaseϑ � π .

We assume the mass of the radial field componentr , i.e. the value

m2
r
ù

ù

ù d2V�dr2
r� f �

A

2ÿ

to be sufficiently large, so that the complex magnitude of field acquires the
value somewhere in the circle valleyϕ � f �

A

2 before the end of inflation.
Wide range of models, predicting the additional termδV⒧ϑ⒭, is discussed in
[83].

Since the minimum of potential (4.25) is almost degenerate, the field has
the form

ϕ »ù f �
A

2 . exp⒧iϑ⒧x⒭⒭. (4.26)

For the following considerations, it should be noted that, using expression
(4.25) in the inflation period, we ignored the term reflecting the contribution of
instanton effects to the Lagrangian renormalization (see also [83]). Substitu-
tion of the expression (4.26) into Lagrangian (4.25) gives effective Lagrangian

Lϑ �

1
2
⒧∂ χ⒭

2
� Λ4

⒧ 1� cos⒧χ� f ⒭⒭ (4.27)

for the dynamical variableχ � ϑ f acquiring the meaning of almost massless
field χ .

Since the parameterΛ appears as a result of the instanton effects and renor-
malization, its value cannot be large and we assume thatΛ �� Hÿ f . The term
(4.27) begins to play a significant role in the post-inflationary stage, when the
Hubble parameter decreases with time (e.g.H � 1�2t during the radiation
dominated stage,H � 2�3t during the matter dominated stage).

Let us assume that the whole part of the Universe observed within the con-
temporary horizon was formedNU e-folds before the end of inflation. As was
demonstrated in [251], the quantum field fluctuations during inflation were rap-
idly transformed into a classical field component. Values of the massless field
χ in the neighbouring causally-disconnected space points differ on the average
by δ χ � H�2π after a singlee-fold. In the next time step∆t � H�1 (i.e.,
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during the nexte-fold) each causally-connected domain is divided onto» e3

causally-disconnected subdomains; the phase in each of the new domains dif-
fers by» δϑ � δ χ� f � H�2π f from that at the preceding step. Thus, more
and more domains appear with time in which the phase differs significantly
from the initial value.

A principally important point is the appearance of domains with the phases
ϑ � π . Appearing only after a certain period of time during which the Universe
exhibited exponential expansion, these domains turn out to be surrounded by
a space with the phaseϑ � π . As we show below, the existence of that very
domains leads in the following to the formation of large-scale structures. Note
that the phase fluctuations during the firste-folds may transform eventually
into fluctuations of the cosmic microwave radiation, thus leading to restrictions
to the scalef . This difficulty can be avoided by taking into account interaction
of the fieldϕ with the inflaton field (i.e., by making parameterf a variable -
see Chapter 5 Section 3).

Initially, the potential (4.25) possessed aU⒧1⒭ symmetry and the phaseϑ
corresponded to a massless scalar field. Owing to the potential term in (4.27),
the symmetry is broken after the end of the inflation period: the potential of
theχ field acquires discrete minima at the pointsϑmin � 0ÿ

ù

�2π
ù

� 4π ..., and
the field acquires the massmχ � 2 f �Λ2 . According to the classical equation
of motion, the phase performs decaying oscillations about the potential min-
imum, the initial values being different in various space domains. Moreover,
domains with the initial phaseπ � ϑ � 2π perform oscillations about the
potential minimum atϑmin � 2π , whereas the phase in the surrounding space
tends to a minimum at the pointϑmin � 0. Upon ceasing of the decaying
phase oscillations, the system contains domains characterized by the phase
ϑmin � 2π surrounded by the space withϑmin � 0. Apparently, on moving in
any direction from inside to outside of the domain, we will unavoidably pass
through a point withϑ � π because the phase varies continuously. This im-
plies that a closed surface characterized by the phaseϑwall � π must exist.
The size of this surface depends on the moment of domain formation in the
inflation period, while the shape of the surface may be arbitrary. The principal
point for the subsequent considerations is that this surface is closed.

After heating of the Universe, the evolution of domains, formed with the
phaseϑ � π and sharply increased in volume during the inflation period,
proceeds on the background of the Friedmann expansion and is described by
the relativistic equation of state. First, an equilibrium state with the ”vacuum”
phaseϑ � 2π inside the domain and theϑ � 0 phase outside is established at
T »

B

MPmχ as it was mentioned in the previous Section and will be shown
below - see formula (4.39). A closed wall corresponding to the phase is formed
in the transition region with a width of» 1�mχ » f �Λ2, which separates the
domain from the surrounding space. The surface energy density of the wallσ

» f Λ2.
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The field configuration of the plane walls is well known [252]. We can apply
it to describe the distribution of phase across approximately plane border of
domain

ϑ⒧zÿ t⒭ � �4 arctan

"

exp
Λ2

f
⒧z� z0⒭

#

. (4.28)

Energy of this field configuration is concentrated in plane of widthd � 2 f �Λ2

(some kind of "wall") and centerz0. Fortunately the wall width is determined
by microscopical parameters and appears to be much smaller than the charac-
teristic size of the wall, because the latter depends on the classical history of
the wall formation. Thus, considering local process like interaction of the wall
with particles we can consider the wall being plane. Meantime, large scale
processes do not depend on details of classical configuration (4.28), but only
on wall size and its mass.

It must be noted that the process of establishing of the equilibrium (”va-
cuum”) phase values may acquire a protracted character. If the stage of co-
herent phase oscillations about the equilibrium values is sufficiently long, the
energy density of these oscillations may become dominating and determine the
dust-like period of expansion.

2.2 Closed wall evolution
Let us consider the factors influencing the cosmological evolution of a closed

domain wall.
1. First, note that the domain size immediately after the end of inflation

markedly exceeds the horizon size at the FRW expansion stage. The overall
contraction of the closed wall may begin only when the horizon size will be
equal to the domain sizeR1. Up to this moment, the characteristic domain
size increases with the expanding Universe. Since we assumed that the initial
field contribution to the total energy-momentum tensor is small as compared
to that of the inflaton field, the field gives also a small contribution to the total
energy density of the Universe upon heating, when the energy density of in-
flaton transforms into the energy density of relativistic particles. For smaller
walls this condition is valid until they enter the horizon. This condition can be
violated for very large domains (see the next paragraph). Evidently, internal
stresses developed in the wall after crossing the horizon initiate processes tend-
ing to minimize the wall surface. This implies that, having entered the horizon,
the wall tends, first, to acquire a spherical shape and, second, to contract to-
ward the center.

2. Since the energy density of the surrounding medium decreases, the in-
ternal wall energy within the horizon may exceed at a certain time the energy
of plasma within that region. Simultaneously, the wall starts to dominate in
the expansion of that region, its radiusR2 in that moment being smaller than
R1. For an observer in the vicinity of the wall the rate of the local expansion is
affected substantially. For example, wall – dominated universe would expand



Strong Primordial Inhomogeneities and Galaxy Formation 63

with scale factora⒧t⒭ ² t2. Such superluminal expansion makes successive
evolution of wall dominated region elusive for the distant observer. It makes
R2 the maximal possible size of a closed wall that can contract and form black
hole.

3. The wall energy is proportional to its area at the instant of crossing the
horizon. By the moment of maximum contraction, this energy is virtually
completely converted into the kinetic energy. Should the wall by this moment
be localized within the limits of the gravitational radius, a PBH is formed.

4. Contracting under the action of internal forces, the wall moves through
the surrounding plasma. The resulting force of friction may, under certain
conditions, become significant and it might lead to an uniform (nonacceler-
ated) contraction of the wall. It will be shown below that effect of friction is
negligible for all reasonable sizes of the domains.

Evidently the energy concentrated in the course of wall contraction can be
approximated as

Ew � Sσÿ (4.29)

whereσ � 4Λ2 f is the surface energy density of the wall andS is a square
of the wall surface. In this section we suppose the shape of the wall being
roughly spherical to the beginning of shrinking. Its radius, defining the mass
of the possible future black hole, is determined from the condition

R� min⒧R1ÿR2⒭. (4.30)

Internal pressure tends the wall to contract quickly until reaching the size of
the order of the wall thicknessd. PBH are formed under condition

Rmin » d � rg � 2Ew�M
2
P. (4.31)

Indeed, if the width of the wall exceeds its gravitational radius, the energy of
the wall can not be concentrated within it.

A nearest task is to determine the values ofR1 and R2 of a domain for a
system with Lagrangian (4.25) depending on the moment of its nucleation.
Consider a domain which has crossed critical pointπ at thee-folding number
N before the end of inflation, i.e. at the moment of its nucleation. Its size is of
order 1�H and it is inexp⒧N�NU⒭ times smaller than the size of the Universe
to that moment.

First of all we take into account internal pressure of a wall. Its influence is
developed after the wall comes under horizon. The pressure leads to termin-
ation of the wall growing and it forces the wall to acquire a spherical shape.
This period is characterized by the timet1 at which

R⒧t1⒭ � l hor⒧t1⒭. (4.32)

Supposing the processes take place during radiation-dominated era, the size of
horizon l hor⒧t1⒭ � 2t1. The size of the wall at timet � t1 is proportional to
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the visible size of the Universe

R⒧t⒭ � LU
T0

T
eN�NU

ÿ (4.33)

whereT0 is the modern temperature of CMB andLU ½ 1028cm is size of the
Universe at modern epoch. Combining (2.55), (4.32) and (4.33) one can easily
find the first restriction on the wall size

R1 »ù
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e2⒧N�NU ⒭
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45
4π 3g*

!1�4
A

MP. (4.34)

Another restriction arises if one notices that the large wall starts to determine
the local expansion when its energy (4.29) within the cosmological horizon
exceeds the energy of relativistic plasma in this scale (R � t) EV � ρ

4π

3 R3.
It must happen because the energy density of plasma decreases with time after
reheating stage. Equating both expressions for energyEV andEw we obtain
connection of the energy density and the scale of the wall

R�
3σ

ρ
. (4.35)

On the other hand it seems reasonable to suppose that up to this instant the
wall provided small energy excess and hence did not influence the expansion
rate of surrounding media. In this case a value of the wall radiusR is pro-
portional to a size of the Universe and its dependency on temperatureT is
described by formula (4.33). Combining formulas (4.35), (4.29) written above
and connection between energy densityρ of the Universe at that period and its
temperatureT (2.50) one obtains the maximal size of the wall

R2 »ù

 

π
2

90σ
g*

!1�3

⒧LUT0⒭
4�3 e

4
3⒧N�NU ⒭. (4.36)

In our units (̄h� c � 1) LUT0 ½ 1029.
Finally, the maximal size of the wall is determined according to the con-

dition (4.30). This value depends on the numberN of e-fold when the do-
main surrounded by the wall was nucleated. EvidentlyR1 � R2 for largeN.
It means that the size of large walls are described by the expression (4.36)
whereas the expression (4.34) is important for determination of the size of
small walls.

The above considerations do not take into account the effect of a gravity
field on the wall dynamics. Therefore, the obtained relationships are valid
provided that the initial wall size is much greater than the gravitational radius.
Formally, the gravitational radius could exceed the wall size for sufficiently
large domains. For a wide range of reasonable values off the size of such
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domains exceeds the cosmological horizon in the period of wall formation,
and special investigation is needed to clarify the question on their successive
evolution. In this study, we suppose that intrinsic gravity does not affect the
wall evolution.

Now we proceed to the study of PBH cluster formation in the early Uni-
verse.

The walls are formed in the very early Universe after the end of inflation and
long before star formation. Namely, it happened when a friction term 3H χ̇ in
equation of motion for the fieldχ becomes comparable with ’force’ termm2

χ
χ ,

i.e. at the momentt* when

mχ
»

ù H⒧t*
⒭ �

E

8π

3
ρ⒧t*

⒭

M 2
P

. (4.37)

Energy densityρ at radiation dominated stage is connected with temperature
and time according to formulae

ρ �
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Combining expressions (4.37) and (4.38) one obtains timet* and temperature
T* of the walls formation
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For example, fieldχ starts oscillating with subsequent walls formation at tem-
peratureT*

» 105 GeV if model dependent parametermχ � 10eV . Then the
wall expands up to the scaleR1 or R2 with subsequent contraction.

Remind that the above estimation assumes constant parameterΛ in Lag-
rangian (4.24). In some realistic models, such as the model of invisible ax-
ion, the instanton effects, generatingΛ, depends on temperature, so thatmχ

is "switched on" at some temperatureTs (Ts » 800MeV for invisible axion),
which is much smaller thanT* .

One could worry about a temperature at the moment, when walls acquire
maximal size. As was discussed above, the size of large walls is described by
expression (4.36). Such walls start shrinking when the size of horizonl hor⒧t⒭
becomes comparable with the sizeR2. The temperature at this moment can be
obtained after simple algebra

Twall » ⒧LUT0⒭
�2�3 M1�2

P f 1�6Λ1�3 exp
2
3
⒧NU � N⒭ . (4.40)

Using this estimation, we could find the temperature when the largest size
of walls are formed. As an example, let’s choose the topical values of the para-
meters f � 1014GeVÿ Λ � 103GeVÿ N � 40ÿ to obtainTwall » 0.2GeV
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(remind thatNU � 60 throughout the book). The size of the wall at this mo-
ment isR2 » 1020GeV�1, while the Universe size is about» 1029GeV�1.

Note, that the real matter of worry in the realistic models, underlying the
considered mechanism, will be the proper mechanism, providing the suffi-
ciently effective decay of field oscillations.

For the oscillations, starting atT » T* , the contribution into the total dens-
ity is in this period small» ⒧Λ�T*

⒭

4
» ⒧ f �MP⒭

2. However, the oscilla-
tion energy density decreases in the course of expansion as² a�3, whereas
the one of the relativistic matter is² a�4, so that atT » T*

⒧Λ�T*
⒭

4
»

Λ⒧ f �MP⒭
3�2 it starts to dominate in the Universe. In the above example with

f � 1014GeVÿ Λ � 103GeV the matter dominance of field oscillations
should come atT » 30keV. If the oscillations do not decay, this domin-
ance should have continued up to the present time, to result in their modern
density, exceeding the critical one by more than 4 orders of the magnitude,
what is evidently ruled out by observations. Moreover the observational data
put severe constraints on even short periods of matter dominance, predicted at
RD stage after 1s (i.e. atT � 1MeV). The lifetime estimationτ » 1�mχ gives
promising value of order 10�19s. On the other hand, theχ -particles lifetime,
naively estimated asτ � 64π f 2

�m3
χ
» 1030s, exceeds the age of the Universe,

appealing to special theoretical mechanisms for their sufficiently rapid decay.

2.3 Wall deceleration in plasma
The first- and second-order phase transitions lead to the formation of a field

walls separating one vacuum of this field from another. One of these mech-
anisms was described in the preceding section. In turn, the walls are moving
at a subluminal velocity and interact with the surrounding plasma. Depending
on the character of this interaction and the shape of the field potential, there
are two possible situations. In the first case, the plasma particles pass through
the wall, falling into a different vacuum and acquiring a certain mass. This
situation corresponds to an electroweak phase interaction [253], whereby the
corresponding Higgs field is responsible for a mechanism of the fermion mass
generation. In the opposite case, the particle mass is not changed upon going
from one to another vacuum (an example is offered by the case of interac-
tion with an axion wall). In the former case, the interaction with the medium
leads to a significant deceleration of the domain wall, while in the latter case,
the walls are virtually transparent for the medium for the reasonable values of
parameters.

All considerations are conveniently conducted in the rest frame of the wall.
The probability of a particle scattering from the plane wall at rest is described
by standard formula of the quantum theory

dw� dn⒧k⒭2π δ ⒧ε � ε
′

⒭ M 2 d3k′

2εV⒧2π ⒭3ε ′
ÿ (4.41)



Strong Primordial Inhomogeneities and Galaxy Formation 67

wheredn⒧k⒭ is the momentum distribution of incident particles andM is the
matrix element for the particle transition from a state with the energyε and
momentumk to the state with the energyε ′ and momentumk′ upon interaction
with the potentialU � U⒧z⒭ describing the plane wall. The pressure produced
by incident particles upon the wall is related to the rate of their momentum
transfer to the wall,

p�
1
S

@

dw . qzÿ qz � k′z� kzÿ (4.42)

whereS is the wall area.
Let us consider the Lagrangian of the particle-wall interaction. The wall in

question represents a classical configuration of the phaseϑ of complex fieldϕ .
Thus we have to consider interaction of the fieldϕ with surrounding fermions
ψ . For definiteness, let’s choose Lagrangian in the form

L �
1
2

∂ϕ
2
� V⒧ ϕ ⒭ � 2ψ Rγ

µ
∂µψ L � gϕψ Rψ L � h.c. (4.43)

The Lagrangian is invariant under global chiral transformations

ψ L } ψ L exp⒧α�2⒭; ψ R } ψ R exp⒧�α�2⒭;

ϕ } ϕ exp⒧�α⒭.

This fact could be used to extract phase explicitly [83]. Namely, remind that
the fieldϕ is in the bottom of potential (4.25) i.e. has the form

ϕ � f �
A

2 exp⒧iχ⒧x⒭� f ⒭.

Substituting this value along with replacement

ψ L } ψ L exp⒧iχ⒧x⒭�2 f ⒭; ψ R } ψ R exp⒧�iχ⒧x⒭�2 f ⒭

into Lagrangian (4.43) one can easily come to an effective Lagrangian of the
phaseϑ⒧x⒭ (the fieldχ⒧x⒭ � f ϑ⒧x⒭ being treated now as dynamical variable)
and fermion fieldsψ

Le f f �
1
2
⒧∂ χ⒭

2
�

i
f
⒧∂µ χ⒭ψ Rγ

µ
ψ L �

g f
A

2
ψ Rψ L � h.c. (4.44)

In our case the fieldχ represents classical configuration (4.28) of the com-
plex field phase interacting with fermions like

L int � κ Jz∂zχ⒧z⒭; Jµ � ψ̄ γ µψ ; κ � i� f . (4.45)
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Calculating a matrix element for the particle scattering on the wall with the
transition from the initial momentumk to final momentumk′,

M �

�

k′
H

H

@

L intd
4x k
 ÿ (4.46)

we obtain

M 2
� 8⒧4π ⒭

6
κ

2Sδ
⒧2⒭
⒧Ëq ⒭k2

z
1

ch2
⒧kzdπ ⒭

. (4.47)

In deriving formula (4.47), we took into account that the laws of the energy-
momentum conservation lead to the following relationships:k′z � ù�kz; q ù

ù

ù

k′ � k � 0 according to which a nonzero contribution to the pressure is
only due to the reflected particles withk′z � �kz. Therefore, the pressure of
incident particles on the wall can be written as

p�
4

π 2κ
2
@

k2
z

ch2
⒧π kzd⒭

�

kz� k′z
� . δ ⒧ε � ε

′

⒭δ

�

k � k′
� dn⒧k⒭

V
d3k′

εε ′
(4.48)

Let us determine the distribution of the incident particles with respect to the
transverse momentumdn⒧k⒭. In the rest frame of plasma

dn0⒧k0⒭ � C exp
�E0⒧k0⒭�T�
d3k0V
⒧2π ⒭3

. (4.49)

Here and below, the subscript ’0’ denotes quantities determined in the rest
frame of plasma. Assuming the plasma temperatureT to be significantly
greater as compared to the fermion masses and normalizing it to the total
particle density,ntot ½ N⒧g*⒭T

3
ÿ ⒧N⒧g*⒭ ½ 5⒭, we obtainC � 20π

2. In
addition, it is evident that

dn⒧k⒭ � dn0⒧k0⒭; (4.50)

where the incident particle momentum in the rest frames of wall and of plasma
(in the latter frame, the wall moves at a velocityv) are related as

k0 � k ÿ

k0z � γ ⒧kz� vε⒭ ÿ

E0 � γ ⒧vkz� ε⒭ ÿ

whereγ � 1� v2 �1�2.
Integrating the pressure (4.42) with respect to the momentum of the incident

particle, we obtain

p� kz
32Cκ

2

⒧2π ⒭5
γ

@

d3k
ε 2 ⒧ε � vkz⒭

k2
z

ch2
⒧π kzd⒭

exp
 �γ ⒧ε � vkz⒭ �T� �

kz
32Cκ

2

⒧2π ⒭5
γ

@

d3k
ε 2 ⒧ε � vkz⒭

k2
z

ch2
⒧π kzd⒭

exp
�γ ⒧ε � vkz⒭ �T� . (4.51)
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This formula was derived with allowance for the Lorentz invariance of the
phase volumed3k′�ε

′. Numerical calculation of the integral in (4.51) presents
no difficulties, but the analytical estimation of the pressure produced by the
medium upon the wall are topical as well. For this purpose, note that the walls
have been formed at temperatures (4.40) and the wall thickness isd � f �2Λ2.
Therefore, for any reliable values of parameters there is a large parameter
Td �� 1, using which we may obtain a sufficiently firm estimation of the
integral. According to (4.51), the most effective scattering takes place for an
incident particle momentum ofkz » 1�π d �� T. At the same time, it is
evident thatk » ε » γ T �� kz.

Using these relationships, we may estimate the integrals in (4.51). Main
contribution comes from the first term. The final expression for the pressure
produced by the surrounding medium upon the relativistic domain wall is de-
termined mostly by the first integral and it is given by

p½
20κ

2

π 7

γ

d4
. (4.52)

This expression is valid atγ �� 1. Evidently the pressure equals zero for a
wall at rest. We can slightly modify the final formula

p½
20κ

2

π 7

γ � 1
d4 ÿ (4.53)

which is valid both for high and small velocities of the wall. This value has to
be compared with internal pressurepint of the wall with radiusR, pint ½ σ�R.
Their ratio is given by

p
pint

»

κ
2
�d4

σ�R
½ R

Λ6

f 5
.

Characteristic scale when internal and external pressures become equal is of
the order of

Rf »
f 5

Λ6
.

It means that the friction is important for walls with the sizeRf » ⒧1032
ù

�

1090
⒭GeV�1 if we limit ourselves with intervals⒧1014 ..� 1018

⒭GeV for para-
meter f and⒧1 ..� 106

⒭GeV for parameterΛ. The scaleRf is too big for any
reliable models and we could neglect the friction as it was mentioned above.

2.4 Distribution of black holes

a. Mass distribution of black holes in the Universe

In the following the size distribution of the islands is found numer-
ically. To this purpose it is necessary to study the inhomogeneities of
phase induced by fluctuations during inflation stage. It has been well
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established that for any given scalel � k�1 large scale component of
the phase valueϑ is distributed in accordance with Gauss’s law [254],
[255], [256] (see also Chapter 3)

P⒧ϑÿ N⒭ �
1

A

2πσ N
exp

"

�

⒧ϑU � ϑ⒭
2

2σ
2
N

#

. (4.54)

Here N is the number ofe-foldings before the end of inflation,ϑU is
initial phase of the Universe. This value does not depend on paramet-
ers of the model. It varies randomly in the range 0� ϑU � 2π for
distant parts of the Universe. The dispersion could be expressed in the
following manner

σ
2
N �

H2

4π 2 f 2 ⒧NU � N⒭ÿ (4.55)

In inflationary Universe the cosmological scalel corresponds to the
periodt l � Nl H�1 of inflationary stage.

Suppose that ate-fold N before the end of inflation a space volume
V⒧ϑ̄ÿ N⒭ has been filled with the phase valuēϑ. Then the condition that
a new volume filled with average phaseϑ̄ will be produced at thee-fold
N � 1 obeys the following iterative expression

∆V⒧ϑ̄ÿ N � 1⒭ � ⒧VU⒧N⒭ � e3V⒧ϑ̄ÿ N⒭⒭P⒧ϑ̄ÿ N � 1⒭ �δϑ
 . (4.56)

HereVU⒧ϑÿ N⒭ ½ e3NH�3 is the volume of the Universe atN e–fold
with average phaseϑ and�δϑ
 � σ1 � H�⒧2π f ⒭. Keeping in mind
that causally connected volume has the size» H�3 one can easily find
number of domains with phasēϑ which were produced ate-fold number
N

∆Kϑ̄⒧N⒭ � H3∆V⒧ϑ̄ÿ N � 1⒭ (4.57)

The total volume with the phasēϑ can be readily written

V⒧ϑ̄ÿ N � 1⒭ � e3V⒧ϑ̄ÿ N⒭ � ∆V⒧ϑ̄ÿ N � 1⒭. (4.58)

One can easily calculate the size distribution of domains filled with ap-
propriate value of phase in dependence ofN using iterative procedure
described by the expressions (4.56), (4.57), (4.58).

In caseϑ̄ � π we obtain distribution of those domains which are
able to be surrounded by a walls and hence collapse into BHs. As was
discussed above, mass of BH is the function ofN.

b. Correlation in space distribution of secondary black holes. Nearest
vicinity.
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We have discussed above the mechanism of massive PBH formation
in the Universe. It can be demonstrated that this model with reason-
able parameters readily provides for the formation of» 1011 massive
⒧1030

� 1040g each) black holes, what is equal to the number of galax-
ies in the visible Universe. In that analysis, we did not took into account
correlations between the formation of a massive black hole and the ap-
pearance of smaller black holes surrounding it. This correlation, being
inherent to this mechanism, is related primarily to certain features of the
above-discussed process of the formation of domains with the phases
ϑ � π see Figure 4.1. Apparently, the appearance of such domains cre-
ates prerequisites for the formation of new smaller domains inside them.
Below we determine the mass distribution of these daughter domains in
the nearest vicinity of specific BH.

Consider a region with a size of the order ofH�1 and a phase within
π � ϑ0 � π � δ (whereδ � H�2π f is the average phase jump
during theH�1 time period) formed during the inflation period as a
result of fluctuation in a certain (larger) region of space with the phase
ϑ � π . During the nexte-fold, this space domain will be divided one3

subdomains and some of them will acquire the phaseϑ1 in the interval
π � δ � ϑ1 � π . Upon the subsequent phase transition, these domains
will be separated by walls from the external region. Similar transitions,
with crossing the phaseϑ � π in the reverse direction will take place in
each subdomain during the nexte-fold. Thus, a structure of the fractal
type appears which reproduces itself at each time step in the decreasing
scale.

Let N denotes the number of subdomains formed in each step, around
which a wall may form later. Apparently, this value obeys the inequality
1 � N �� e3. In the subsequent estimates, we will assume thatN ½

2 ..� 3. Since each causally connected domain touches approximately
six neighboring domains, we can hardly expect N to be greater because
of their total number» e3

½ 20. The mass of the future black hole (if
it forms) is determined by the area of a closed surface with the phase
ϑ � π . The ratio of areas of the initial (mother) and daughter domains
is readily estimated: the initial area after a single e- fold isS0 ½ e2H�2

and the daughter subdomain area isS1 ½ H�2. Therefore, the ratio of
masses of the black holes originated from the two sequential generations
of subdomains is

M j�M j�1 ½ Sj�Sj�1 ½ e2
ÿ (4.59)
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for their relative number assumed to be

Nj�1�Nj � N. (4.60)

As it is readily seen, the number and mass of black holes appearing
upon the j-the-fold after the initial domain formation are determined by
parameters of the largest black hole genetically related to the primary
domain in which the phase exceededπ for the first time. It is evident
that

Nj ½ N j ; M j ½ M0�e
2 j . (4.61)

Excluding j from these relationships, we obtain the desired black hole
mass distribution in a cluster:

Ncl⒧M⒭ ½ ⒧M0�M⒭
1
2 ln N . (4.62)

The total mass of the cluster can be expressed through the massM0 of
the largest initial black hole:

Mtot � M0� N M1� N2M2 � ... �

M0� Ne�2M0�

�

Ne�2
�2

M0� ... � M0 1� N�e2 �1

As is seen, the total mass of the black hole cluster is only one and a
half to two times greater than the largest initial black hole mass. The
number of daughter black holes depends on the factors considered in
the next Section.

The inflationary mechanism described above leads to the occurrence
of fractal structurefractal structure of the closed walls. After the end of
inflation, as soon as the size of horizon becomes larger than the char-
acteristic size of closed walls, the walls begin to shrink. The energy
of each wall, proportional to the area of their surface, concentrates in
small spatial domains (in the following they are considered as pointlike
objects) [257]. These high density clots of energy could serve in the
following for star and/or galaxy formation [3]. Hence, according to the
given models, the distribution of stars and galaxies should carry fractal
character as well. It is important to note that the total surface of walls in
specific volume is proportional to the total energy of an objects, while
the number of walls is equal to the number of dense clots.

The arguments, used above to deduce formula (4.59), indicate that
fractal structure of domains could be produced. Denote the number of
secondary walls byN and their average size byξ R, ξ � 1�e (ξ ô� 1�e
due to a possible merging of causally disconnected subdomains with
one common wall). In each of these subdomains,N new smaller closed
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walls of sizeξ
2Rarise during the next time step. Denote by ”b” the size

of rather small walls comparing with initial one. The sizes of bigger
walls will be measured in the units of ”b”. This means that we may
terminate the process after a stepn such thata ùùù ξ

nR. The total area
of the closed walls with bigger sizes in the initial volume is the sum of
areas with closed walls of size greater thanb. The simple summation
leads to the following result for total square of the walls

S½ R2q⒧qn
� 1⒭�⒧q� 1⒭ÿ q ùùù ξ

2N . (4.63)

This expression can be written in the form

S½ ⒧R�b⒭D ÿ (4.64)

whereD is the fractal dimension. Equating these two expressions, one
obtains

D � 2�

ln

(

qq
ln⒧b�R⒭

ln ξ
�1

q�1

)

ln⒧R�b⒭
. (4.65)

This quantity is constant only when the ratioR�b is large, it is different
for q � 1 andq � 1. It can be easily verified thatD } 2 for q � 1,
while for q � 1, D } 2� 3ln⒧q⒭�ln⒧4N⒭. To get an estimate, suppose
that the number of closed domains isN ½ 4, andξ ½ 1�e. The value
of the parameterq can be easily calculated,q ½ 0.5. Hence, the fractal
dimension of the system of closed walls isD ½ 2.

So, if quantum fluctuations lead to the formation of spatial areas with
the field taking a value near a potential maximum, its further evolution
results in a system of enclosing walls. The characteristic size of the next
generations of walls differs from the previous one approximately by a
factor ofe. The fractal dimension of such system isD ½ 2.

According to this scenario, it is interesting to find the number of walls
inside an arbitrary sphere of radiusR given by

Ntot �

n

∑
i�1

Ni
� N

Nn
� 1

N � 1
½

Nn�1

N � 1
. (4.66)

By analogy with the previous calculations and using Eq. 4.66, one ob-
tains the distribution of pointlike dense objects with fractal dimension
D′ ½ lnN�ln⒧1�ξ⒭. For realistic valuesN ½ 4ÿ ξ ½ 1�e we find
D′ ½ 1.4 which differs somewhat from the valueD ½ 2 previously
obtained. This is not surprising because in the first case we measure the
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area of surfaces of walls within a certain volume while in second case
we measure the number of walls.

Of course, other mechanisms at later stages contribute to the distri-
bution and change the fractal dimension somewhat, but the model dis-
cussed gives a primordial reason of fractality in the galaxy and star dis-
tribution. Observational data indicate that the distribution of stars and
galaxies really carries fractal character. So, the number of galaxies in-
side a sphere of radiusR is N⒧R⒭ » ⒧R⒭2.2

ù

�0.2 up to the sizes of 200
Mpc [258]. The distribution of stars inside galaxies also carries fractal
character. In Ref.[259] this fractal dimension was determined by aver-
aging observational data of ten galaxies and was found to be equal to
D » 2.3.

The mechanism of fractal structure production discussed here is of
rather general nature and can find applications far beyond the case of
considered model. The production of massive black holes due to Gaus-
sian fluctuation in a framework of a model of chaotic new inflation was
discussed in [243]. Another example is based on hybrid inflation, one of
the most promising models of inflation [260, 261, 262]. In the standard
version of hybrid inflation the potential contains two fields

V � V0�
1
2

m2
ϕσ

2
�

1
2

λ1σ
2

χ
2
�

1
2

m2
ψ χ

2
�

1
2

λ2χ
4 . (4.67)

During inflation, the fieldσ rolls down along a valleyχ � 0. In the
meantime field fluctuations around the critical lineχ � 0 lead to a form-
ation of fractal structure of domains. This critical line plays the same
role as the critical pointπ in previous discussion. Just after passing the
critical point σ � m2

χ�λ1 the stateχ � 0 becomes unstable and field
χ moves (in average) to one of the new stable minima. These minima
are separated by potential maximum and we again come inevitably to
the fractal structure of domain walls. The latter are converted into black
holes after the end of inflation.

c. Correlation in space distribution of secondary black holes. Mega-
parsec scale.

One could guess that the same mechanism of the massive BH form-
ation provides the production BHs of smaller masses. Below we prove
this statement and consider space distribution of intermediate BHs around
massive one in the scale of galaxy cluster (» 10M pc).

Let M0 is the mass of most massive BH;M is mass of the BH inside
the sphere. There are three scales in our problem:R0 is a size of closed
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Figure 4.2. The form of hybrid potential. The fieldσ moves in the vicinity of critical line.
The critical point marks the beginning of classical motion to the specific minima.

wall that is converted into most massive BH in future;r is a radius of
the sphere with the most massive BH in its center andR is a size of
closed wall that is converted into BH of intermediate mass inside the
sphere. These scales correspond toe-folding numbersN0ÿ Nr andN at
the inflation stage and each of them can be expressed in terms of others.
The domain with sizer ⒧t0⒭ which will be filled by a part of galaxy
cluster was formedNr e-folds before the end of inflation. If the closed
wall gives small contribution to total energy density during early times
it expands along with the Universe expansion and we can approximately
admit

r � r ⒧Nr ÿ t⒭ � rU⒧t⒭e
Nr�NU

ÿ (4.68)

whererU⒧t⒭ is the size of the Universe. The connectionsR|} N and
R0 |} N0 are derived below.
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The value important for our consideration is the phaseϑ r of the do-
main of the sizer ⒧t⒭ at the moment of its formation at the stage of
inflation, i.e. at thee-folding numberNr . It can be determined from the
following arguments.

To the period characterized bye-folds numberN0 we have already
e3⒧Nr�N0⒭ causally disconnected areas inside the volume in question.
By assumption, only one of them contains the phaseϑm � π which
leads to formation of most massive BH. So in the considered case the
probability to have the phase equal toπ is equal to 1�e3⒧Nr�N0⒭. One
can find the value of the phaseϑ r by equating this probability to the
general expression for the probability to find specific value of the phase
ϑm⒧� π ) at the given averaged value of the phaseϑ r

1

e3⒧Nr�N0⒭
�

exp �

⒧π�ϑr ⒭
2

2δϑ2
⒧Nr�N0⒭

B

2π ⒧Nr � N0⒭
ÿ δϑ �

He

2π f
. (4.69)

Here we supposed Gaussian form for the probability distribution of the
phaseϑ

P⒧ϑ⒭ �
exp �

⒧ϑr�ϑ⒭
2

2δϑ2
⒧Nr�N⒭

B

2π ⒧Nr � N⒭
. (4.70)

From Eq. (4.69) we obtain the phaseϑ r

ϑ r � π � δϑ

C

⒧Nr � N0⒭ 6 ⒧Nr � N0⒭ � ln⒧2π ⒧Nr � N0⒭⒭ . (4.71)

This method of evaluation of the initial phaseϑ r is correct if

P⒧ϑ r � δϑ⒭ �� 1.
It is supposed from the beginning that the fluctuations of the phase are
small,δϑ �� ϑ r . This condition facilitates the estimation. The result
can be expressed as a limit one-folding

Nr � N0 �

π � ϑ r

δϑ
� 2π ⒧π � ϑ r ⒭

f
H

.

If, for example,ϑ r » π�2 and f �H » 5 the estimation givesNr � N0 �

50 . Thus we can use the expression (4.71) in wide range of parameters.
Having this value, the probability of formation of walls with smaller

masses ate-folding numberN can be obtained from expression (4.70)
as follows

W ⒧N⒭ � P⒧π ⒭ �
2π ⒧Nr � N0⒭

Nr�N0
2⒧Nr�N⒭

B

2π ⒧Nr � N0⒭
exp �

3⒧Nr � N0⒭
2

Nr � N
.

(4.72)
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Total number of the domains at this moment ise3⒧Nr�N⒭ and hence the
total number of closed walls which were originated ate-folding number
N is equal to

K⒧N⒭ � W⒧N⒭e3⒧Nr�N⒭ (4.73)

The massM of closed wall is supposed to be connected with the size of
a wall

M ½ S⒧N⒭σ . (4.74)

Next problem concerns the squaring of a wall surface just after the
wall formation. The fact is that up to now we restricted our considera-
tion by spherical walls only, what is too rough. The following discus-
sion is devoted to the problem of nonspherical walls.

By definition, a wall is determined by the phase valueϑ � π . Let we
have an approximately flat surface of size 1�H2

e at the inflation stage
with e-folding numberN. This surface will be divided onto 1�e2 parts
to next e-folding numberN � 1 . Total surface thus increases by a
factorς . Our estimations indicate thatς ½ 1.5 ..� 2. If this process lasts
for, say,Ñ e-foldings, the surface is increased byς

Ñ times in addition
to ordinary factor of expansioneÑ during inflation. This fractal-like
process stops, when the size of the wall turns to be comparable with
the wall width d ½ 1�mχ . The crinkles of sizes less thand will be
smoothed out in the period of wall formation and their effect could be
ignored in the analysis of successive wall evolution. Hence our direct
aim is to determine thee-folding Nd at which crinkles of the sized are
produced.

The scale of the crinkles produced ate-folding numberNd is approx-
imately equal the wall widthd⒧½ 1�mχ⒭

d ½ lcrinkle � rU⒧t* ⒭e
Nd�NU

� LU
T0

T*
eNd�NU . (4.75)

HereT0 andLU ½ 1028cmare temperature and size of the Universe at
modern epoch and temperatureT* is determined in expression (4.39).
Combining these formulas we obtain the laste-folding, Nd, important
for crinkles formation

Nd � NU � ln
T* d

T0LU
. (4.76)

We conclude that the mass of a wall just after its formation can be
written in the form
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Ew ½ σ 4π R⒧N⒭2 ς
N�Nd

ÿ (4.77)

whereσ � 4 f Λ2 is energy density of the wall.
Internal tension in the wall leads to its local flattening while horizon

grows at FRW stage of expansion. Released energy is converted into
kinetic energy of the wall and into an energy of outgoing waves which
are predominantly the waves of those scalar field that produces the do-
main walls. In our case it is the phaseϑ that acquires dynamical sense
as the fieldχ � f ϑ.

A typical momentumk of the waves is of order of inverse wall width
1�d, hencek » mχ and the waves are necessary semirelativistic. Their
kinetic energy decreases due to the cosmological expansion leaving
particles of massmχ in a vicinity of the wall. These particles can further
contribute to the process of BH formation, The situation can become
more complex, if the particles are unstable. In this case, products of
their decay are relativistic one and they mostly escape capture by grav-
itational field of the wall. The main immediate effect of these relativistic
products is the local heating of the medium, surrounding the region of
BH formation. Their concentration in this region and successive derela-
tivization can provide later their possible contribution into BH and BH
cluster formation.

The kinetic energy of wall that is originated from the local flattening
of crinkles also decreases due to cosmological expansion.

Owing to expansion the total size of the wall grows asR⒧N⒭ ² a.
So the current value of the wall energy changes both due to the growth
of the total wall size and due to the local flattening of wall within the
horizon. To account for the latter effect one should substitute into (4.77)
instead ofNd the value ofe-fold Nc, Nd � Nc � N that corresponds
to the current size of the horizon. Both factors lead to the respective
change in the expression (4.77).

For the estimated values ofς the increase of the wall sizeR⒧N⒭ dom-
inates over the decrease of the crinkle contribution into the current value
of Ew. The latter contribution can be significant only in the period, when
wall enters the horizon and its successive evolution proceeds so quickly
that the effects of wall flattening are not suppressed by cosmological
expansion. So, when wall enters the horizon, the effects of crinkles in-
crease the total energy of wall, as compared with the spherical case, by
the factorA» ς

α , α �
�

1, whereς ½ 1.5 ..� 2, as we estimated earlier.
The size of the wall which has crossed critical pointπ at thee-folding

numberN can be estimated in the same manner as it was done in previ-
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ous subsection. The only difference is that we have treated the surface
of the wall more accurately by accounting crinkles of different scales.

First restriction coincides with those derived in the previous Section
so that the size of wall could not be larger than

R1⒧N⒭ �
1
2

 

LUT0

C

!2

e2⒧N�NU⒭
ÿ C �

 

45
4π 3g*

!1�4
A

MP. (4.78)

Second restriction must be modified with the account for the crinkle
effects. Remind that in the previous Section this constraint followed
from the condition that the energy of wall should not dominate the en-
ergy of plasma within the horizon. This formulation assumes that if
the energy of wall, determined by the intrinsic negative pressure me-
dium inside the wall, exceeds the energy of plasma, the local expansion
would come to superluminal regime. Then the further wall evolution
would be elusive for the outer observer.

The account for crinkles made us to re-define the total energy of wall.
The wall flattening and crinkle decays transform the energy, stored in
the smaller scale crinkles, into the energy of scalar field waves and the
kinetic energy of wall. These products of wall flattening contribute to
the non-negative pressure part of the local energy density, thus prevent-
ing the superluminal expansion of the considered region.

To obtain the condition, under which superluminal expansion does
not come before the wall enters the horizon, we must now add the effect
of wall flatteningσ 4π R2

⒧A� 1⒭ to the energy of plasmaEV ½ ρ
4π

3 R3

and to compare this sum with the energy of the flattened wallσ 4π R2

within the current horizon. We obtain connection of the energy density
and the scale of the wall as

R�
3σ

ρ
⒧2� A⒭ ÿ (4.79)

if A� 2. The valueR� LU
T0
T eN�NU depends on the temperatureT.

Combining formulas written above one obtains maximal size of the
wall

Rmax� R2⒧N⒭ ½

 

π
2

90σ
g*

!1�3

⒧LUT0⒭
4�3 e

4
3⒧N�NU⒭

⒧2� A⒭�
1
3 .

(4.80)
Maximal size of a wall with phase which has crossedπ at e - folding
numberN is determined from the condition
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R⒧N⒭ � min⒧R1⒧N⒭ÿR2⒧N⒭⒭.

If A approaches 2, the value ofRmax, given by Eq. (4.80), formally
tends to infinity. It means that for sufficiently strong effect of crinkles,
corresponding toA �

�

2, wall dominance can not come, since the en-
ergy release of flattening always dominates the negative pressure energy
of flattened wall within the horizon (in the Eq. (4.79) it formally corres-
ponds to the tendency ofR to zero, whenA approaches 2, and to the
absence of solution forR at A �

�

2). The RD (or MD) regime of dom-
inance of the energy, released in flattening, implies the difference of
the expansion law within the considered region from the general expan-
sion, but, being subluminal, it continues until the whole wall enters the
horizon.

SGR: I would like very much to omit this paragraph because we
do not know the law of expansion in this region(???). So in the
case of strong crinkle effects, corresponding toA �

�

2, the second
restriction has no place and the maximal size of wall is

R⒧N⒭ � R1⒧N⒭.

It proves the values of maximal mass of BHs that we consider in the
next subsection.

The longer is the period of crinkle-decay-products dominance, the
larger is the over density in this region, as compared with the mean cos-
mological density,⒧δ ρ�ρ⒭ �� 1, when the wall enters the horizon. It
provides the separation of this region from the general expansion and
effective BH formation in it, similar to PBH formation on RD stage,
considered by [69] (see for review [71, 3]). The account for this ef-
fect needs special study, however, it can only slightly modify (within a
factor of A) the numerical values in BH distributions, presented in the
following subsection.

d. Primordial black hole cluster seeds
for galaxy formation

The clusters of BHs considered in previous sections seems could be a
trigger mechanism for initial baryon fluctuations. In this section we dis-
cuss new model of galaxy formation, offered in [80, 81]. It is based on
the prediction of closed wall defects from the succession of symmetry
breaking phase transitions in the inflationary Universe and on the form-
ation of massive primordial black holes in the result of collapse of such
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closed walls. The natural consequence of this mechanism is the spatial
correlation between the black holes. Such correlation leads to formation
of primordial black hole clusters. The energy of scalar field oscillation
from small scale wall decays is shown to be localized around the black
hole cluster. The complex of black hole clusters and concentrated en-
ergy of scalar field oscillations provides the effective primordial seeds
for matter condensation and galaxy or/and cluster of galaxy formation.

The necessary ingredient of our mechanism is the existence of poten-
tial with several minima. As a working example we have chosen the
same ’mexican hat’ potential with small tilt (4.24), (4.25).

Absolute minima are disposed in pointsϕ � f ÿϑ � 0ÿ 2π ÿ 4π ....
Local maxima are in pointsϕ � f ÿϑ � π ÿ3π .... Values of the paramet-
ers f » 1013GeVÿΛ � 1 ..�108GeVdo not contradict any cosmological
or physical constraint, provided that the sufficiently effective mechan-
ism of field oscillations decay is present and that the large scale fluctu-
ations are compatible with the observed level of CMB fluctuations (see
the discussion of the latter point in the next Chapter). During inflation,
quantum fluctuations force the phaseϑ inside some space domains to
overcome local maxima. After the end of inflation these domains will
be surrounded by closed walls which could collapse into BH.

Mass distribution of such BH for specific values of the parameters is
represented in Figures 4.3, 4.4, 4.5.

Total mass of such a BH equals» 5 . 1053g what is comparable
with the baryon mass in the visible part of the Universe. In the preced-
ing sections, we considered only the principal possibility of the forma-
tion of domain walls connecting neighbouring vacuum states. The nu-
merical calculations were performed for the following values of para-
meters (which are consistent with the observed anisotropy in the cos-
mic microwave radiation): the Hubble constant at the end of inflation,
H � 1013GeV; Lagrangian parameters,f » 5H andΛ varies from 1
to 107 Gev. The initial phase, at which the visible part of the Universe
is formed by the timetU ½ 60H�1 to the end of inflation, controls
the number of domains and, accordingly, the number of closed walls
formed after inflation. This random value, not related to the Lagrangian
parameters, must be selected taking into account the observational re-
strictions on the abundance of black holes in the Universe. We will
use that numerical valueϑU , which ensures a sufficiently large number
of massive black holes, while the presence of numerous smaller black
holes does not contradict experimental restrictions.
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Figure 4.3. Mass distribution of black holes in the visible part of the Universe. Total mass
of BHs equals 5.9 . 1053gram. Parameters of the model:Λ � 103 GeV, f � 5 . 1013 GeV,
ϑU � 0.55π

As it is seen, the PBH masses fall within the range from 1016
�1042g

depending on chosen parameters. The total mass of black holes amounts
to» 1% ..� 100% of the contemporary baryonic contribution.

The results of calculations are sensitive to the value of the parameters
f , Λ and the initial phaseϑU . As theΛ value decreases to» 1GeV,
still greater PBHs appear with a mass of up to» 1042. A change in the
initial phase leads to sharp variations in the total number of black holes.

Sharp bends of the curves in the Figures are conditioned due to dif-
ferent mechanisms responsible for small and large wall formation and
discussed above.

Thus we have BH with different masses which are initially distributed
in the space of the Universe. The parameters of the model in Figure 4.4
are chosen in such a way that average distance between most massive
BH,

�

103
� 104

�

M
þ○

, is about severalM pc. The latter is a scale of
galaxy clusters.

Figures 4.3, 4.4, 4.5 represent examples of mass distribution of un-
correlated BHs. Each of such a BH being formed gives opportunity for
production of smaller BHs. Using formulas (4.68), (4.73) and (4.74)
one can calculate desired distribution of intermediate BH in the vicinity
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Figure 4.4. Mass distribution of black holes in the visible part of the Universe. Total mass
of BHs equals 3.5 . 1055gram. Parameters of the model:Λ � 1 GeV, f � 5.3 . 1013 GeV,
ϑU � 0.67π

Figure 4.5. Mass distribution of black holes in the visible part of the Universe. Total mass
of BHs equals 3.6 . 1056gram. Parameters of the model:Λ � 107 GeV, f � 6 . 1013 GeV,
ϑU � 0.55π
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Figure 4.6. Total mass of black holes within the sphere of radiusr and most massive BH in
the center. Parameters of the model:Λ � 103 GeV, f � 5 . 1013 GeV

of most massive one. The distribution of such kind is represented in
Figure 4.6. This BH cluster contains from the beginning» 1022 BH of
smallest masses about» 10�11M

þ○

. There are massive BH with mass
» 106M

þ○

. Total mass of the BH in the cluster is» 5 . 1013M
þ○

and is
comparable with a mass of a baryon component in galaxy clusters. The
successive processes of merging could increase the masses of remain-
ing BH and decrease their number. It is important to note that closed
walls of smaller sizes are vanished by radiating energy into surrounding
media. This energy contributes to the total mass of the galaxy clusters
if the field is stable and heats surrounding media by decay products in
the case of unstable field.

We investigated in details primordial spatial distribution of black holes.
It was shown that intermediate mass BH ( in the range 10�11 ..� 106 M

þ○

) could concentrate around massive one in the scale of several Mpc.
The total mass of a group of these primordial BH is comparable with a
mass of ordinary galaxy cluster. Number of such a groups coincides ap-
proximately with a number of galaxy clusters in the modern epoch for
chosen parameters. Their formation begins at very early stage which
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is characterized by the temperatureT*
»

B

MPmχ » 105GeV and
for the biggest walls may continue even after the period of Big Bang
nucleosynthesis. Being compatible with the constraints on the average
primordial light element abundance and with the averaged restrictions
on the distortions of the CMB black body spectrum, the formation of
PBH clusters around the most massive BH may lead to local peculi-
arities of pre-galactic chemical composition and to specific effects in
the spectrum, angular distribution and polarization of small scale CMB
fluctuations, accessible to the observational test. After recombination
of hydrogen at the modern matter-dominated stage baryons are influ-
enced by gravitational potential of primordial BH group what facilitates
galaxy formation. The proposed model can offer the alternative to the
standard picture of slow growth of baryon density fluctuations to pro-
duce galaxies. In any case it brings the new element into the theory of
large scale structure formation.

Thus, our calculations confirm the possibility of formation of the
clusters of massive PBHs (» 103M

þ○

and above) in the early pre-
galactic stages of cosmological evolution. These clusters represent the
fractal structure of localized strong nonlinear energy density fluctu-
ations around which increased baryonic and (cold or warm) dark matter
density may concentrate in the subsequent stages, followed by the evol-
ution into galaxies.

3. Discussion

This chapter was devoted to the new phenomena in the theory of large
scale structure and galaxy formation, arising as cosmological impact of
particle theory. The new mechanism is offered for the formation of
protogalaxies, which is based on the cosmological inferences of the ele-
mentary particle models predicting nonequilibrium second order phase
transition in the inflation stage period and the domain wall formation
upon the end of inflation. The presence of closed domain walls with the
size markedly exceeding the cosmological horizon in the period of their
formation leads to the wall collapse in the postinflation epoch (when the
wall size becomes comparable with the cosmological horizon), which
results in the formation of massive black hole clusters that can serve as
nuclei for the future galaxies.

Results of calculation of the black hole mass distribution are compat-
ible with the available observational data. The number of black holes
with M » 103 ..�104M

þ

P( and above) is comparable with the number of
Galaxies in the visible part of the Universe. A mechanism of deceler-
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ation of the wall motion is considered and it is shown that this process
does not affect the dynamics of collapse of supermassive walls.

Development of the proposed approach gives ground for a principally
new scenario of the galaxy formation in the model of Big Bang Uni-
verse. Traditionally, the hot Universe model assumes a homogeneous
distribution of matter on all scales, whereas the appearance of observed
inhomogeneities is related to the growth of small initial density perturb-
ations. However, an analysis of the cosmological inferences of the the-
ory of elementary particles indicates the possible existence of strongly
inhomogeneous primordial structures in the distribution of both the dark
matter and baryons. These primordial structures represent a new factor
in theory of galaxy formation.

Topological defects such as the cosmological walls and filaments,
primordial black holes, archioles in the models of axion cold dark mat-
ter [77, 78, 3], and essentially inhomogeneous baryosynthesis (leading
to the formation of antimatter domains in the baryon-asymmetric Uni-
verse) [82, 79, 264, 3] offer by no means a complete list of possible
primary inhomogeneities inferred from the existing elementary particle
models. The proposed approach discloses a number of interesting as-
pects in this direction.

Indeed, most of the above mentioned phenomena can be naturally
described with the use of a simple nambu-Goldstone model, applied to
different conditions in the inflationary Universe.

Thermal and non-thermal post-inflationary U(1) breaking phase trans-
itions lead in this model to primordial large scale nonhomogeneity in the
distribution of energy density of coherent oscillations of stable scalar
field – to the archiole structure. Non-thermal phase transitions on infla-
tionary stage can result in spikes in the spectrum of density fluctuations.
Fluctuations of phase on inflationary stage after such transition can res-
ult in closed wall defects.

In the latter case, the model provides for a possibility of the quant-
itative analysis of correlations in the formation of massive PBHs and
the primary inhomogeneity of the dark matter and baryons. Origin-
ally inherent in this mechanism is the inhomogeneous phase distribu-
tion which eventually acquires (similar to what takes place in the in-
visible axion cosmology) a dynamical sense of the initial amplitude of
the coherent oscillations of a scalar field. Irrespective of the efficiency
of dissipation of the energy of these oscillations, the regions of closed
wall formation must be correlated with the regions of maximum energy
density of the dark matter. If these oscillations are not decaying, their
energy density may provide for the contemporary dark matter density.
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Inhomogeneity in the initial amplitude of these oscillations would then
imply an inhomogeneity in the initial energy density and, hence, the re-
gions of black hole formation will become the regions of increased dark
matter density. Qualitatively similar effect (albeit not as pronounced)
takes place in the dissipation of coherent oscillations at the expense
of particle production. An increase in the oscillation energy density
transforms into a local increase in the density of dark matter particles
produced in this region.

Thus, development of the proposed approach may lead to a number
of interesting scenarios of initial stages in the formation of protogalax-
ies, depending on the selection of particular elementary particle models
and their parameters. We continue to discuss these models in the next
chapters.





Chapter 5

BARYON ASYMMETRICAL UNIVERSE
WITH ANTIMATTER REGIONS

The statement that our Universe is baryon asymmetrical is a quite firmly
established observational fact, being one of the cornerstones of contemporary
cosmology (see review in [3]). Indeed, if large regions of matter and antimatter
co-exist now, the annihilation would take place at the borders of these regions
being the source of enormous gamma radiation that is not observed. If the typ-
ical size of such a domain structure was small enough, domains would have
annihilated completely. Then the energy released by the annihilation would
result, depending on the period of annihilation, in diffuseγ –ray background,
in distortions of the spectrum of the cosmic microwave radiation or in pecu-
liarities of light element abundance, neither of which is observed (see [304]
for review). Recent analysis of this problem [263] for baryon symmetric Uni-
verse claimed that the size of domain regions should exceed 1000 Mpc, being
comparable with the modern cosmological horizon. It therefore seems more
plausible that the Universe is fundamentally matter–antimatter asymmetric.

However the arguments used in [263] do not exclude the case when the Uni-
verse is composed almost entirely of matter with relatively small insertions of
primordial antimatter. Thus we may expect the existence of macroscopically
large antimatter regions in the Universe that differs drastically from the case
of baryon symmetric Universe. We call the region filled with antimatter in
the baryon asymmetrical Universe, as antimatter island. Of course the exist-
ence of antimatter islands is not the rigorous requirement of baryosynthesis,
but natural modification of baryogenesis scenarios will result in formation of
domains with different sign of baryon charge (see for review [264] and [3]).
The principal possibility of appearance of antimatter domains as the profound
signature of nonhomogeneous baryosynthesis was first put forward in [82].

The only condition, which is necessary to satisfy, is that the amount of anti-
baryons within antimatter islands must be small comparing to the total baryon
number of the Universe. At the first glance it is not difficult to obtain some
amount of domains with antimatter, if we simply suppose that the C–and CP–

89
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violation have different sign in different space regions. This may be achieved,
for example, in models with two different sources of CP–violation, explicit
and spontaneous [265] one. However, the processes, involving spontaneous
CP– violation, appear as the result of first or second order phase transition in
the early Universe. This implies that any primordial antimatter islands should
be too small [264]. For example, if they are formed in the second order phase
transition their size at the moment of formation is determined by so called
Ginzburg temperaturel i »ù 1�⒧λTc⒭, whereTc is the critical temperature at
which the phase transition happens andλ is the self-interaction coupling con-
stant of a field which breaks CP symmetry [265]. In this case different do-
mains would expand together with the Universe and now their sizes would be
l0 »ù l i⒧Tc�T0⒭ � 1�⒧λT0⒭ »ù 10�21pc�λ, whereT0 is the present temperature
of the background radiation.

On the other hand it has been revealed [266] that the average displacement
of the antimatter domain’s boundary caused by annihilation with surrounding
matter is about 0.5pcat the end of radiation dominated (RD) epoch. Therefore
only primordial antimatter island, having initial size up to 0.5pc or more at
the end of RD stage, survives to the contemporary epoch and in the case of
successive homogeneous expansion has the modern size»

ù 1kpcor more. Any
primordial antimatter islands with scale less then critical survival sizelc »ù

1kpcat contemporary epoch must be eaten up by annihilation processes. Thus,
it is the serious problem for models with thermal phase transition to provide
the size of primordial antimatter islands exceeding the critical survival sizelc

in order to avoid total annihilation.
It was first shown in [267] that the problem of formation of sufficiently

large antimatter islands in the result of nonhomogeneous baryosynthesis im-
plies with necessity some reflection of inflationary stage. In this Chapter we
present the issue for nonhomogeneous baryosynthesis in inflationary Universe
in which the relationship between the nonhomogeneity of baryosynthesis and
inflation has the manifest form.

The proposed approach is based on the mechanism of spontaneous baryo-
genesis [264]. This mechanism implies the co-existence with inflaton of com-
plex scalar field carrying baryonic charge. The phase of this additional field has
initially arbitrary value along the valley of its potential. The baryon/antibaryon
number excess is produced, when due to a small tilt of potential, the phase
moves to its minimum.

It is supposed that the vacuum energy responsible for inflation is driven by
a scalar inflaton field, and additional complex field coexists with the inflaton.
Due to the fact that vacuum energy during inflation period is too large, the tilt
of potential is vanishing. This implies that the phase of the field behaves as
ordinary massless Nambu–Goldstone (NG) boson. Owing to quantum fluctu-
ations of massless field at the de Sitter background [251, 51, 256, 254, 255]
the phase is varied in different regions of the Universe. When the vacuum
energy decreases the tilt of potential becomes topical, and pseudo Nambu–
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Goldstone (PNG) field starts to oscillate. As the field rolls in one direction
during the first oscillation, it preferentially creates baryons over antibaryons,
while the opposite is true as it rolls in the opposite direction. Thus to have
baryon asymmetric Universe as a whole one must have the phase sited in the
point, corresponding to the positive baryon excess generation, just at the be-
ginning of inflation (when the modern Universe size is leaving the horizon).
Then subsequent quantum fluctuations may adjust the phase at the appropriate
position causing the antibaryon excess production. If it takes place not too late
after the inflation begins, the size of antimatter islands may exceed the critical
surviving sizelc.

1. Phase distribution for NG field at the inflation
period

We start our consideration with the discussion of evolution ofU⒧1⒭ sym-
metric scalar field at the inflation epoch with a pseudo Nambu–Goldstone tilt
emerging after the end of exponential expansion of the Universe. TheU⒧1⒭
symmetry is supposed to be associated with baryon charge. It is shown that
quantum isocurvature fluctuations lead in natural way to baryon asymmet-
rical Universe with antibaryon excess regions. The range of parameters is
calculated at which the fraction of Universe occupied by antimatter and the
size of antimatter regions satisfy the observational constraints and lead to ef-
fects, accessible to experimental search for antimatter.U⒧1⒭ symmetric scalar
field coexists with inflaton at the inflation epoch. The quantum fluctuations
of such field during the inflation stage cause the isocurvature perturbations
for the phase marking the Nambu–Goldstone vacuum. The size distribution
of domains containing the appropriate phase values, caused by isocurvature
fluctuations, coincide with the size distribution of antimatter islands.

Thus to estimate the number density of antimatter regions with sizes exceed-
ing the critical survival sizelc in the baryogenesis model under consideration
we have to deal with long – wave quantum fluctuations of the NG boson field
in the period of inflation. Various aspects of this question have been examined
in the numerous papers [268, 247, 269, 270, 260, 57, 271, 272, 256, 255, 254]
in the connection with cosmology of invisible axion. Such quantum fluctu-
ations could be a reason of axionic topological defects or could be reprocessed
into isocurvature density perturbations.

The effective potential of the complex field is taken in the usual form

V⒧χ⒭ � �m2
χ

χ * χ � λχ ⒧χ
* χ⒭

2
� V0ÿ (5.1)

where constantV0 was added to make the potential (5.1) non-negative. The
field χ can be represented in the form

χ⒧ϑ⒭ �
f
A

2
exp

 

iϑ
f

!

. (5.2)
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TheU⒧1⒭ symmetry breaking implies that the radial component of the field
χ acquires a nonvanishing classical part,

f � mχ�

C

λχ ÿ

and the angular fieldϑ in Eq. (5.2) becomes a massless NG scalar field with a
vanishing effective potential,V⒧ϑ⒭ � 0. In this case,χ has the familiar Mex-
ican hat potential, and the vacuum is placed in a circle of radiusf . Throughout
the present Chapter we’ll work with dimensionless angular fieldθ � ϑ� f .

We concern here with the possibility to store appropriate phase value in
the domain of size exceeding the critical survival size. Such value of phase
plays role of starting point for clockwise movement, which is going to generate
antibaryon excess when the tilt of potential (5.1), breakingU⒧1⒭ explicitly, will
turn to be topical.

We assume that the Hubble constant varies slowly during inflation. Also
we use well established behaviour of quantum fluctuations on the de Sitter
background [255], [256],[254] (see Chapters 3 and 4). It implies that spatial
size of vacuum fluctuations of every scalar field grows exponentially in the
inflating Universe. When the wavelength of a particular fluctuation becomes
greater thanH�1, the average amplitude of this fluctuation freezes at some
nonzero value because of the large friction term in the equation of motion of
the scalar field, whereas its wavelength grows exponentially. In the other words
such a frozen fluctuation is equivalent to the appearance of classical field that
does not vanish after averaging over macroscopic space intervals. Because
the vacuum must contain fluctuations of every wavelength, inflation leads to
the creation of more and more new regions containing the classical field of
different amplitudes with scale greater thanH�1. The average amplitude of
such fluctuations for NG field generated during each time intervalH�1 is equal
to [251, 51] (see also the previous Chapter)

δϑ �
H
2π

. (5.3)

During this time interval the Universe expands by a factor ofe. Since the NG
field (the PNG tilt is vanishing yet) is massless during inflation period, one can
see that the amplitude of each frozen fluctuation is not changed in time at all
and the phases of each wave are random. Thus the quantum evolution of NG
field looks like one–dimensional Brownian motion [57, 273] along the circle
valley corresponding to the bottom of NG potential. It means that the values
of the phaseθ in different regions become different, and the corresponding
variance grows as [256, 254, 255]

�⒧δ θ ⒭
2

 �

H3t
4π 2 f 2

. (5.4)

As a result, the dispersion grows as
B

�⒧δ θ ⒭2
 � H
2π f

A

N, whereN is the

number ofe–folds. In the other words the phaseθ makes quantum stepH2π f at
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eache–fold, and the total number of steps during time interval∆t is given by
N � H∆t.

Let us consider the scalek�1
� H�1

0 � 3000h�1M pc which is the biggest
cosmological scale of interest. The Universe is assumed to be baryon asym-
metric in the scale which leaves the horizon at the correspondinge–fold N �

Nmax. On the other side this scale is the one entering the horizon now, namely
amaxHmax� a0H0, where the subscript "0" indicates the contemporary epoch.
This implies that:

Nmax� ln
aendHend

a0H0
� ln

Hend

Hmax
. (5.5)

Here the subscript "end"denotes the epoch at the end of inflation period. The
slow-roll paradigm assumes slow variation ofH during inflation, so that the
last term of (5.5) is usually�

�

1. The first term depends on the evolution of
scale factora between the end of slow-roll inflation and the present epoch.
Assuming that inflation ends by short matter dominated period, which is fol-
lowed by RD stage lasting until the present matter dominated era begins, one
has [274]

Nmax� 62� ln
1016GeV
A

HendMP
�

1
3

(

A

HendMP

ρ
1�4
reh

)

ÿ (5.6)

whereρreh is energy density determined at the reheating temperatureTreh,
when the RD stage is established. WithHend»ù 1013GeVand instant reheating
this givesNmax½ 62, the largest possible value.

In local supersymmetric models to avoid gravitino overproduction [275,
276] Treh should be much smaller, even as small asTreh � 4 . 106GeV, as it
follows from the analysis [277] of6Li production by gravitino decay products
(see [3] for review). there is a long MD stage after the end of inflation until
the heating of the Universe the value ofNmax should be even less, than 58. On
the other hand, the constraints onTreh, following from the analysis of primor-
dial gravitino effects, imply the realization of a model of supergravity, coupled
with matter, being, thus, model dependent. Moreover, even in the case of low
Treh, Nmax can be still 62, if the inflaton field oscillations provide RD stage
after the end of inflation (see Chapter 2). With all these reservations we’ll use
further Nmax� 60.

The smallest cosmological scale of antimatter islands that is survived after
annihilation isk�1

c � lc ½ 8h2kpc [266]. It is 9 order of magnitude smaller
thanH�1

0 , that corresponds to

Nc ½ Nmax� 13� 3 ln h½ 45. (5.7)

Thus thelc should left horizon at 45e–folds before the end of inflation to
provide the survival of the corresponding domain in future.

Let us imagine that the phase valueθ � 0 corresponds to North Pole of
NG field circle valley, andθ � π corresponds to South pole (see Figures 4.1,
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Figure 5.1. Mexican hat potential, the view from above.

5.1). The phase grows along the anticlockwise direction, and the bottom of
PNG potential is located at the North Pole of circle. It will be shown below
that the antibaryon production corresponds to the regions (marked as ’AB’ in
the Figure 5.1) that would contain phase values that correspond to anticlock-
wise rolling of PNG fieldϑ during the first half-period of oscillation. Baryon
production should take place, if the fieldϑ rolls clockwise toward the North
pole of tilted potential just after the first oscillation began. This area is marked
as ’B’ in the Figure 5.1

Now we are able to perform preliminary estimation of the fraction of volume
of the Universe containing antimatter islands. According to previous paragraph
to ensure that the Universe would be baryon asymmetric as a whole with the net
baryon charge, being positive, it is necessary to suppose that the phase average
valueθ � θU within the biggest cosmological scale of interest, emerging at
the Nmax � 60 e–folds before the end of inflation, is located in the range
0ÿπ . The θU is the starting point for Brownian motion of the phase value

along the circle valley during inflation. As it has been mentioned above, the
phase makes Brownian stepδ θ �

H
2π f at eache–fold. Because the typical

wavelength of the fluctuationδ θ , generated during such step, is equal toH�1,
the whole domainH�1, containingθU , after onee–fold effectively becomes
divided ontoe3 separate, causally disconnected, domains of radiusH�1. Each
domain contains almost homogeneous phase valueθ 59 � θU ù� δ θ . In half
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of these domains the phase evolves towardπ (the South Pole) and in the other
domains it moves toward zero (the North Pole). One should require that the
phase value reaches the valuesπ or 0 during first 15 steps. Only in this case the
antimatter islands would have the size larger, thanlc, and they would survive
up to the modern era. It means that at least one of the two following conditions
must be satisfied

θ 60 �
�

π �
15H
2π f

ÿ (5.8)

θ 60 �
�

15H
2π f

.

Consider initially the case of exact equalities in the expression (5.8), when the
main part of antimatter is contained in the domains with antimatter of sizelc.
The number of domains containing the equal values of phase at the 45e–folds
before the end of inflation satisfies the following expression

n45 ½ ⒧e
3
�2⒭15

½ 1015. (5.9)

In the case of the second inequality in (5.8) this value represents the number of
islands with extremely dilute antimatter content because of the phaseθ being
almost zero. To obtain more or less dense antimatter islands we have to select
those domains which move away from the phaseθ � 0. The probability that
every domain of sizelc would not be separated at the nexte–fold onto e3

domains with size one order of magnitude lower, thanlc, and with different
sign of the phaseθ is given by Ps ½ ⒧1�2⒭e

3
½ 10�6. Thus the number

of domains serving as the prototypes for antimatter islands of sizelc can be
estimated as follows

n̄� n45Ps ½ 109. (5.10)

The same estimation is valid in the case of the first inequality in (5.8). The
probability Ps accounts in this case for the non-division of high density anti-
matter domain with the sizelc onto smaller domains of the different baryon
charge. Otherwise, the annihilation of such smaller size domains with the op-
posite baryon charge can prevent the domain’s survival.

There are about 1011 galaxies in the observed part of the Universe. Thus
according to (5.10) we reveal that 1% of all galaxies contains the region of
size lc filled with antimatter of highest possible antibaryon density, if theθ 60

coincides with the first inequality (5.8), or of the lowest one in the case, if the
second inequality is held.

We can find the size distribution for antimatter islands as well. To this end it
is necessary to study the inhomogeneities of phase induced by (5.3). It has been
well established that for any given scalel � k�1 large scale component of the
phase valueθ is distributed in accordance with Gauss’s law [251, 51, 57, 273].
The quantity which will be especially interesting for us is the dispersion (5.4)
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for quantum fluctuations of phase in the period fromk � H�1 to kmin � l�1
max

(where the biggest cosmological scalelmax corresponds to 60e–folds). This
quantity can be expressed in the following manner

σ
2
l �

H2

4π 2

k
@

kmin

d ln k �
H2

4π 2 ln
lmax

l
�

H2

4π 2 f 2 ⒧60� Nl ⒭ÿ (5.11)

whereNl is the number ofe–folds for any scalel . This means that the distri-
bution of phase has the Gaussian form

P⒧θ l ÿ l⒭ �
1

A

2πσ l
exp

"

�

⒧θ 60� θ l ⒭
2

2σ
2
l

#

. (5.12)

Suppose that ate–fold Nt before the end of inflation the volumeV⒧θ̄ ÿ Nt⒭ has
been filled with phase valuēθ . Then at thee–fold Nt�∆t � Nt � ∆N the
volume filled with average phasēθ satisfies the following iterative expression

V⒧θ̄ ÿ Nt�∆t⒭ � e3V⒧θ̄ ÿ Nt⒭�⒧VU⒧Nt⒭�e3V⒧θ̄ ÿ Nt⒭⒭P⒧θ̄ ÿ Nt�∆t⒭σ Nt�∆t ÿ (5.13)

here theVU⒧Nt⒭ ½ eNt H�1 is the volume of the Universe atNt e–fold. With
the use of expression (5.13) one can calculate the size distributions of domains
filled with appropriate value of phase numerically. In order to illustrate quant-
itatively the number distribution of domains, we present here the numerical
results for specific values ofθU ù

ù

ù θ 60 � π�6 andh � H
2π f � 0.026. The

table contains the results as concerns the number of domains containing anti-
matter with average phasēθ �

�

0 ate–fold numberN,

Number ofe–fold Number of domains Size of domain
59 0 1103M pc
55 5.005. 10�14 37.7M pc
54 7.91 . 10�10 13.9M pc
52 1.291. 10�3 1.9M pc
51 0.499 630kpc
50 74.099 255kpc
49 8.966 . 103 94kpc
48 8.012 . 105 35kpc
47 5.672 . 107 12kpc
46 3.345. 109 4.7kpc
45 1.705. 1011 1.7kpc

The fraction of the Universe filled with phasēθ appears to be equal to 7.694.
10�9.

One can see that the size distribution of domains is peaked at smallest value.
Assuming thath is the free parameter we can easily obtain several regions with
a negative phasēθ and sizes larger or equal to the critical surviving size. In
spite of sufficiently large total number of antimatter islands, only the small part
of our Universe could be occupied by them.



Baryon asymmetrical Universewith antimatter regions 97

Up to now we did not distinguish two rather different cases when the phase
crosses South and North Poles. The only similarity is that both cases lead
inevitably to domains with antimatter. Meantime, the final picture looks rather
different in these cases.

If we came to negative phase from the minimum of the potential (North
Pole), a boundary between baryon and antibaryon areas is mostly very wide.
It takes place because the phaseθ � 0 corresponds to zero baryon charge. So
the average antibaryon density in domains, originated from the crossing of the
North Pole, is very low. Only small amount of more dense antimatter domains
(with the internal density approaching the average baryon density) are formed
due to Gaussian tail in the amplitude distribution of fluctuations.

Another situation takes place if the phase reaches the valuesθ � π . First
of all, the matter-antimatter boundary will be very sharp and strong annihila-
tion would take place after the end of inflation. Secondly, this boundary must
contain a field wall according to discussion in previous Chapter. Estimations
revealed that if the antimatter domain is large enough for to be survived in
future, the wall appears to be unacceptably massive.

2. The problem with large scale fluctuations
This mechanism suffers also from another shortage. Indeed, fluctuations

of the amplitude of the phaseθ must be not smaller than» 0.01 to obtain
substantial amount of antimatter domains. In this case the first several phase
fluctuations, corresponding to the modern scales from galaxy superclusters to
the modern horizon, are too large to be unobservable. They should have created
fluctuations of CMB temperature at the level, exceeding the observed one. A
possible way to suppress these large scale fluctuations and hence to improve
the situation is to take into account the interaction of theχ - field with inflaton.

Consider this interaction in the form (ϕ - inflaton,χ - complex field)

V⒧ϕ ÿ χ⒭ � λ⒧ χ
2
� f 2

�2⒭2 � g χ
2
⒧ϕ � cMP⒭

2
ÿ (5.14)

whereλÿ g and c are parameters of the potential. This potential having the
same form of the Mexican hat possesses minimum at

χ ù

ù

ù fe f f⒧ϕ⒭ �

D

f 2
�

g
λ
⒧ϕ � cMP⒭

2. (5.15)

Position of the minimum is not a constant now, but it is strongly dependent
on the classical valueϕ of the inflaton. This value is ruled by classical equa-
tions of motion and varies in the range⒧MP

..� 10MP⒭. Average amplitude of
fluctuations of the phaseθ of the fieldχ is inversely proportional to the scale
fe f f⒧ϕ⒭.

Inflaton varies with time as

ϕ⒧t⒭ � ϕU �
mϕ MP

2
A

3π
t (5.16)
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for the quadratic potentialU⒧ϕ⒭ � m2
ϕ

ϕ
2
�2. In this case wemϕ

»

�

H at the
end of inflation. Thus,N e–foldings after our Universe was born inflaton has
the value

ϕ � ϕ N � ϕU �
MP

2
A

3π
N. (5.17)

Now effective scalefe f f (5.15) can be represented in the form

fe f f⒧N⒭ � f

E

1�
g
λ

M 2
P

f 2 ⒧

ϕU

Mp
� c⒭ �

N

2
A

3π

2

. (5.18)

Denoting⒧ ϕU
Mp
� c⒭ ùùù N f

2
A

3π
one comes to final expression for effective energy

scale

fe f f⒧N⒭ � f

E

1�
g

12π λ

M 2
P

f 2 ⒧N f � N⒭2. (5.19)

This expression has important property. Indeed, there is an apriori large para-
meter M 2

P� f 2
» 1010 and for reasonable relation between the parameters

g and λ one can reveal that the valuefe f f⒧N⒭ has very sharp minimum at
fe f f⒧N f ⒭ � f . Immediate consequence is that the amplitude of the phaseθ

fluctuations

�δ θ 
 �
H

2π fe f f⒧N⒭
(5.20)

increases sharply in the vicinity of thee–fold numberN � N f .
In that way the problem of large scale fluctuations could be resolved. In

addition, we acquire an interesting feature of the fluctuations – their amplitude
is large only ate–folds arounde–fold numberN f . As the result, we come to
very tight size distribution of the antimatter domains. To give some idea about
the values, let’s choose numerical values of parameters as follows: initial phase

θU � π�8; parameterA � 5 ⒧A ùùù g
12π λ

M 2
P

f 2 ⒭ andN f � 15. Using iteration

procedure (5.13), one can easily find that there are 1.3.1010 antimatter domains
with antibaryon density equal to the average baryon density in our Universe
and with the size about 1021cm. The distribution is very sharp so that actually
the domains of another sizes are virtually absent. Antibaryon islands with
lower antibaryon density has peak at the same size, but their abundance is
about 1016 in the visible part of the Universe. Would this situation takes place,
our Universe contains one dense antimatter domains per ten galaxies. Such
domain is able to form globular cluster of stars made from antimatter. Low
density antibaryon domains could not participate galaxy formation and should
be spread in the intergalactic space. The strategy of the experimental search for
both low and high density antimatter areas in the modern Universe is discussed
in Chapter 6.
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3. Spontaneous baryogenesis mechanism
Another important element of our scenario of inhomogeneous baryogen-

esis contains the conversion of the phaseθ into baryon/antibaryon excess in
the considered mechanism of spontaneous baryogenesis [278, 279]. The basic
feature of this mechanism is that the sign of baryon charge created by relaxa-
tion of energy of PNG field critically depends on the direction that the phase
is rotated toward the minimum in the bottom of slightly tilted Mexican hat po-
tential. By this reason domains containing the phase valuesθ � 0 or θ � π

convert into the domains with antimatter, when the potential gets the tilt and
PNG field moves to its minimum.

One of reasonable issue to the spontaneous baryogenesis has been con-
sidered in the work [83]. Let us briefly discuss it. It was assumed that in
the early Universe a complex scalar fieldχ coexists with inflatonφ respons-
ible for inflation. This fieldχ has non vanishing baryon number. The possible
interaction ofχ that violates lepton number can be described by the following
Lagrangian density

L � �∂µ χ *∂
µ

χ � V⒧χ⒭ � iQ̄γ
µ

∂µQ� i L̄γ
µ

∂µ L �

(5.21)

mQQ̄Q�mL L̄L � ⒧gχQ̄L� h.c.⒭.

The fieldsQ and L could represent heavy quark and lepton coupled to the
ordinary quark and lepton matter fields. Since fieldsχ andQ possess baryon
number, while the fieldL does not, the couplings in Lagrangian (5.21) violate
lepton number [83]. TheU⒧1⒭ symmetry that corresponds to baryon number
conservation is expressed by the following transformations

χ } exp⒧iβ⒭χ ÿ Q} exp⒧iβ⒭Qÿ L } L. (5.22)

The effective Lagrangian density forθ , Q andL eventually has the following
form after symmetry breaking

L � �
f 2

2
∂µθ ∂

µ
θ � iQ̄γ

µ
∂µQ� i L̄γ

µ
∂µ L (5.23)

�mQQ̄Q�mL L̄L � ⒧
g
A

2
f Q̄L� h.c.⒭ � ∂µθ Q̄γ

µQ.

At the energy scaleΛ �� f , the symmetry (5.22) is explicitly broken and
the Mexican hat circle gets a little pseudo NG tilt described by the following
potential

V⒧α⒭ � Λ4
⒧1� cosθ ⒭. (5.24)

This potential, of height 2Λ4, has minima atα � θ f � 2π N f with N in-
teger or zero, and so it has the unique minimumα � θ f � 0 at small amp-
litudes of the fieldα. Of course, in the most cases, the potential (5.24) is
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the lowest–order approximation to a more complicated expressions, emerging
from particle physics models (see e.g. [280] and Refs. therein).

The important parameter for spontaneous baryogenesis is the curvature of
potential (5.24) in the vicinity of its minimum, which determines the mass of
PNG field

m2
θ
�

Λ4

f 2
. (5.25)

As it was mentioned above the fieldα is an additional field with nondominant
energy density contribution into the total density on the de Sitter stage. Also we
assume that the fieldα behaves as massless NG field during inflation implying
that the condition

mθ �� H (5.26)

is valid, whereH is the Hubble constant during inflation. After the end of
inflation, when condition (5.26) is violated, the oscillations of fieldθ around
the minimum of potential (5.24) are started. The energy densityρθ

»

ù θ
2
i m2

θ
f 2

of the PNG field which has been created by quantum fluctuations ofθ during
the inflation converts to baryons and antibaryons [278, 83]. The sign of baryon
charge depends on the local initial value of phase from which the oscillations
are started.

Let us estimate the number of baryons and antibaryons produced by clas-
sical oscillations of phaseθ with an arbitrary initial phaseθ i . The appropriate
expression for the density of produced baryons (antibaryons)nB⒧B⒭ is repres-
ented in [83] in the limit of smallθ i

nB⒧B⒭ �
g2

π 2

@

±

mQ�mL

ωdω

H

H

H

H

@

±

�±

dtχ⒧t⒭eù�2iω t

H

H

H

H

2

ÿ (5.27)

that is valid ifχ⒧t } �±⒭ � χ⒧t } �±⒭ � 0.
The general case with arbitrary initial phase can be obtained in the limits

χ⒧t } �±⒭ ô� 0; χ⒧t } �±⒭ � 0 without loss of generality. After integra-
tion by part expression (5.27) has the form

NB⒧B̄⒭ �
g2

4π 2 Ωθ i

@

dω

H

H

H

H

H

H

±

@

�±

dτ χ̇⒧τ ⒭eù�2iωτ

H

H

H

H

H

H

2

ÿ (5.28)

whereΩθ i is the volume containing the phase valueθ i . Here the surface terms
appear to be zero att � ± due to asymptotes of fieldχ and att � �± due to
Feynman radiation conditions.

For our estimations it is enough to accept that the phase changes as

θ ⒧t⒭ ½ θ i⒧1�mθ t⒭ (5.29)

during first oscillation. More correct formulae lead to more complicated ex-
pressions that could be calculated numerically, what is not necessary for our
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estimations made below. Substituting (5.29) and (5.2) into (5.28) and after
some algebra, we come to

NB⒧B̄⒭ ½
g2 f 2mθ

8π 2 Ωθ i k⒧θ i⒭ÿ k⒧θ i⒭ � θ
2
i

±

@

ù

�

θ i
2

dω
sin2

ω

ω2 ÿ (5.30)

where the sign in the lower limit of integral corresponds to baryon or antiba-
ryon net excess production, respectively.

To compare our result with the result of [83], let us calculate the integral in
the limit θ i �� 1. We find

NB � NB̄ �
g2 f 2mθ

8π 2 Ωθ i θ
3
i . (5.31)

The comparison shows good agreement between the results of the both ap-
proaches in the limit of small amplitude oscillations around the minimum, cor-
responding toθ � 0. Using for spatially homogeneous fieldχ �

f
A

2
eiθ the

following formula for the created baryon charge

Q � i⒧χ * dχ�dt� dχ *
�dtχ⒭ � � f dθ�dtÿ (5.32)

one can easily conclude that the baryon chargeQ � 0 if θ � 0 during clas-
sical movement of phaseθ to zero. Thus the clockwise rotation gives rise to
origin of baryon excess while the anticlockwise rotation leads to the antibaryon
excess.

During reheating, the inflaton energy density converts into the one of the
radiation. It is assumed that reheating takes place, when the Mexican hat po-
tential does not feel the PNG tilt yet. This implies that the total decay width
of inflaton into light degrees of freedom should be rather quick, as compared
with the period of the PNG field oscillations, so thatΓtot �� mθ . The oscilla-
tions ofθ field start, whenH ½ mθ . The time variation of the phase leads to
creation of baryons or antibaryons according to the above consideration. The
entropy density after thermalization is given by

s�
2π

2

45
g*T

3
ÿ (5.33)

whereg* is a total effective massless degrees of freedom. Here we concern
with the temperature above the electroweak symmetry breaking scale. At this
temperature all the degrees of freedom of the Standard Model are in equilib-
rium andg* is at least equal to 106.75. The temperature is connected with the
expansion rate as follows

T �

E

MPH

1.66g1�2
*

½

A

MPmθ

g1�4
*

. (5.34)
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The last part of the expression (5.34) takes into account that the relaxation
starts at the conditionH ½ mθ . Using the formulas (5.30), (5.33), (5.34) we
get the baryon/antibaryon asymmetry

nB⒧B̄⒭

s
�

45g2

16π 4g1�4
*

 

f
MP

!3�2 f
Λ

k⒧θ i⒭. (5.35)

The functionk⒧θ i⒭ accounts for the dependence of the amplitude of baryon
asymmetry and of its sign on the initial phase value, appeared in the different
space regions during inflation. The behavior of this function could be easily
calculated numerically using its definition by the expression (5.30).

Expression (5.35) allows us to get the observable baryon asymmetry of the
Universe as a wholenB�s ½ 3 . 10�10. In the model under consideration we
have supposed initiallyf �

�

H »

ù 10�6MP. The natural value of coupling
constant isg �

�

10�2 and the observed baryon asymmetry is obtained at quite
reasonable conditionf �Λ �

�

105 (see e.g. [280]).

4. Radiation of baryon charge during wall
shrinking

As we have discussed, there are two ways to obtain domains with antimatter
in the baryon dominated Universe. Up to now we dominantly considered the
case, when the phaseθ crosses the valueθ � 0 due to the fluctuations at
inflation stage. There is another case, when the phaseθ crosses the value
θ � π . This case leads to almost inevitable closed wall formation.

Our analysis performed above concerned (anti-) baryon abundance as the
result of oscillation of the phaseθ in a volume as a whole. As one can see
from Eq. (5.28), the particle production is, in fact, the result of any process of
radiation of the phaseθ . After the phase reaches its vacuum valueθ � 0ÿ 2π ...
the particle production is terminated. However, the crossing of the phaseθ � π

during inflationary stage, leads to islands of vacuum withθ domain� 2π in the
sea of the phaseθ sea� 0. The phase continuously changes from 0 to 2π across
the wall that is placed at the phase valueθ wall � π . The classical motion of
the wall represents some kind of phase variation with time. As it was shown
in Chapter 4, closed walls accelerate rapidly during shrinking, and hence their
radiation of (anti-) baryons could contribute significantly at some conditions.

Let us estimate the possible effect of wall radiation. To proceed, suppose
that the created baryon/antibaryon excess is proportional to the total energy
of the wall, whereas such excess in the whole volume inside the wall is pro-
portional to the total energy of phase oscillations. The energy of the wall is
Ew » Λ2 f . R2

w. The energy of the phase oscillations, when they start inside
the wall isEV » Λ4 . R3

w by an order of magnitude. Consequently, the ratio of
baryon excessBw, originated from wall radiation to the oneBV in the whole
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volume is less than unity in that period

Bw

BV
»

Ew

EV
»

d
R
� 1. (5.36)

In the course of successive expansion the size of wall grows as the scale factor
a, so that the total energy of wall and the baryon excess created by its motion
grows correspondingly asa2, whereas the baryon excess in the volume inside
the wall does not change. It leads to violation of the condition (5.36), and
the contribution of wall radiation could be important. Additional argument to
investigate this process is that the wall motion produces baryon content of the
sign opposite to that produced by the phase oscillation in the volume, what
could be important in the case of small walls. Let Lagrangian of interaction of
the complex field with fermions have the form

L int � gϕ⒧x⒭Q⒧x⒭L⒧x⒭ � h.c. (5.37)

Standard result of quantum mechanics gives the expression for number of
particles radiated by the wall

∑
sQÿsL

@

AkQÿkL
2 d3kQ

2εQ⒧2π ⒭3

d3kL

2ε L⒧2π ⒭3
ÿ (5.38)

whereAkQÿkL is the amplitude of creation ofQ - particle with momentumkQ

andL - particle with momentumkL

$

Qÿ L

H

H

H

H

@

d4xgϕ⒧x⒭Q̄⒧x⒭L⒧x⒭

H

H

H

H

0

%

. (5.39)

To be more specific, consider complex fieldϕ with potential (4.25), (4.27).
As usual, radial component of the field is placed at its minimumϕ � f �

A

2.
As it was discussed above, field configuration of angular component represents
wall, which separates the vacuum withθ � 0 from the other one withθ � π .
The vacua are degenerated and the motion of the wall is governed by initial
conditions and by its surface tension.

Straightforward calculations of the matrix element and summation over spins
leads to the expression

H

HAkQÿkL

H

H

2
� g2 f 2

2
Tr
�

k̂L �mL

��

k̂Q �mQ

�

.

.
H

H

H

H

@

d4x exp
iθ � iEt � i⒧P r⒭�

H

H

H

H

2

ÿ (5.40)

E � εQ � ε Lÿ P � kQ � kL .

Calculation of integral (5.40) represents nontrivial (though solvable) prob-
lem due to space and time dependence of the phaseθ . Integration by part of
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the integral slightly facilitates this problem. Surface terms contribute only to
renormalization of wave function and must be omitted at the calculation of
radiation [285]. One could apprehend it more easy by considering a wall at
rest. Such wall does not radiate in spite of the presence of surface terms. Some
calculations lead to the matrix element of the form

H

HAkQÿkL

H

H

2
� 2g2 f 2

⒧kQkL⒭ �mLmQ I 2
ÿ

I ùùù
1
E

@

d4xθ̇ exp
iθ � iEt � i⒧P r⒭� .

Now we have to specify the form of the classical configuration of the fieldθ .
It would be convenient to choose a motion of spherical wall which is collapsing
due to its internal pressure. Back reaction of radiated fermions on the total
energy of wall is neglected in the following. The wall is chosen being at rest in
the infinite past and in the infinite future. If the Lagrangian of the fieldθ has
the form

L �
1
2
⒧∂µθ ⒭ �

Λ2

f
⒧cosθ � 1⒭ ÿ (5.41)

its classical equation of motion possesses the known solution for a plane wall
at rest

θ ⒧xÿ t⒭ � �4arctg exp

 

Λ2

f
⒧x� x0⒭

!

(5.42)

The spherical wall is characterized by its radius, being much greater, than
the wall widthd ½ f �Λ2. Hence small mistake will be done, if we choose the
solution in the form

θ ⒧rÿ t⒭ � �4arctg exp
�

γ

d
⒧r � R⒧t⒭⒭

�

ÿ (5.43)

whereR⒧t⒭ � R0�u⒧t⒭ . t stands by the wall radius andγ ⒧t⒭ � 1�u⒧t⒭2 �1�2.
In this case the integral is represented by the formula

I �
2π

Ed

@

dt r2dr d cosχ γ θ
′

⒧ξ⒭Ṙ⒧t⒭ exp⒧iθ ⒧ξ⒭ � iEt � iPr cosχ⒭ÿ

whereζ � γ �d⒧⒧r � R⒧t⒭⒭. Integrating out angleχ , we obtain

I �
4π

EPd

@

dtγ ⒧t⒭R⒧t⒭Ṙ⒧t⒭eiEt
@

dr θ
′

⒧ξ⒭ sin⒧Pr⒭eiθ ⒧ξ⒭. (5.44)

In this formula it was taken into account that the functionζ is varied in a
tight area» d�γ at r � R⒧t⒭. To proceed it is necessary to know a time de-
pendence of the wall radiusR⒧t⒭, what can be easily obtained from the energy
conservation. The energy of the wall at rest isW0 � 4π R2

0σ . Equating it to the
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wall energy at an arbitrary instant of timeW⒧t⒭ � 4π R⒧t⒭2γ ⒧t⒭σ and taking
into account the expression for Lorentz - factor with wall velocityu⒧t⒭ � Ṙ⒧t⒭,
one comes to the equation

Ṙ2
� 1� R4

�R4
0. (5.45)

This equation is used below to change the variablet } R:

dt � dR� 1� ⒧R�R0⒭
4 .

In this case integral (5.44) is expressed in the form

I �
4π R2

0

EPd

R0
@

d�2

dR R�1 eiEt⒧R⒭
@

dr θ
′

⒧ξ⒭ sin⒧Pr⒭eiθ ⒧ξ⒭
ÿ (5.46)

where the relationshipγ � R2
0�R2 was kept in mind. The final formula for

the number of radiated particles can be obtained after the integration out the
angles in the expression (5.40)

N �

g2 f 2R4
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. (5.47)

Numerical calculation of this expression is possible but it is not simple. Fortu-
nately, we need only its estimation. For this we neglect masses of the radiated
particles and estimate their momenta by order of magnitude as 1�d. It leads to
the estimation of baryon (or more definitely,Q - quanta) number emitted by
the wall during its shrinking

NB⒧B̄⒭ ½
g2 f 2R4

0

8π 6d2 J
ù

�

ÿ (5.48)
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dR R�1 eit⒧R⒭�d

±
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�±
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.

Numerical calculations indicate thatJ
�

�� J
�

provided thatR0 �� d.
For example,J

�

� 24.5ÿ J
�

� 0.15 at initial radiusR0 � 40d. Thus, if the
closed wall, with the phaseθ � 2π inside it, is shrinking, baryon generation
dominates. It is interesting to note that in such domains antibaryons were
produced at first stage. This stage is characterized by classical motion of the
phase in the whole volume to its stationary value which was equal 2π .
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The comparison of the analytical estimations indicates that baryon produc-
tion by collapsing walls is very effective. Namely, a baryon-antibaryon ratio
equals approximatelyR0�d. Nevertheless a caution is necessary. Indeed, our
estimation is valid if the back reaction is neglected. It means that the total en-
ergy of radiated particles must in any case be smaller, than the total wall energy.
Estimating with the use of Eq. (5.48) the total energy of radiated semirelativ-

istic particles asEp » εQ . NB »
1
d

g2 f 2R4
0

8π 6d2 J
�

and comparing it with the energy

of wall Ew » f Λ2R2
0 »

f 2

d R2
0, one obtains that the whole energy of wall can

be radiated for walls with the size

R0 � Rc ù
ù

ù

2π
3

g
.
E

2
J
�

. d. (5.49)

On the other hand, the calculations made in Chapter 4 show that the number
of walls increases sharply with decreasing of their size. Thus we come to
interesting conclusion – the large walls produce antibaryon islands, meantime
large number of small walls contribute to baryon background.

Note that the possibility of energy dissipation due to radiation for large mov-
ing walls can slow them down more effectively, than the radiation friction,
considered in Chapter 4.

5. Discussion
In this chapter we have considered the particular example of an inflation-

ary model with inhomogeneous baryogenesis. This is a successful model for
generation of antimatter islands with appropriate sizes exceeding the critical
surviving size. The antibaryon density relative to background baryon density
in the resulting antimatter islands and the number of these islands depends on
the incidental value of phase that has been established at the 60e–folds and on
the parameters of PNG field potential. It is possible to obtain one or several
antimatter domains in our galaxy depending on the values of these parameters.
The observational consequences of existence of such domains and the restric-
tions on their number and sizes have been analyzed in papers [266, 84] and
will be discussed in the next Chapter.

As we have mentioned, one of the additional problem for the most models of
inhomogeneous baryogenesis, invoked by the phase transitions at the inflation
epoch, is the prediction of large scale topological defects. Our scheme also
contains the premise for existence of domain walls. When the PNG tilt is
significant and if initial phase is close toπ , domain walls are formed along
the closed surfaces withθ � π ÿ3π ÿ ... [286, 256]. In the other words every
antimatter island with high relative antibaryon density will be surrounded by
domain wall. The wall energy per unit surface is

∆ ½ 8 f Λ2. (5.50)
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This stress energy responses to the oscillation of wall bag. During the oscilla-
tions, the energy, stored in the walls, is released in the form of quanta of PNG
field and gravitational waves.

We would like to notice that the regions with antimatter in baryon-asymmetrical
Universe arise naturally in the variety models, using in different ways the sim-
ilar idea of baryon excess generation by primordial scalar field, as in the model
of spontaneous baryosynthesis. The main issue, what is needed, is the exist-
ence of a valley of potential for this field. It is the valleys that are responsible
for formation of causally separated regions with different values of a field,
which in its turn lead to antimatter domains. Many models based on super-
symmetry possess this property.

To be more specific, consider briefly another model of baryogenesis by ba-
ryonic charge condensate [287], [264] with the potential of the form

U⒧ϕ⒭ � m2
ϕ

2
�

1
2

λ1 ϕ
4
�

1
4

λ2

�

ϕ
4
� ϕ *4

�

.

Baryonic charge of fieldϕ is not conserved due to last term:

∂µ j µ

B
ù

ù

ù i∂µ ⒧ϕ
* . ∂

µ
ϕ � ∂

µ
ϕ * . ϕ⒭ � iλ2

�

ϕ *4
� ϕ

4
�

ÿ

whereλ1 � �λ2 ù
ù

ù λ � 0 is supposed for simplicity. After the end of inflation
the field is governed by classical equations of motion

ϕ̈1� 3Hϕ̇1�

�

m2
� 4λϕ

2
2

�

ϕ1 � 0ÿ

ϕ̈ 2 � 3Hϕ̇ 2 �

�

m2
� 4λϕ

2
1

�

ϕ 2 � 0.

Near a bottom of the potential atϕ1 � ϕ 2 � 0 the field rotates with almost
constant momentum what gives rise to production of baryon charge. The dir-
ection of rotation is determined by an arbitrary initial conditions at inflation
stage. If the conditions are slightly changed, it could easily result in another
direction of rotation after inflation. But it surely happens due to fluctuations
in the case of domains of smaller sizes and some of them acquire antibaryon
excess.

In the multi-field picture the possibility of unstable walls arises. The succes-
sion of phase transitions can lead to appearance of walls at some temperature
and to their disappearance at smaller temperatures [207].

The set of theoretical arguments for possible existence of antimatter do-
mains, surviving to the present time in the Universe with globally positive
baryon excess, is, as we discuss further, even much wider. It provides serious
grounds to experimental search for antimatter in the Universe. The theoretical
analysis of possible forms of antimatter objects and their signature is the im-
portant component of such search. The results of this analysis are presented in
the next Chapter.





Chapter 6

ANTIMATTER IN THE MODERN UNIVERSE

The use of travelling is to regulate
imagination by reality, and instead of
thinking how things may be, to see them
as they are.

Samuel Johnson

It was shown in [84],[267],[82] and discussed in the previous Chapter that
the existence of antimatter domains in the baryon dominated Universe is a
profound signature for the origin and evolution of primordial baryon matter
inhomogeneity. Depending on its parameters the mechanism of inhomogen-
eous baryosynthesis can lead to both high and low antibaryon density domains.
According to [84] high density domains can evolve into antimatter stellar ob-
jects so that a globular cluster of antimatter stars can exist in our Galaxy, what
may be tested in the cosmic searches for antimatter planned for the near future.
Such searches involve both direct search for pieces of antimatter - for antinuc-
lei or antimeteorites, or use indirect probes by gamma radiation that may be
originated from antimatter annihilation.

1. Introduction
In the baryon asymmetric Universe the Big Bang theory predicts the expo-

nentially small fraction of primordial antimatter and practically excludes the
existence of primordial antinuclei. The secondary antiprotons may appear as
a result of cosmic ray interaction with the matter. In such interaction it is im-
possible to produce any sizeable amount of secondary antinuclei. Thus non
exponentially small amount of antiprotons in the Universe in the period from
10�3 to 1016 s and antinuclei in the modern Universe are the profound signa-
ture for new phenomena, related to the cosmological consequences of particle
theory.

109
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The inhomogeneity of baryon excess generation and antibaryon excess gen-
eration as the reflection of this inhomogeneity represents one of the most im-
portant example of such consequences. It turned out [84],[267],[82], [3] that
practically all the existing mechanisms of baryogenesis can lead to genera-
tion of antibaryon excess in some places,the baryon excess, averaged over the
whole space, being positive. So domains of antimatter in baryon asymmetric
Universe provide a probe for the physical mechanism of the matter generation.

The original Sakharov’s scenario of baryosynthesis [59, 60] has found phys-
ical grounds in GUT models. It assumes CP violating effects in out-of-equilibrium
B-non-conserving processes, which generate baryon excess proportional to CP
violating phase. If sign and magnitude of this phase varies in space, the same
out-of-equilibrium B-non-conserving processes, leading to baryon asymmetry,
result inB � 0 in the regions, where the phase is negative. The same argu-
ment is appropriate for the models of baryosynthesis, based on electroweak
baryon charge nonconservation at high temperatures as well as on its combin-
ation with lepton number violation processes, related to the physics of Major-
ana mass of neutrino. In all these approaches to baryogenesis independent on
the physical nature of B–nonconservation the inhomogeneity of baryon excess
and generation of antibaryon excess is determined by the spatial dependence
of CP violating phase.

Spatial dependence of this phase is predicted in models of spontaneous CP
violation, modified [207] to escape the supermassive domain wall problem (see
rev. in [82, 267] and Refs. therein).

In this type of models CP violating phase acquires discrete valuesφ
�

�

φ 0� φ sp andφ
�

� φ 0� φ sp, whereφ 0 andφ sp are, respectively, constant and
spontaneously broken CP phase, and antibaryon domains appear in the regions
with φ

�

� 0, provided thatφ sp� φ 0.
In models, where CP violating phase is associated with the amplitude of

invisible axion field, spatially-variable phaseφvr changes continuously from
�π to�π . As it was shown in Chapter 4, the axion induced antibaryon excess
forms the Brownian structure looking like an infinite ribbon along the infinite
axion string (see [77, 78]). This structure is smoothed by the annihilation at the
border of matter and antimatter domains. When the antibaryon diffusion scale
exceeds the minimal width of the ribbonl h⒧T⒭, given by Eq. (4.17), the infinite
structure decays on separated domains. The distribution on domain sizes turns
to be strongly model dependent and was calculated in [84].

The size and amount of antimatter in domains, generated in the result of
local baryon-non-conserving out-of-equilibrium processes, is related to the
parameters of models of CP violation and/or invisible axion (see rev. in [267,
18, 3]). SUSY GUT motivated mechanisms of baryon asymmetry imply flat-
ness of superpotential relative to existence of squark condensate. Such a con-
densate, being formed withB � 0, induces baryon asymmetry, after squarks
decay on quarks and gluinos. The mechanism doesn’t fix the value and sign
of B in the condensate, opening the possibilities for inhomogeneous baryon



Antimatter in the modern Universe 111

charge distribution and antibaryon domains [18]. The size and amount of an-
timatter in such domains is determined by the initial distribution of squark
condensate.

So antimatter domains in baryon asymmetric Universe are related to practic-
ally all the mechanisms of baryosynthesis, and serve as the probe for the mech-
anisms of CP violation and primordial baryon charge inhomogeneity. The size
of domains depends on the parameters of these mechanisms. In the previous
Chapter we gave a quantitative estimation of possible domain size distribution
in the mechanism of spontaneous baryogenesis

With the account for all possible mechanisms for inhomogeneous baryosyn-
thesis, predicted on the base of various and generally independent extensions
of the Standard Model, the general analysis of possible domain distributions
is rather complicated. Fortunately, the test for the possibility of the existence
of antistars in our Galaxy, offered in [84], turns to be practically model inde-
pendent and as we show here may be accessible to cosmic ray experiments, to
AMS experiment, in particular.

EGRET data [209] on diffuse gamma background show visible peak around
Eγ ½ 70 MeV in gamma spectrum, which fact can be naturally explained by
the decays ofπ 0-mesons, produced in nuclear reactions. Interactions of the
protons with gaseous matter in the Galaxy shift the position of such a peak
to higher values of gamma energy due to 4-momentum conservation. At the
same time the secondary antiprotons, produced in the cosmic ray interactions
with interstellar gas, are too energetic [210] and their annihilation also cannot
explain the observational data.

The above consideration draws attention to the model with antimatter glob-
ular cluster existing in our Galaxy, which cluster can serve as a permanent
source of antimatter due to (anti)stellar wind or (anti)Supernova explosions.

On the other hand, as it was mentioned in [84], low antibaryon density do-
mains can not evolve into gravitationally bound object. With the case of such
"diffused antiworld" we begin the discussion of the possible forms and sig-
natures for antimatter in the modern Universe to be considered in the present
Chapter.

2. Diffused antiworld

There are several reasons for the possibility of low antibaryon density in
antimatter domains. In models of inhomogeneous baryosynthesis with spon-
taneous CP violation (see [3, 281, 83, 267] for review) both constantϕc and
spontaneously brokenϕ s , CP violating phases, are involved in baryosynthesis.
Provided thatϕ s � ϕc in CP domains withϕ � ϕc�ϕ s the antibaryon excess
is generated. If the both phases are of the same order of magnitudeϕ s » ϕc

, so thatϕ s � ϕc �� ϕ s » ϕc , the antibaryon excess density within the
antimatter domain is much lower than the baryon excess density.
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Another possibility for a low antibaryon density can appear in the model of
axion dominated CP violation in baryosynthesis [84]. Small scale domain an-
nihilation in the region with a local antibaryon excess results in spreading over
the larger volume, thus reducing antibaryon density. The same is generally true
for a stochastic small scale baryon-antibaryon domain structure of any origin.

At the density of antimatterρab within a domain by 3 order of magnitude
less, than the baryon densityρb (which we assume in the further discussion
corresponding toΩb � 0.1) cosmological nucleosynthesis in the period t
» 1� 103s results in the nontrivial chemical composition [266]. For 10�4

�

ρab�ρb � 10�3 antideuterium is the dominant product. For smaller densit-
ies of antibaryons within domains no antinuclei are formed. At the densities
ρab�ρb � 10�4 owing to low antimatter densities inside domain no recom-
bination takes place atz » 1500 and antimatter domain remains ionized after
recombination in the Universe [266]. The radiation pressure and the radiation
dominance in the energy density within domain suppress then the development
of gravitational instability, so that antimatter domains of sufficiently large size
should be now clouds of ionized positron - antiproton plasma presumably situ-
ated in voids.

Below we give a quantitative estimation for the surviving size and observa-
tional effects of domains of diffused antiworld [266].

Let us assume that the Universe contains regions of a very small antibaryon
excess density. At temperatures above some MeV these regions can not be
strongly affected by the diffusion of surrounding particles, because their mean
free path is small enough. Therefore we will consider the evolution of these
antibaryon domains at the temperatures 4. 103K � Trec � T � Tnucl � 109Kÿ
when the Universe is filled with plasma of electrons, protons, photons and
neutrinos and matter diffuse inside the antimatter domains. Separate consider-
ation will be done below for temperatures below the period of recombination
atT � Trec, when neutral atoms move almost freely.

If the size of the antibaryon region is much greater, than the mean free path
of surrounding particles, we can solve a one - dimensional problem assuming
that the "initial" baryon density atTin � 109K is given by

nb⒧Rÿ tin⒭ � n0θ ⒧�x⒭ÿ (6.1)

whereθ is step function.
Note that since the antibaryon component is very small we neglect it for the

moment. In this case the diffusion equation for baryons is

∂ nb�∂ t � D⒧t⒭∂ 2nb�∂ x2
� αnb. (6.2)

The last term in Eq. (6.2) takes into account the expansion of the Universe.
Diffusion coefficientD⒧t⒭ is expressed as follows

D⒧t⒭ ½
3Tγ c

2ργ σT
½ 0.61 . 1032Z�3

ÿ cm2
�sÿ (6.3)
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whereTγ andργ are the temperature and the energy density of the radiation,
respectively,c is the velocity of light,σT is the Thomson cross section,Z is
the red shift which is related with the timet on RD stage byt ½ 2.6.1019s�Z2.

Let us introduce a new variable r defining baryon to photon ratior � nb�nγ .
Since the evolution of the photon density is given by the equation∂ nγ �∂ t �
�αnγ , we can rewrite Eq. (6.2) in terms ofr as

∂ r�∂ t � D⒧t⒭∂ 2r�∂ x2
ÿ (6.4)

where
r ⒧Rÿ t0⒭ � r0θ ⒧�x⒭. (6.5)

To solve this equation, it is suitable to introduce new variableu instead of
time t :

u�
@ t

tin

D⒧t′⒭dt′.

Eq. (6.4) acquires the simple form

∂ r�∂u� ∂
2r�∂ x2

ÿ

which has the solution

r ⒧xÿu⒭ �
1
2

n0 1� Φ
 

x
2
A

u

!

.

Due to the properties of the error integralΦ one can conclude that the boundary
between matter and antimatter regions is determined as

xb � 2
A

u.

The diffusion coefficient is connected with the temperature in the following
manner

D⒧T⒭ � Dnucl

 

Tnucl

T

!3

.

Its time dependence has different forms at RD and MD periods. Our aim is to
calculate the valueurec ù

ù

ù u⒧trec⒭. There are two different periodstnucl � t �
teq andteq � t � trec. The first, radiation dominated, period is characterized
by the time - temperature relationship

T � Teq

� teq

t

�1�2
ÿ

whereteq is the time, corresponding to the transition from RD to MD stage,
andTeq is the temperature at this time.

Such relationship at the second period of matter dominance may be ex-
pressed in the form
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T � Teq

� teq

t

�2�3
.

Now we are ready to calculate the valueurecÿ

urec �
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tnucl

D⒧t′⒭dt′ �
@ teq

tnucl

D⒧t′⒭dt′ �
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For the initial timetnucl , corresponding to the temperatureTnucl � 109Kÿ
D⒧tnucl⒭ is given, according to Eq. (6.3), by

D⒧tnucl⒭ ù
ù

ù Dnucl ½ 1.24 . 106cm2
�s. (6.7)

The boundary shift during the whole period can be easily calculated now

xb � 2
A

urec.

It follows from Eq. (6.6) that the average displacement of the boundary
between baryon and antibaryon domains is about∆x » 0.2pc. Therefore, the
primordial antibaryon regions of low density, which grow up to 1pcor more to
the period of recombination, have to be conserved in spite of the diffusion of
ordinary matter.

Note that according to Eq. (6.6) the motion of boundary is mainly determ-
ined by the second term which is responsible for matter dominated epoch. This
is due to the fact that the radiation friction is less effective for plasma on MD
stage and as a consequence the mean free path increases, giving the important
contribution to the boundary motion.

Below the temperatureTrec � 4000K atoms are formed in baryon domains.
Since the antibaryon density is assumed to be small enough⒧ρab�ρb � 10�4

⒭

in our approach, we can consider the flow of hydrogen atoms into antibaryon
region as a motion of free - streaming atoms into empty space. The physical
distance travelled by the atoms after recombination until the present timetp is
given by

d ½ ap

@ tp

trec

v⒧t⒭dt
a⒧t⒭

ÿ (6.8)
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wherev⒧t⒭ is an average velocity of atoms,a⒧t⒭ is the scale factor of the Uni-
verse. It is convenient to seta � yap , wherey � 1�⒧1� Z⒭ � Tp�T and to
rewrite Eq. (6.8) as

d ½
@ ap

arec

v⒧a⒭da
aȧ

�

@ 1

arec�ap

v⒧y⒭dy
yẏ

(6.9)

At the recombination, the velocity of atoms is given by the thermal value
vrec ½ c

B

Trec�m , wherem is the mass of atom. After 4000K , the typical
velocity v ½ p�m of atoms is red - shifted down like 1�a » T. Therefore

below 4000 K we havev ½ cTp

m

C

m
Trec

1
y . Taking the equation

⒧ẏ⒭2 �
8π

3
Gρ⒧y⒭y2 (6.10)

whereG is Newton’s constant and substituting a density in the formρ⒧y⒭ �
ρ0�y3 in the case of the matter - dominated Universe we find

d ½
c

C

8π

3 Gρ0

Tp

m

D

m
Trec

@ 1

Tp�Trec

dy

y3�2
�

2c
C

8π

3 Gρ0

D

Tp

m
(6.11)

Substitutingρ0 � ρc , whereρc � 1.88 . 10�29h2g�cm3 is the critical density
of the Universe, we obtaind » 3�h kpc. For value of Hubble constanth
between 0.4 and 1 the free - streaming length of atoms will be of the order
of several kpc. Therefore antibaryon regions of the same size will be filled at
present by hydrogen atoms. Note that mutual penetration of antiprotons in the
matter regions and of matter atoms into the antimatter regions is not equivalent
in the considered asymmetric case. For the matter gas the antimatter domain
is transparent due to the low density of antiprotons in the domain, making
nab �σ v
 t � 1. On the other hand, matter is opaque for antiprotons, since
nb �σ v
 t � 1 even now.

A key observation to test the model of diffused world could be the search for
gamma rays from a boundary annihilation of antimatter and hydrogen atoms.
Let us consider first the possibility of the annihilation in antimatter domains
filled with hydrogen atoms (the annihilation of matter - antimatter domains in
baryon symmetric Universe was considered in [263]). Taking into account the
annihilation and expansion of the Universe the number density of antiprotons
is described by the equation

dnab�dt � � � σ v � nbnab� αnab. (6.12)

In the limit nb �� nab we can neglect the variation ofnb due to annihilation.
Then introducingr � nb�nγ , r̂ � nab�nγ and solving Eq. (6.12) we find that
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at present time in antimatter domains filled with hydrogen atoms

r̀ p � r̀ rec exp�
@ tp

trec

�σ v
rnγ dt . (6.13)

Here indexesp andrec denote present period and recombination one. Since
according to [282] at energies below 10eV the cross section of ¯pH annihilation
is given by

� σ v �½ 2.7 . 10�9cm3
�s (6.14)

we find that the integral in Eq. (6.13) is much greater than unity. So, no gamma
radiation takes place at present from such regions because practically all anti-
protons have been already annihilated.

Therefore the radiation is possible only from the narrow region of the bound-
ary between matter and antimatter domains, where antibaryons have not anni-
hilated yet. The width of this regiond » v∆t, where∆t is defined from the
condition

@ tp

tp�∆t
�σ v
nbdt ½ �σ v
nb∆t » 1 (6.15)

where the velocity is expressed in the form

v ½ c
T
m

D

3m
Trec

(6.16)

Substituting all necessary numbers we find the width of the region

d ½ c

D

Tp

Trec

Tp

m
1

�σ v
nb
½ 0.86

 

10�7cm�3

nb

!

ÿ pc. (6.17)

The gamma flux at the Earth in this case is given by

dΦ
dωdΩ

½

dn
dt

dNγ

dω

V

4π r 2
A

ÿ (6.18)

where
dn�dt �� σ v � nbnab (6.19)

is the rate of annihilation per unit volume per unit time;dNγ �dω is the dif-
ferential cross section for an inclusive gamma production;V � 4π R2d is a
volume of the annihilating part of the diffused world at present;R is the size of
the diffused world;r A is a distance between the Earth and the diffused world.
Integrating Eq. (6.18) over photon energy we obtain

dΦ
dΩ

½ �σ v
β n2
b�Nγ 
d

 

R
r A

!2

ÿ (6.20)
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where� Nγ � is an average number of photons per one act of annihilation
(typically � Nγ �½ 4⒭ÿβ � nab�nb �� 1. Finally, taking into account
Eq. (6.17) we get

dΦ
dΩ

½ β nb�Nγ 


 

R
r A

!2

c

D

3
Tp

Trec

Tp

m
(6.21)

½ 2.6 . 10�4
β

� nb

10�7

�

 

R
r A

!2

cm�2s�1sr�1.

Up to now, no evidences for a major anisotropy in the gamma background
has been observed. The diffused photon background at high latitudes below
1GeV is given by [283, 284]

dΦdi f

dωdΩ
½ 8 . 10�7

 

GeV
ω

!2.7
cm�2s�1sr�1. (6.22)

It follows from equation (6.22) that observed gamma - flux the spectrum
integrated over the energy greater, than 1GeV, is equal to

dΦdi f �dΩ ½ 10�6cm�2s�1sr�1. (6.23)

It was shown in [84] that a diffused world can exist, ifβ � 10�4 , therefore,
as it follows from Eq. (6.21), the possible gamma flux from the annihilation
at the boundary of two worlds should be less than 10�8cm�2s�1sr�1. This
means that such diffused worlds could exist, in particular not far from our
Galaxy, successfully avoiding to be detected. However, the development of
detectors of gamma rays, like AGILE, AMS, GLAST with the flux sensitivity
better than 10�8cm�2s�1sr�1 gives a hope for a search for diffused antiworlds
for reasonable ratioR�r A.

3. Antimatter globular cluster in our Galaxy
Assume some distribution of antimatter domains, which satisfies the con-

straints on antimatter annihilation in the early Universe. Domains, surviving
after such annihilation, should have the mass exceeding

Mmin ½ ρabl
3
c ÿ (6.24)

whereρab is the antibaryon density within domain andlc is the surviving size.
The mass fractionf of such domains relative to total baryon mass is strongly
model dependent. Note that since the diffusion to the border of antimatter
domain is determined on RD stage by the radiation friction the surviving scale
fixes the size of the surviving domain. On the other hand, the constraints on the
effects of annihilation put the upper limit on the mass of annihilated antimatter.

The modern antimatter domain distribution should be cut at masses given
by the Eq. (6.24) due to annihilation of smaller domains and it is the general
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feature of any model of antibaryosynthesis in baryon asymmetrical Universe.
The specific form of the domain distribution is model dependent. At the scales
smaller than the Eq. (6.24) the spectrum should satisfy the constraints on
the relative amount of annihilating antimatter. Provided that these constraints
are satisfied and that the antimatter density within domain is sufficiently high
ρab �

�

ρb, whereρb is the mean cosmological baryon density, one may con-
sider the conditions for antimatter objects formation. One should take into
account that the estimation of the annihilation scale after recombination (see
[84] and the previous Section) gives for this scale the value close to the Jeans
mass in the neutral baryon gas after recombination. So the development of
gravitational instability may take place in antimatter domains resulting in the
formation of astronomical objects of antimatter.

Formation of antimatter object has the time scale being of the order oft f ½

⒧πGρ⒭
�1�2. The object is formed provided that this time scale is smaller than

the time scale of its collision with the matter clouds. The latter is the smallest
in the beginning of the object formation, when the clouds, forming objects,
have large size.

Note that the isolated domain can not form astronomical object smaller,
than globular cluster [84]. The isolated anti-star can not be formed in matter
surrounding, since its formation implies the development of thermal instability,
during which cold clouds are pressed by hot gas. Pressure of the hot matter gas
on the antimatter cloud is accompanied by the annihilation of antimatter. Thus
anti-stars can be formed in the antimatter surrounding only, what may take
place, when such surrounding has at least the scale of globular cluster.

One should expect to find antimatter objects among the oldest population of
the Galaxy [84]. It should be in the halo, since owing to strong annihilation of
antimatter and matter gas the formation of secondary antimatter objects in the
disc component of our Galaxy is impossible. So in the estimation of antimatter
effects we can use the data on the spherical component of our Galaxy as well as
the analogy with the properties of the old population stars in globular clusters
and elliptical galaxies.

The total mass of such cluster(s) is constrained from below by the condi-
tion of antimatter domain survival in the surrounding baryonic matter because
small antimatter domains completely annihilate in the early Universe before
the stage of galaxy formation. The upper limit on the total mass of antimat-
ter can be estimated from the condition, that the gamma radiation from anni-
hilation of antimatter with galactic matter gas does not exceed the observed
galactic gamma background. The expected upper limit on cosmic antihelium
flux from antimatter stars in our Galaxy was found [84, 86] only factor of
two below the modern level of sensitivity in experimental cosmic antihelium
searches [89]. In the first approximation the integral effect we study depends
on the total mass of the antimatter stars and does not depend on the amount of
globular clusters. The only constraint is that this amount does not exceed the
observed number of galactic globular clusters (about 200).
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Assume that antimatter globular cluster moves along elliptical orbit in the
halo. The observed dispersion of velocity of globular clusters is� v �» 300
km/s and of the long axis of their orbits is� r �» 20kpc. This givesT »

2 . 1015 s as the order of the magnitude for the period of orbital motion of the
cluster in the Galaxy. The period, the cluster moves along the dense region
of the disk with the mean half–widthD » 100pc, depends on the angle, at
which the orbit crosses the plane of the disk and is of the order

td »
D

� v �
» 1013 s.

This means that the cluster spends not more than 1% of the time in the dense
region of galactic disk, where the density of gas is of the order ofndisk

H » 1
cm�3, moving the most time in the halo with much lower density of the matter
gasnhalo

H » 5 . 10�4 cm�3. Therefore, we can neglect the probability to find
the cluster in the disk region and consider the case, when the source of the
antimatter is in the halo.

One could expect two sources of the annihilation gamma emission from
the antimatter globular cluster. The first one is the annihilation of the matter
gas captured by the antimatter stars. Another source is the annihilation of the
antimatter, lost by the antimatter stars, with interstellar matter gas. It is clear
that the gamma flux originating from the annihilation of the matter gas on the
antimatter stars surface is negligible. Really, an antimatter star of the Solar
radiusR � R

þ○

and the Solar massM � M
þ○

captures matter gas with the
cross section

σ » π R

 

R �

2GM
v2

!

» 4 . 1022 cm2
ÿ

so that the gamma luminosity of cluster of 105 stars does not exceedLγ
�

�

M5 . 1029 erg�s, whereM5 is the mass of the cluster,Mcl , in the units 105 M
þ○

,
Mcl � M5 . 105 M

þ○

. Such a low gamma luminosity for cluster, being in the
halo at the distance of about 10kpc, results in the fluxFγ

�

�

10�13 (ster. cm2.
s)�1 of 100 MeV gamma rays near the Earth, what is far below the observed
background. This explains, why the antimatter star itself can be rather faint
gamma source elusive for gamma astronomy, and shows that the main contri-
bution into galactic gamma radiation may come only from the annihilation of
the antimatter, lost by antistars, with the galactic interstellar gas.

There are two sources of an antimatter pollution from the (anti-)cluster:
the (anti-)stellar wind and the antimatter Supernova explosions. In both cases
the antimatter is expected to be spread out over the Galaxy in the form of
positrons and antinuclei. The first source provides the stationary in-flow of
antimatter particles with the velocities in the range from few hundreds to few
thousandskm�s to the Galaxy. The (anti)Supernova explosions give antimatter
flows with velocities of the order of 104 km/s. The relative contributions of
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both these sources will be estimated further on the base of comparison with
the observational data assuming that all the contribution into diffuse gamma
background comes from the antimatter annihilation with the interstellar matter
gas. We assume below that the chemical antimatter content is dominated by
anti-hydrogen and consider the contribution into gamma background from the
annihilation of antiprotons only.

We consider the quasi-stationary case, provided by the presence of a per-
manent source of the antimatter. The assumption about stationarity strongly
depends on the distribution of magnetic fields in the Galaxy, trapping charged
antiparticles, on the annihilation cross section and on the distribution of the
matter gas. We shall see that the assumption about stationarity is well justified
by existing experimental data and theoretical models.

A careful consideration of the possibility to reproduce the observed spec-
trum of diffuse gamma background, suggesting the existence of maximal pos-
sible amount of the antimatter in our Galaxy was undertaken in [85]. It was
shown that the predicted gamma spectrum is consistent with the observations.
In this case the integral amount of galactic antimatter can be estimated, which
estimation leads to definite predictions for cosmic antinuclear fluxes [84, 86,
85], accessible for cosmic ray experiments in the nearest future [89] (see Sec-
tion 6.5).

4. Gamma background from antimatter
annihilation

4.1 The model of galactic antimatter annihilation
In this Section, following [85], we shall show that one can consider the

antiproton annihilation in the halo as a stationary process and the distribution
of the antiprotons does not depend practically on position and motion of the
globular cluster of antistars.

One of the most crucial points for the considered model is the annihilation
cross section of the antiprotons. In difference to the inelastic cross section
of the pp collisions, the cross section in the ¯pp annihilation steeply grows
as kinetic energy of the antiprotons goes to zero. This growth leads to the
obvious fact that the main contribution into gamma flux must come from the
annihilation of the slowest antiprotons. Therefore we need to have reliable
estimation for the annihilation cross section of the antiprotons at low kinetic
energies. Existing theoretical models based mainly on the partonic picture
of the hadronic interactions are definitely invalid for ¯pp annihilation at low
energies and the experimental data both for evaluation of the annihilation cross
section as well as for the final state configuration were used in [85].

At small energies the cross section must be proportional to the inverse power
of the antiproton velocity. To find this dependence we have to match the avail-
able experimental data onσ ann with this expected behavior. As it follows from
data [211, 212], obtained at CERN-LEAR, the dependenceσ ann » v�1 is
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valid already for laboratory antiproton momentaplab �

�

1000 MeV/c. The
annihilation cross section is the difference between total and inelastic ones,
σ ann ½ σ tot � σ el. Thus, atPlab �

�

300 MeV�c the data from [214] for the
total and elastic cross sections were used [85] and at momenta less than 300
MeV/c the dependence

σ ann⒧P � 300 MeV/c⒭ � σ 0 C⒧v*
⒭�v*

σ el � constÿ
(6.25)

was used [85] for annihilation and elastic cross sections, respectively, where
v* is the velocity of the antiproton in the ¯ppcenter-of-mass system. Additional
Coulomb factorC⒧v*

⒭ gives large increase for the annihilation cross section at
small velocities of the antiproton and is defined by the expression [206]:

C⒧v*
⒭ �

2π vc�v*

1 � exp⒧�2π vc�v*
⒭

ÿ (6.26)

where,vc � α c, with α andc being the fine structure constant and the speed
of light, respectively.

Using the experimental data on the ¯ppannihilation cross section [211, 212]
it was found in [85] that valueσ 0 in Eq. (6.25) is equal to:

σ 0 � σ
exp
ann⒧P � 300 MeV/c⒭ � 160 mb.

Consider following [85] the spherical model for halo withz axis directed
to North Pole andx axis directed to the Solar system. The number density
distribution of interstellar hydrogen gasnH⒧rÿ z⒭ along z direction was para-
meterized as:

nH⒧z⒭ � nhalo
H � ∆H⒧z⒭ ÿ

∆H⒧z⒭ �

ndisk
H

1�⒧z�D⒭2 ÿ

(6.27)

with nhalo
H � 5 . 10�4 cm�3 being the hydrogen number density in the halo,

ndisk
H � 1 cm�3 being the hydrogen number density in the disk andD �

100pc being the half-width of the gaseous disk. Here the hydrogen number
density in the halo is chosen in suggestion that» 90% of the halo mass is
a non-baryonic dark matter. Such a distribution of the matter gas is to large
extent the worst case for our aims since the matter density alongz axis falls
slowly and visible fraction of the antiprotons will annihilate sufficiently far of
the galactic disk plane. Nevertheless, as we shall see, even in this case the
picture is still quasi-stationary and the antiproton number density in the halo is
practically not disturbed by the annihilation in the dense regions.

The validity of the stationary approximation depends on the interplay of the
life-time of the antiprotons relative to the annihilation and their confinement
time in the Galaxy. To evaluate the antiproton confinement time the results of
the ”two–zone” leaky box model (LBM) [210] were used in [85]. The authors



122 COSMOLOGICAL PATTERN OF MICROPHYSICS

of [210] considered the spectra of secondary antiprotons produced in collisions
of the cosmic ray protons with interstellar gas. If to compare the antiproton
spectrum, obtained in [210], one easily observes that shape of the spectrum
beautifully reproduces the observational data on ¯p�p ratio. But the predicted
total normalization is lower by factor 2..�3, than the data. Owing to the fact that
confinement time enters as a common factor in the predicted ¯p�p ratio, we find
necessary factor, performing the fit to the observational data. Experimental
points have been taken in [85] from [213], where references on the data can be
found.

The data on the cosmic ray ¯p�p ratio, used in [85], have been collected in
balloon experiments. The region of low kinetic energies,Ekin �

�

100 MeV,
is strongly affected by the heliosphere [215]. To avoid this influence two the
most left points in Figure 6.1 were removed in [85] from the fit.

Figure 6.1. (a) Fit of thep̄�p ratio to experimental data. Solid line shows predictions of the
two–zone leaky box model [210], increased by factorK ½ 2.6. Dashed curve is the phenomen-
ological fit, described in the text. (b) The respective confinement times for the antiprotons in
the Galaxy (solid) and in the disk (dashed). The curves are taken from [210] and multiplied by
factorK . .

Solid curve in Figure 6.1(a), taken from [85], represents the ”two-zone”
LBM predictions for the ¯p�p ratio, multiplied by the fitted factorK � 2.58,
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which factor increases the confinement time for slow antiprotons in the Galaxy
up to 5.5 . 108 years. Dashed curve is the phenomenological fit in the form
R⒧E⒭ � a Eb�c lg E, which is plotted for comparison. The shapes of both
curves match fairly. Figure 6.1(b) shows the resulting antiproton confinement
times for Galaxy as whole (solid) and for disk only (dashed).

Figure 6.2. (a) The dependence of the antiprotons annihilation time onz coordinate. The
horizontal dashed line is the antiproton confinement time in the Galaxy. (b) The dependence of
free path length of the antiprotons. The horizontal dashed line is the halo edgez � 20 kpc.
The curves are calculated for three values of the antiproton velocity: 300 km/s, 103 km/s and
2 . 104 km/s. Vertical dashed line shows the half-width of the diskD � 100 pc.
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Figure 6.2, taken from [85], shows the antiproton life-time to the annihil-
ation (a) and the free path length of the antiprotons (b) versus their distance
of the galactic plane,z for three values of the antiproton velocity. In the sta-
tionary case to compensate the annihilation of antiprotons with matter gas the
number density of antiprotons must satisfy the equation:

d2np̄

dE dt
� I p̄⒧E⒭ � v σ ⒧v⒭ nH

dnp̄

dE
. (6.28)

The solution of this equation is:

dnp̄

dE
� I p̄⒧E⒭ tann⒧E⒭

�

1 � e�t�tann

�

ÿ (6.29)

with tann � v σ ⒧v⒭ nH
�1 being the life-time of antiprotons relative to the

annihilation.
From Figure 6.2(a) we can conclude that for antiprotons with velocities 103

km/s (stellar wind) the confinement time in the halo, starting from distancies
z » 2 kpc, is less, than their annihilation time. Thus, from Eq. (6.29) we
obtain for the halo:

n⒧E⒭ ½ I p̄⒧E⒭Tcon f . (6.30)

In the gaseous disk the situation is just the opposite. Antiprotons annihilate
with high rate and their life-time relative to the annihilation is much less, than
the time necessary for them to escape from the volume of the Galaxy.

In other words, antiprotons are storaged in the halo during the confinement
time½ 5 . 108 yrs increasing the gamma flux by factorTcon f. We can also
conclude that during large confinement time antiprotons are being spread over
the halo with constant number density independent of the position of the an-
tistar cluster. Under the assumption on the universal acceleration mechanism
in the halo their energy spectrum comes to the stationary form. Additionally
from Figure 6.2(a) we see that the ”storaging” volume is of the order of the
volume of the haloVhalo � 4π R3

halo�3, when the region withTcon f �� Tann

is restricted byz �

�

2 kpc. Thus, intensive annihilation takes place within
the volumeVann ½ π R2

halo 4 kpc. The ratio of these two volumes is of the
order of

Vann

Vhalo
»

4 kpc
4�3Rhalo

�

�

20%

and the annihilation of antiprotons in the gaseous disk practically does not
affect the number density of antiprotons in the Galaxy as a whole.

The above consideration provides quasi-stationary distribution of antimatter
in the halo and, as a result, leads to the constant number density of the antipro-
tons in the galactic halo. Figure 6.2(b) showsz dependence of free path length
of antiprotons at three values of their velocity [85].
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4.2 Diffuse gamma flux.
The gamma flux arriving from the given direction is defined by the well

known expression:

Jγ ⒧Eγ ⒭ �

@ L

0
dl ψ ⒧Eγ ÿ rÿ z⒭. (6.31)

The integration must be performed up to the edge of the haloL � �α x R
þ○

�

C

R2
halo� R2

þ○

⒧1� α2
x⒭with α x being the cosine of the angle between the line-

of-sight and thex axis, directed from the Galaxy Center to the Sun and lying
in the plane of the Solar orbit.

Functionψ ⒧Eγ ⒭ in Eq. (6.31) is the intensity of gamma sources along the
observation directionl in assumption of isotropic distribution of gamma emis-
sion. This function is defined as:

ψ ⒧Eγ ÿ rÿ z⒭ �

@

±

Emin

dE v⒧E⒭σ ann⒧E⒭ nH⒧rÿ z⒭ np̄⒧Eÿ rÿ z⒭W⒧Eγ ; E⒭

(6.32)

W⒧Eγ ; E⒭ �

dnγ ⒧Eγ ; E⒭
dEγ dO

.

To simulate the gamma energy spectrum and angular distributionW⒧Eγ ; E⒭
the Monte Carlo technics was used in [85]. The experimental data [216] on
the p̄pannihilation at rest (see Table) have been used to simulate the probabil-
ities of different final states. In practice, the approximation of the annihilation
at rest is valid with very good accuracy up to laboratory momenta of the in-
coming antiprotons about 0.5 GeV because at these laboratory momenta the
kinetic energy of the antiproton is still by order of magnitude less than the
twice antiproton mass. The simulation of particle distribution in the final state
has been performed according to phase space in the center-of-mass of the ¯pp
system. PYTHIA 6.127 package [217] has been used in [85] to perform the
subsequent decays of all unstable particles. Momenta of stable particles (eù�,
p�p̄, µ

ù

�, γ and neutrinos) have been boosted to the laboratory reference frame.
The resulting average number ofγ ’s per annihilation is [85]

� nγ � �

@

dΩ dEγ W⒧Eγ ; E⒭ � 3.93
ù

� 0.24

and agrees with the experimental data.
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Table. Relative probabilities of ¯ppannihilation channels.

Channel Rel. prob.ÿ% Channel Rel. prob.ÿ%

π
�

π
�

π
0 3.70 2π

�2π
�

η 0.60
ρ
�

π
� 1.35 π

0
ρ

0 1.40
ρ
�

π
� 1.35 ηρ

0 0.22
π
�

π
�2π

0 9.30 4.99π
0 3.20

π
�

π
�3π

0 23.30 π
�

π
� 0.40

π
�

π
�4π

0 2.80 2π
�2π

� 6.90
ωπ

�

π
� 3.80 3π

�3π
� 2.10

ρ
0
π

0
π
�

π
� 7.30 KK̄ 0.95π

0 6.82
ρ
�

π
�

π
�

π
� 3.20 π

0
η
′ 0.30

ρ
�

π
�

π
�

π
� 3.20 π

0
ω 3.45

2π
�2π

�2π
0 16.60 π

0
η 0.84

2π
�2π

�3π
0 4.20 π

0
γ 0.015

3π
�3π

�

π
0 1.30 π

0
π

0 0.06
π
�

π
�

η 1.20

In the stationary case we can put the annihilation rate in the halo being con-
stantly compensated by the permanent source of the antiprotons. But, owing
to the fact that the antiprotons annihilation rate in the gaseous disk is much
greater than in halo, we must take into account the dependence of the antipro-
ton density onzcoordinate. Figure 6.2(b) demonstrates that free path length of
the slowest antiprotons is comparable with half-width of the diskD. To take
this effect into account we have to consider antiproton annihilation with the
gas in disk. For given value ofz we have:

dnp̄⒧zÿ E⒭
dz

� σ ann⒧E⒭ ∆H⒧z⒭ np̄⒧zÿ E⒭ . (6.33)

The differential equation Eq. (6.33) can be easily solved and results in the
following antiproton number density distribution along thez axis [85]:

np̄⒧zÿ E⒭ � n0 exp

"

�σ ann⒧E⒭
@ zmax

z
dz′ ∆H⒧z

′

⒭

#

ÿ (6.34)

where,zmax � L αz is the maximal value ofz coordinate, defined by the edge
of the halo, andn0 is the antiproton number density far from the disk.

The next point we need to consider is the antiproton energy spectrum. As
it will be shown further, the stellar wind from antistars has to give the most
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significant contribution in the antimatter pollution from the anticluster. The
original distribution of the stellar wind particles has a Gaussian form peaking
at velocitiesv ½ 500 km/s [218]. The interplanetary shocks accelerate emit-
ted particles and the resulting stellar cosmic rays flux becomes proportional
to JSW » v E�2

kin in the range of kinetic energies up to» 100 MeV [218].
Additional acceleration occurs in the interstellar plasma and, as we believe,
produces the observable spectrum of the galactic cosmic rays» v E�2.7

kin . The
acceleration mechanisms are defined by collisionless shocks in interplanetary
or Galaxy plasma and are charge-independent. One has to take into account
also the relative movement of the hypothetical antistar cluster with velocity
» 300 km/s as well as the similar velocities of the matter gas defined by the
gravitational field of the Galaxy. Thus, one can expect that the minimal velo-
city of antiprotons from (anti)stellar wind relative to the matter gas is some-
thing aboutvmin ½ 600� 700 km/s. Following the above consideration, we
chose the antiproton spectrum in the halo (far from the regions with high mat-
ter gas density) to be similar to the galactic cosmic-rays proton spectrum in the
whole range of the antiproton energies:

np̄⒧Eÿ z�� D⒭ »

 

1GeV
Ekin

!2.7
ÿ (6.35)

with the normalization:
@

±

Emin

np̄⒧Eÿ z�� D⒭ dE � n0 .

Actually, reasonable variation of the form of the antiproton flux does not
affect significantly the total normalization and changes only the gamma spec-
trum at higher energies. The main contribution in the integrated antiproton
number density comes from the slowest antiprotons owing to fast rise of the
annihilation cross section with the decrease of the velocity. We don’t consider
here the contribution in the gamma flux from the annihilation of the secondary
antiprotons produced in the collisions of the cosmic-ray protons with inter-
stellar gas. This effect must give the main contribution at higher energies of
gammas and needs careful investigation of the deceleration mechanisms in the
halo.

If we assume that all the gamma background at high galactic latitudes is
defined by the antiproton annihilation, we have the only free parameter in our
model - the minimal velocity of the antiprotonsvmin. Therefore, for given value
vmin the integrated number density of antiprotons in the halon0 can be found
from comparison with the observational data on diffuse gamma flux. If we
choose the minimal velocity of antiprotons to be of the order of the velocity of
the stellar wind,vSW ½ 1000 km/s, being equivalent to kinetic energy of the
antiprotonsESW

kin ½ 5.2 keV, we obtain the necessary integral number density
of antiprotonsn0, corresponding to the fit of EGRET data by ¯pp annihilation,
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to be equal to [85]:
nSW

0 ½ 5.0 . 10�12 cm�3. (6.36)

Figure 6.3. Comparison of the calculated differential fluxes ofγ quanta from ¯p�p annihil-
ation for the minimal antiproton velocityvmin � 103 km/s with experimental dataEGRET
[209] on diffuse gamma background (a,b). The observational direction is to the North Pole of
the Galaxy. There is also shown the comparison of the charged multiplicity distribution in the
annihilation model described in the text with the existent experimental data (c). Circles - [219],
squares - [220].

Figure 6.3(a,b), taken from [85], demonstrates the resulting differential gamma
distribution in the Galactic North Pole direction in comparison with EGRET
data [209] in the range 10�

�

Eγ
�

�

1000 MeV. The peak ofπ 0 decay is
clearly seen both in calculations as well as in experimental distributions. Fig-
ure 6.3(c) shows the charged multiplicity distribution in the annihilation model
described above. The comparison with the experimental points taken from
[219, 220] serves as additional confirmation of the calculations [85].

There were also performed in [85] the calculations for two other values of
the minimal velocity of the antiprotonsvdisp � 300 km/s and for the velocity
of the (anti)matter thrown out by the Supernovae,vSN � 2 . 104 km/s. The
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respective necessary values of the integral antiproton number density are:

ndisp
0 ½ 2.0 . 10�12 cm�3

nSN
0 ½ 6.0 . 10�11cm�3 .

(6.37)

Thus, one can see that necessary integral antiproton density in the halo
practically linearly depends on minimal velocity of antiprotons in the range
300 �

�

v �
�

104 km/s. Note, that the approximation about annihilation at rest
is valid for all the range of above minimal velocities and the resulting gamma
spectrum does not change its form at such a variation ofvmin.

4.3 Gamma ray constraint on antimatter
Let us estimate the intensity of the antiproton source and, as result, the total

mass of the hypothetical globular cluster of antistars for three values of the
minimal antiproton velocity:vdisp, vSW andvSN. The first case assumes that
antiprotons have been decelerated and travel in the halo with velocities equal to
the velocity dispersion defined by the galactic gravitational field. The second
value ofvmin is of the order of the speed of the fast stellar wind and the third
case is the velocity of particles blown off by the Supernova explosion without
possible deceleration.

If we integrate over the volume of the whole halo and take into account
the antiproton storage in the halo during the confinement time, we obtain for
the integral intensity of the antiproton sourceṀ » ⒧n0 mp Vhalo⒭ �tcon f. For
above three variants of the minimal antiproton velocity andtcon f » 5 . 108

years we obtain from Eq. (6.36) and Eq. (6.37) the following values of the
necessary antiproton source intensity:

Ṁ disp
½ 3.0 . 10�9 M

þ○

�yr

Ṁ SW
½ 8.5 . 10�9 M

þ○

�yr

Ṁ SN
½ 1.0 . 10�7 M

þ○

�yr

(6.38)

From the analogy with elliptical galaxies in the case of constant mass loss
due to stellar wind one has the mass loss 10�12M

þ○

per Solar mass per year. In
the case of stellar wind we find for the mass of the anticluster:

M SW
clu ½ 2 . 104 M

þ○

. (6.39)

To estimate the frequency of Supernova explosions in the antimatter globu-
lar cluster the data on such explosions in the elliptical galaxies were used [84],
what gives the mean time interval between Supernova explosions in the anti-
matter globular cluster∆TSN » 1.5 . 1015 M�1

5 s. ForM5 � 1 this interval is
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smaller than the period of the orbital motion of the cluster, and one can use the
stationary picture considered above with the change of the stellar wind mass
loss by theṀ » fSN . MSN, where fSN � 6 . 10�16 M5 s�1 is the frequency
of Supernova explosions andMSN � 1.4 M

þ○

is the antimatter mass blown off
in the explosion. Following the theory of Supernova explosions in old star pop-
ulations only the supernovae of the type I (SNI) take place, in which no hydro-
gen is observed in the expanding shells. In strict analogy with the matter SNI
the chemical composition of the antimatter Supernova shells should include
roughly half of the total ejected mass in the internal anti-iron shell with the
velocity dispersionvi �

�

8.108 cm/s and more rapidly expandingve » 2 .109

cm/s anti-silicon and anti-calcium external shell. The averaged effective mass
loss due to Supernova explosions gives the antinucleon fluxṄ » 1042 M5 s�1,
but this flux contains initially antinuclei with the atomic numberA ½ 30� 60,
so that the initial flux of antinuclei is equal tȯA » ⒧2 � 3⒭ .1040 M5 s�1. Due
to the factor» Z2A2�3 in the cross section the annihilation life-time of such
nuclei is smaller than the cosmic ray life-time, and in the stationary picture the
products of their annihilation withZ � 10 should be considered. With the
account for the mean multiplicity� N �» 8 of annihilation products one
obtains the effective fluẋAe f f » ⒧1.5 � 2.5⒭ . 1041 M5 s�1, being an order of
magnitude smaller, than the antiproton flux from the stellar wind.

If to take the antimatter stellar wind as small as the Solar wind⒧Ṁ
þ○

�

10�14 M
þ○

yr�1
⒭ this corresponds to the antiproton flux by two orders of mag-

nitude smaller than one chosen above in Eq. (6.38), and the antimatter from
Supernova should play the dominant role in the formation of galactic gamma
background. For the Supernova case we have for the mass of the anticluster
the value

M SN
clu ½ 4.0 . 105 M

þ○

ÿ

which value agrees with the estimation [84]. If we assume that significant frac-
tion of the antiprotons from stellar wind is decelerated up tovdisp the respective
mass of the globular cluster of antistars can be reduced up to

M disp
clu ½ 7 . 103 M

þ○

.
It is necessary to make a small remark. Namely, in principle, one cannot

exclude that the secondary antiprotons produced inppcollisions can be decel-
erated in the halo magnetic fields up to velocities order of few hundreds km/s.
In this case they will also give contribution in the diffuse gamma flux annihil-
ating with the matter gas and the calculations performed above are valid also
in this case.

5. Antihelium flux signature for antimatter
The estimation of the previous Section puts upper limit on the total mass

fraction of antimatter clusters in our Galaxy. Their integral effect should not
contradict the observed gamma ray background.
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The uncertainty in the distribution of magnetic fields causes even more prob-
lems in the reliable estimation of the expected flux of antinuclei in cosmic rays.
It is also accomplished by the uncertainty in the mechanism of cosmic ray ac-
celeration. The relative contribution of disc and halo particles into the cosmic
ray spectrum is also unknown.

To have some feeling of the expected effect we may assume that the mech-
anisms of acceleration of matter and antimatter cosmic rays are similar and that
the contribution of antinuclei into the cosmic ray fluxes is proportional to the
mass ratio of globular cluster and Galaxy. Putting together the lower limit on
the mass of the antimatter globular cluster from the condition of survival of an-
timatter domain and the upper limit on this mass following from the observed
gamma ray background one obtains [84, 86, 85] the expected flux of antihe-
lium nuclei in the cosmic rays with the energy exceeding 0.5 Gev/nucleon to
be 10�8 ..� 10�6 of helium nuclei observed in the cosmic rays.

Such estimation assumes that annihilation does not influence the antinuclei
composition of cosmic rays, what may take place if the cosmic ray antinuclei
are initially relativistic. If the process of acceleration takes place outside the
antimatter globular cluster one should take into account the Coulomb effects
in the annihilation cross section of non relativistic antinuclei, what may lead
to suppression of their expected flux.

On the other side, antinuclei annihilation invokes new factor in the prob-
lem of their acceleration, which is evidently absent in the case of cosmic ray
nuclei. This factor may play very important role in the account for antimatter
Supernovae as the possible source of cosmic ray antinuclei. From the ana-
logy with elliptical galaxies one may expect [84, 86, 85] that in the antimatter
globular cluster Supernovae of the I type should explode with the frequency
about 2. 10�13

�M
þ○

per year. As it was discussed in the previous Section, on
the base of theoretical models and observational data on SNI (see c.f. [221])
one expects in such explosion the expansion of a shell with the mass of about
1.4M

þ○

and velocity distribution up to 2. 109cm�s. The internal layers with
the velocityv � 8 . 108cm�s contain anti–iron56Fe and the outer layers with
higher velocity contain lighter elements such as anti–calcium or anti-silicon.
Another important property of Supernovae of the I type is the absence of hy-
drogen lines in their spectra. Theoretically it is explained as the absence of
hydrogen mantle in Presupernova. In the case of antimatter Supernova it may
lead to strong relative enhancement of antinuclei relative to antiprotons in the
cosmic ray effect. Note that similar effect is suppressed in the nuclear com-
ponent of cosmic rays, since Supernovae of the II type are also related to the
matter cosmic ray origin in our Galaxy, in which massive hydrogen mantles
(with the mass up to few solar masses) are accelerated.

In the contrast with the ordinary Supernova the expanding antimatter shell is
not decelerated owing to acquiring the interstellar matter gas and is not stopped
by its pressure but annihilate with it [84]. In the result of annihilation with
hydrogen, of which the matter gas is dominantly composed, semi–relativistic
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antinuclei fragments are produced. The reliable analysis of such cascade of an-
tinuclei annihilation may be based on the theoretical models and experimental
data on antiproton nucleus interaction. The important qualitative result is the
possible nontrivial contribution into the fluxes of cosmic ray antinuclei with
Z �

�

14 and the enhancement of antihelium flux. With the account for this
argument the estimation of antihelium flux from its direct proportionality to
the mass of antimatter globular cluster seems to give the lower limit for the
expected flux.

Here we study another important qualitative effect in the expected antinuc-
lear composition of cosmic rays. Cosmic ray annihilation in galactic disc res-
ults in the significant fraction of anti-helium-3 so that antihelium-3 to anti-
helium-4 ratio turns to be the additional signature of the antimatter globular
cluster.

5.1 Equations for differential fluxes
Cosidering the4He nuclei travelling through the Galactic disk we have to

take into account two processes:

(i) the destruction of an anti-nucleus in the inelastic interactions with the pro-
tons of the galactic media and

(ii) the energy losses during the travelling through the Galaxy.

For the3He nuclei we need to take into account also the possibility of the
3He nuclei production due to the reaction

(iii) 4He � p }

3He � all .

The energy losses occur due to four kinds of processes:

(a) the energy losses on ionization and excitation of the hydrogen atoms in the
disk matter;

(b) the bremsstrahlung radiation on the galactic hydrogen atoms;

(c) the inverse Compton scattering on the relic photons and

(d) the synchrotron radiation in the galactic magnetic fields.

The processes (b)3 (d) are proportional to⒧me�MHe⒭
2 and can be neg-

lected at not very high energies of theHe nuclei. The energy losses due to
ionization and excitation of the hydrogen atoms per one collision are being
described by the expression [5]:

æ⒧β ÿ z⒭ �
4π Z⒧zα⒭

2

me β 2 ln
2meβ

2

I ⒧1� β 2
⒭

� β
2
ÿ (6.40)
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whereI is ionization potential of the hydrogen atom,I ½ 15eV; Z � 1ÿ z �
2 are the electric charges of the hydrogen and helium nuclei, respectively,β �

v�c is the dimensionless velocity andα � 1�137 is the fine structure constant.
The rates of the energy losses and of the4He nuclei destruction are:

dE3ÿ4

dt
� �nH v3ÿ4 æ3ÿ4ÿ

(6.41)
dn3ÿ4

dt
� �nH v3ÿ4 σ

⒧3ÿ4⒭
ann n3ÿ4ÿ

wherenH is the particle density ofH atoms in the Galactic disc.
The source of3He nuclei can be written in the form:

dn⒧�⒭3 ⒧tÿ E3⒭

dt
� �

@

±

E3

dn4⒧tÿ E4⒭
∂W⒧E4; E3⒭

∂E3
. (6.42)

Here∂W⒧E4; E3⒭�∂E3 describes the probability to produce3He in the inelastic
collision 4He � p } 3He � all , with the normalization condition:

@

±

0
dE3

∂W⒧E4; E3⒭

∂E3
� W3⒧E4⒭.

If we introduce the differential flux

J⒧tÿ E⒭ � v
∂ n⒧tÿ E⒭

∂E

and the energy per nucleon (E } E�A), with A � 4 being the atomic weight
of the anti–helium nucleus, we obtain finally the system of integro–differential
equations, describing the behavior of4He and3He nuclei in the Galaxy [86]:

dJ⒧tÿE4⒭

dt � �nH cβ4 σ inel⒧p4⒭ � A
m2

p

p4 E2
4

dæ⒧β4⒭

dβ4
J⒧tÿ E4⒭ÿ

dE4
dt � �nH c A�1

β4 æ⒧β4⒭ÿ

dJ⒧tÿE3⒭

dt � �nH cβ3 σ inel⒧p3⒭ � ⒧A� 1⒭ m2

p3 E2
3

dæ⒧β3⒭

dβ3
J⒧tÿ E3⒭

�nH cβ3

@

±

E3

dE4 σ 4⒧p4⒭
∂W⒧E4;E3⒭

∂E3
J4⒧tÿ E4⒭ÿ

dE3
dt � �nH c ⒧A� 1⒭�1

β3 æ⒧β3⒭.
(6.43)
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5.2 The annihilation cross sections
Because the cross section of coherent interaction of the nucleon with nuclei

is not larger than⒧10 � 15⒭% of the inelastic cross section (see, e.g., [222]),
we can neglect such processes and put [86]:

σ ann⒧N He⒭ ½ σ inel⒧N He⒭ÿ (6.44)

whereσ ann⒧N He⒭ is the cross section for the annihilation of4He in its colli-
sion with the nucleon andσ inel⒧N He⒭ is the inelastic cross section.

Total and elastic cross sections for thepp, pn, p̄p, p̄n and p̄d (d is the
deutron) can be found in [214]. For total cross sections at laboratory mo-
mentumPlab � 50 GeV�c the parameterization, following from the Regge
phenomenology [214], was used in [86]:

σ ⒧p N⒭tot � X sε � Y s�η
ÿ (6.45)

where
Xab � Xāb

Xpp � 22.0
ù

� 0.6
Xpn � 22.6

ù

� 0.6
Ypp � 56.1

ù

� 4.4
Ȳpp � 98.2

ù

� 9.5
Ypn � 55.0

ù

� 4.1
Ȳpn � 92.7

ù

� 8.6
η � 0.46

ù

� 0.3
ε � 0.079

ù

� 0.003.

(6.46)

At 0.1 � Plab � 50 GeV�c the plots from [214] for the total and elastic
cross sections were used in [86].

Very scare experimental data on total and elastic cross sections forp 4He
can be found in [225, 226] and for ¯p 4He in [222, 223, 224]. Using these data
the A dependence of the cross sections was found [86] in the form:

σ ⒧
4He p⒭ � A0.84

�

1
2

σ ⒧pp⒭ � σ ⒧np⒭ ÿ

σ ⒧4He p⒭ � A0.84
�

1
2

σ ⒧p̄p⒭ � σ ⒧n̄p⒭ .

The aboveA–dependence was also used in [86] for the inelastic cross section
of 3He p collisions. The inelastic cross sections for interaction of4He, 4He
and3He with protons are shown in Figure 6.4.

In this picture, taken from [86], the experimental points forσ tot � σ el of
the reactionsp 4He andp̄ 4He were also plotted.
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Figure 6.4. Inelastic cross sections for: (a) (4He p), (b) (4He p) and (c) (3He p) interactions.
The closed circles are the experimental points forσ inel⒧p4He⒭ [225, 226] andσ inel⒧p̄4He⒭
[222].

5.3 Numerical simulations
The experimental data from [224, 222] give for the probability to produce

the3He nucleus in4He pcollision [86]:

σ ⒧p̄ 4He } 3He � all⒭
σ ann⒧p̄ 4He⒭

½ 0.25ÿ at P � 193MeV. (6.47)
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It was suggested in [86] that relative contribution to3He does not depend
on energy and the above value was used.

For simplicity it was suggested in [86] that the probabilitydW⒧E4; E3⒭�dE3

in Eq. (6.42) can be approximated by theδ - -function:

∂W⒧E4; E3⒭

∂E3
� W3 δ ⒧E4 � E3⒭ÿ

with W3 from Eq. (6.47).
The initial fluxes for4He and4He we chose in the form

J4⒧0ÿ E⒭ � 0.07 �
1.93β

E2.7 � 10�6
ÿ cm�2 s�1 sr�1

⒧GeV�nucleon⒭�1
ÿ

J3⒧0ÿ E⒭ � 0. (6.48)

In the galactic disc, where the hydrogen number density isnH ½ 1 atom�cm3,
the typical timescaleTcon f � 107 yr was chosen in [86] for the confinement
time for Henuclei. It was also accounted for the very low density of the matter
in the Galactic halo.

Results of the calculations [86] are shown in Figure 6.5. Solid line shows
initial He flux, dashed and dot–dashed lines represent final fluxes of4He and
3He, respectively.

The first two equations in (6.43) can be also applied to the ordinary4He
nuclei component of cosmic rays, if under theσ ann one understands the in-
elastic interaction cross section of the4He nucleus with the proton, neglecting
again the coherent processes. For comparison there is also plotted by the dot-
ted line the final flux of the4He, suggesting that the initial flux is the same as
for 4He. vspace*2cm

In Figure 6.6 the ratios of fluxes4He�4He and 3He�4He are plotted for
two cases: upper curves forM�MMW � 10�6 and two lower curves for
M�MMW � 10�8. These results are compared with the expected sensitivity
of AMS experiment to antihelium flux. One finds AMS experiment access-
ible to complete test of the hypothesis on the existence of antimatter globular
cluster in our Galaxy. The test of this hypothesis can begin even earlier [90],
before AMS, provided that the experimental sensitivity reaches the maximal
estimated4He flux, as it is, in particular, expected in PAMELA experiment.

The important result of these calculations is that the substantial contribution
of antihelium-3 into the expected antinuclear flux was found in [86]. Even in
the case of negligible antihelium-3 flux originated in the halo its contribution
into the antinuclear flux in the galactic disc should be comparable with the one
of antihelium-4.

The estimations of [84], on which the calculations [86] were based, assumed
stationary in-flow of antimatter in the cosmic rays. In case Supernovae play
the dominant role in the cosmic ray origin, the in–flow is defined by their
frequency. One may find from [84] that the interval of possible masses of
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Figure 6.5. Calculated fluxes of4He (dashed),4He (dotted) and3He (dash–dotted). Solid
line presents initial flux for4He nuclei. The confinement time has been chosen equal to 107

years.

antimatter cluster 3. 103 ..� 105M
þ○

gives the time scale of antimatter in-flow
1.6 . 109 ..� 5 . 107 years, which exceeds the generally estimated life time of
cosmic rays in the Galaxy. The succession of antinuclear annihilations may
result in this case in the dominant contribution of antihelium and, in particular,
antihelium-3 into the expected antinuclear flux. It makes antihelium signature
sufficiently reliable even in this case.

6. Anti-Asteroids annihilations on Planets and
Sun

The existence of antimatter stars in the Galaxy as possible signature for
inflationary models with non-homogeneous baryosynthesis may leave the trace
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Figure 6.6. Ratios of fluxes4He�4He (dashed) and3He�4He (dash–dotted). Two upper
curves correspond to the case of the maximal possible mass of antimatter globular cluster
Mmax � 105 M

þ○

and the two lower curves to the case of the minimal possible mass of such
clusterMmin � 103 M

þ○

. The results of calculations are compared with the expected sensitivity
of AMS experiment [89] (solid lines).

by antimatter cosmic rays as well as by their secondaries (anti-planets and anti-
meteorites) diffused bodies in our galactic halo. The anti-meteorite flux may
leave its explosive gamma signature by colliding on lunar soil as well as on
terrestrial,jovian ??? and Solar atmospheres. However the propagation in
the Galaxy and the consequent evaporation in galactic matter gas suppress the
lightest (m � 10�2g) anti-meteorites. Nevertheless heaviest anti-meteorites
( m � 10�1 g up to 106 g) are unable to be deflected or annihilate by the
thin galactic gas surface annihilation; they might hit the Sun (or rarely Jupiter)
leading to an explosive gamma event and a spectacular track with a bouncing
and even a propelling annihilation on chromosphere and photosphere. Their
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anti-nuclei annihilation in pions and their final hardgamma showeringmay
be observable as a "solar flare" at a rate nearly comparable to the observed
ones. From their absence we may infer first bounds on antimatter-matter ratio
near or below 10�9 limit applying already recorded data in gamma BATSE
catalog.

6.1 Gamma flashes by antimeteorite annihilations
on Earth and Moon

It was shown above that annihilation of antimatter, lost by antimatter stars
in the form of stellar wind, can reproduce the observed galactic gamma back-
ground in the range tens-hundreds MeV. Still any source of neutral pions can
lead to the same effect and the manifest signature for existence of antimatter
stars is the existence of antinuclear component of cosmic rays, accessible to
the future cosmic ray experimental searches, first of all in AMS-II experiment.
The other profound signature of antimatter are the pieces of antimatter, com-
ing in the form of antimatter meteorites. We study, following [91], the latter
possibility in the present Section and find it interesting tool to probe the origin
of matter, related with the creation of antimatter. With all the uncertainties and
reservations, taken into account, the search for antimatter meteorites can still
provide the useful probe for the existence of macroscopic antimatter.

The present flux of meteorites with the massM observed on the Earth is

nearly 104
�

M
10kg

�

�1
event a year. This power extends for a large range of mass

values. It is very possible that most of this matter has a local "solar" origin.
However simple argument on nearby stellar encounters and matter exchange
imply that up to 1% of the meteorites may be of galactic (extra-solar) origin.
Therefore up to nearly

dN
dt

� 106
 

M
1g

!

�1

(6.49)

of meteorites, hitting the Earth any year, can be of galactic (extra-solar) nature.
If the corresponding antimeteorites rate follows the same power law, at any
given suppressed ratio,r ,

r �

 

Na

Nm

!

ÿ

whereNa⒧m⒭ the total amount of antibaryons (baryons) in the Galaxy, (let say
a part over a million or a billion or below) its signal will be anyway powerful
enough to be (in most cases) observable. Indeed the amount of energy re-
leased during the annihilation follows common special relativity; for any light
(milligram unit) anti-meteorites massM the energy ejected is:

E � 1018
 

M
1mg

!

erg. (6.50)
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Its corresponding "galactic" event rate, following Eq. (6.49) is

dN
dt

� 109r

 

M
1mg

!

�1

year�1. (6.51)

The event of the anti-meteorite annihilation on the Earth atmosphere will give
life to unexpected upward gamma shower that will mimic mini nuclear atomic
test or extreme upward Gamma Shower. Even for a large suppression ratio
r � 10�9 this event rate derived from expression above (one a year) should
not escape the accurate BATSE ten-year monitoring. Actually the atmosphere
area below BATSE detection is nearly 1% of all Earth leading to a total prob-
ability rate of 0.1 in ten years. However the corresponding secondaries gamma
flux by consequent nuclei annihilation showering into charged and neutral pion
and their decays and degradation in atmosphere should lead to a huge gamma
fluence ???? F observable in a near orbit satellite as Beppo-Sax or GRO
Batse:

F »ù 10 erg�cm2
⒧M�1mg⒭ÿ

Flux � 100erg . sec�1cm�2.

This latter flux is derived assuming a characteristic galactic velocity v= 300
km/sec for the incoming anti-meteorite and a terrestrial atmosphere of nearly
30 km height. Such a signal is nearly 10 order of magnitude above the sens-
itive Batse detection threshold. Smaller scale upward gamma flash are indeed
known and they are called "Terrestrial Gamma Flashes". They are correspond-
ing to just 108 or 109 erg of isotropicfluence ???energy (or even much less
energy if originated by beamed upwardτ airshowers at 1015eV up to nearly
horizontal ones at 1019eV, see review and references in [227]) released at
millisecond up to ten of second timescales. Therefore such milligram anti-
meteorite bang will be already loudly recorded on data, if they were taking
place. Of course so high large eventfluence ???would not escape also other
less sensitive astrophysical or military detectors. Therefore it seem that mil-
ligram antimatter meteorite rain should be totally excluded at very low level
(r �
�

10�9). Even more dramatic and sharp gamma signature should come by
their fast Moon annihilation (because of the absence of atmosphere), but at a
less (Moon surface over Earth one) rate. Lunar anti-meteorite annihilation in
characteristic nano-second signature, would make very strong signals at lunar
orbiting gamma detectors. They provide a complementary tool to exclude very
light (micro-gram) antimeteorite rains at the same severe bound (r �

�

10�9).

6.2 Light antimeteorite evaporation crossing
the Galaxy

However these results may be alleviated keeping in mind that antimeteorites
can be annihilated or "evaporated" during their propagation in galactic gas.
Indeed, the column density of atoms (protons) crossed assumingndisk � 1 .
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cm�3 and a galactic disk height ofh � 100pc and a total number of crossing
100 is:N � 3.1022 cm�2. Each crossed matter atom annihilates on the surface
of the rigid body of anti-meteorite. Putting the total mass of the crossed matter
gas equal to the mass of spherical homogeneous antimeteorite of radiusr and
internal densityρ,

π r 2NmH �
4π

3
ρr 3
ÿ

one obtains that the antimeteorite can not escape complete annihilation, if its
radius issmaller – – larger???, than

ran �
3
4

. NmH

ρ
.

The corresponding antimeteorite mass, given by

Man �
9
16

π . ⒧NmH⒭
3

ρ2 ÿ

is (assuming water density) about 2.2 . 10�4 g. The actual value of minimal
mass of the antimeteorite, surviving annihilation, may be a few orders of mag-
nitude larger. If we take into account the strong (cubic) dependence ofMan on
N, we find important the increase ofN due to effects of annihilation with the
gas above the disc. The mass of antimeteorite, which is completely destroyed
by annihilation, can be even larger, if we take into account its atomic compos-
ition. To destroy the antimeteorite, which consists of anti-atoms with atomic
numberA, it is not necessary to annihilate all the anti-nucleons in all its an-
tinuclei, since even the result of one proton anti-nucleus annihilation not only
destroys the anti-nucleus, but also causes the successive destructive effects by
its fragments. We discuss the effects of energy and momentum transfer due
to such processes in the next section, and only estimate here the increase in
the minimal mass of anti-meteorite, surviving after annihilation. Putting the
total number of matter gas atoms, annihilating on the surface of anti-meteorite,
equal to the total number of anti-atoms with atomic numberA in antimeteorite,
we obtain instead ofMan the magnitude

Msurv�
9
16

π . ⒧ANmH⒭
3

ρ2 ÿ (6.52)

which is the factor ofA3 larger, thanMan. This imply that milligram (and even
much heavier, up to 0.3 g for anti-ice meteorite) antimeteorites might be sup-
pressed and maybe almost absent in solar system; previous bound by annihil-
ation on the Earth may be considered for heavier (10-100 milligram or above)
anti-meteorites leading to a ratio (r � 10�8) of antimatter allowable. Bounds
by microgram anti-meteorite annihilation on Moon soil while being very hard
and sharp, will be no more effective, than the terrestrial bounds. Moreover,
there are other processes that may dilute above antimeteorite presence in our
Solar system.
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6.3 The antimeteorite annihilation and
deceleration in gas

Antimeteorite with a mass heavier than milligram may survive annihilation:
while crossing a gas cloud, their lateral annihilation may heat a meteorite side,
leading to a rocket ejection able to decelerate and at large matter gas density
gradient even divert and bounce the trajectory. However, for realistic density
gradients the latter case can not be realized and the momentum transfer due to
annihilation causes the antimeteorite deceleration in matter gas, which can be
described as follows.

Antimetorite of radiusr , moving with a velocityv in the central field of gas,
distributed around the central massM isotropically as

ρ � ρ0 .
 

R0

R

!2

ÿ

experiences the friction force due to annihilation

F f � �ρ⒧R⒭π r 2
ηvcÿ

whereη is the effectiveness of momentum transfer near unity. Assuming an
initial anti-meteorite velocityvai and densityρa and a normal galactic-disk
mass densityρ, one finds the characteristic relaxation timeτ (for a millimeter
anti-meteorite radius) :

τ �
4
3

ρa

ρ

r
ηc

� 1.3η
�1 . 102 . year

r
mm

ρa

gcm�3

10�24gcm�3

ρ
. (6.53)

Therefore in a short (in galactic scales) times any fast anti-meteorite will be
slowed down to a velocity comparable with common galactic gas. Therefore
lightest anti-meteorite will follow a co-moving pattern with matter in galactic
disk. Heavier ones (m�� 0.1 g) will not evaporate and might reach the Earth.

In the presence of any radial gravitational force, near stars or star clusters,
the gravitational force is equal to

Fg �
4
3

. GMπρar 3

R2
0

ÿ

and the friction action leads to a slow-down free fall up to a steady value. The
equality of the two forces indeed leads to the constant velocity

v �
2
3η

ρa

ρ0

r
R0

Rg

R0
cÿ (6.54)

where

Rg �
2GM

c2



Antimatter in the modern Universe 143

is the Schwarzschild radius of any central body.
The annihilation friction is effective, resulting in the anti-meteorite deceler-

ation and successive slow drift and final annihilation towards the star center.
In nearly horizontal motions the fast anti-meteorite may bounce on the star-

planet atmosphere and they may escape from the central field. In the case
of general motion and matter gas distribution this effect may be estimated by
assuming that a fraction of antimatter is annihilated leading to a momentum
exchange (See [228]) and a velocity loss∆v » v » 10�3c:

∆v � η . E�Mcÿ

whereη is the fraction of annihilation energy going into effective anti-asteroid
momentum exchange. Being necessary to escape from the galactic plane or
from solar atmosphere a∆v � 10�3c one finds

⒧∆E⒭�⒧Mc2
⒭ � ⒧∆M⒭�M �

�

10�3
�η.

This value cannot exceed unity otherwise the anti-meteorite will be totally
annihilated; therefore theη efficiency cannot be below 10�3 but its value is
bounded by the ratio of the interaction length of charged pions on the meteor-
ite volume; the 300 MeV pion crosses nearly 85 cm in water before interacting;
the total amount of matter crossed during meteorite life-time traveling (com-
parable to galactic age) in the galactic disk is nearly 10�2 g or 10�2 cm. of
water. However, in the case of atomic antinuclei composition annihilating with
hydrogen of galactic gas the main consequence will be a breakdown of antinuc-
lei. Its fragments will deposit in a very efficient way (nearly 50%) the energy
of annihilation into linear momentum as well as increasing the temperature of
the solid antimatter body.

The estimation [91] show that the effective cooling is keeping the temper-
ature below the solid (rock) melting point, while the antimeteorite moves in
the Galaxy and Solar System. The equilibrium temperature is established,
provided that the heating rate 2π r 2

κρc2v (whereκ is the fraction of the total
energy, released in the annihilation (Ean � 2mHc2)), that heats the spheric-
ally symmetric antimeteorite of radiusr , moving with velocityv in the matter
gas of densityρ � mH n, is equal to the rate of radiative cooling 4π r 2

σT4c
(whereσ is the Stephan-Boltzmann constant). In the considered approxima-
tion both heating and cooling are proportional to the surface area, so that the
equilibrium temperature is given byTe � 168K⒧nκ v⒭1�4 for matter gas number
densityn � 1cm�3 and anti-meteorite velocityv � 300 km/s. Annihilation
of matter gas with antinuclei on the antimeteorite surface leads to its erosion,
but its effect, which may deserve special analysis for particular antimeteorite
composition, does not lead to significant change of the above estimation for
sufficiently large antimeteorites.

Nevertheless the "ice" anti-comets might be melt efficiently still in the Galaxy
and very efficiently near Solar and Terrestrial atmosphere. The reason is that
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the estimated value ofTe can easily be factor of 2 larger, but the antimeteorite,
moving with the velocityv�c ½ 10�3, with the account for all the uncertainties
can be hardly heated up to 1000 K due to the annihilation in the low density
matter gas (with the number densityn ½ 1cm�3). The equilibrium condition,
rewritten for energy density of radiation (εγ � 2.7Tnγ ) and of annihilation
products (εan � 2nmHc2) in the formεγ c ½ κεanv, is reached atTe �

�

300K
due to the low values of in-flow velocityv�c ½ 10�3 and matter gas density
n�nγ ½ 10�9, what compensates the large value of annihilation energy release
2mH c2

Te
�

�

2 . 1010.

6.4 Annihilation of anti-asteroids on Sun
The "galactic anti-asteroid" rate on Sun from Eq. (6.49) is

dN
dt

� 1010r
� g

M

�

year�1. (6.55)

The consequent event rate for suppressed anti-asteroids one over a billion is 10
events a year. The fluence F on Earth is 3. 10�7erg�cm2 and comparable to
GRB fluence, with a time dilution of nearly 10 seconds. Therefore it may be
well be missed or misunderstood as a low energy solar flare. The rarest events
at 100 g range may mimic observed solar flares. Let us remind that present
bounds in solar flare activity may be even detectable at a nano-flare intensity.
If the above coincidence is not just the hint of the antimatter meteorites in-fall,
it provides the present most stringent bound on antimatter.It may be useful
to mention that the two anti-meteorite searches undertaken in USSR in
late 1960-s early 1970-s, even with no confirmation, exhibited the positive
effect, see review in [267]. So not only stringent limits, but even positive
discoveries should be in principle considered in the future of such searches.

7. Conclusions
In conclusion we can say that the hypothesis on the existence of antimatter

globular cluster in the halo of our Galaxy does not contradict to either modern
particle physics models or observational data. Moreover, the Galactic gamma
background measured by EGRET can be explained by antimatter annihilation
mechanism in the framework of this hypothesis. If the mass of such a glob-
ular cluster is of order of 104 ..� 105 M

þ○

, we can hope that other signatures
of its existence like fluxes of antinuclei can be reachable for the experiments
in the nearest future. The analysis of antinuclear annihilation cascade is im-
portant in the realistic estimation of antinuclear cosmic ray composition but
seems to be much less important in its contribution into the gamma back-
ground as compared with the effect of antimatter stellar wind. This means
that the gamma background and the cosmic antinuclei signatures for galactic
antimatter are complementary and the detailed test of the galactic antimatter
hypothesis is possible in the combination of gamma ray and cosmic ray studies.
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Anti-meteorites annihilations may provide the challenge to search for antimat-
ter in our Galaxy at the same level of sensitivity which is planned to be reached
in AMS-II experiment (a part over a billion). With all the uncertainty in pos-
sible relationship between the total mass of antimatter stars and the expected
amount of pieces of antimatter to be ejected by antimatter stellar systems and
all the possible reservations our first estimate on Earth and Solar events are
showing rather high sensitivity (10�8

� 10�9) in antimatter search can or even
might be already reached.





Chapter 7

ASTRONOMY OF ULTRA HIGH ENERGY
COSMIC RAYS

1. Cosmoarcheology of cosmic rays
Ultra High Energy Cosmic Rays (UHECR) is the observed effect of su-

perhigh energy physics in the modern Universe, what naturally puts together
particle physics and cosmology in the analysis of their possible origin and ef-
fects. Even for known particles and interactions UHECR correspond to the en-
ergy range, at which their properties were not studied experimentally. Particle
theory predicts a wide variety of new phenomena in this energy range. One
should take into account the possibility of these phenomena in the analysis
of the mechanisms of UHECR origin, propagation and detection. Moreover,
such phenomena are unavoidable in the modern Big Bang cosmology, based on
inflationary models with baryosynthesis and (multicomponent?) nonbaryonic
dark matter. The physics of inflation and baryosynthesis, as well as dark mat-
ter/energy content implies new particles, fields and mechanisms, predicted in
the hidden sector of particle theory. Such particles, fields and mechanisms
may play an important role in the problem of UHECR. It makes new physics
necessary component of the analysis of UHECR data.

Methods of Cosmoparticle physics [3] offer the way to unbind the complic-
ated knot of the physical, astrophysical and cosmological problems, related
with UHECR. They provide the framework to distinguish different types of
predicted cosmological effects of new physics and to discriminate them from
nontrivial effects of known physics, arising in specific astrophysical condi-
tions. In the present Chapter we make some first steps towards this framework
for UHECR studies.

In the framework of cosmoarcheology [18] cosmic rays are treated as the
source of information on particle processes at different stages of cosmological
evolution. In the early Universe such processes in general do not lead directly
to fluxes of particles, accessible to cosmic ray detection, and the special ana-
lysis is needed to relate such processes with their possible reflections in the

147
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observed matter spatial distribution, chemical composition or angular distribu-
tion and spectrum of CMB [267, 304, 130, 131, 132]. For each component
of cosmic particles there exist the period, when the Universe loses its opacity
for this component, and one can get the direct information on these processes
from searches for respective nonthermal electromagnetic, proton - antiproton
or neutrino backgrounds [133, 134, 135, 136]. After the galaxies are formed,
the natural sources of particle acceleration appear in the Universe. Energetic
particles from SNs, GRBs, AGNs interact with the matter and these particle
processes should contribute into the observed cosmic fluxes.

Even if the observed cosmic ray fluxes are completely explained by these
natural mechanisms, the comparison of the observational data with the theoret-
ical prediction for hypothetical sources provides important constraints on such
sources [135, 137, 138], thus providing important and in some cases unique
information on physics of very early Universe [136]. However, in some cases
we are possibly near positive conjecture on the existence of new physics. So,
cosmic fluxes of weakly interacting massive particles (WIMPs), interpreted as
stable neutrinos of fourth generation with the mass» 50GeV, are probably
detected in DAMA experimental search for WIMPs [16], what finds indirect
support in the existing gamma background and cosmic positron data and is
accessible to test in underground neutrino, cosmic ray and accelerator experi-
ments [62, 25, 63, 64, 65, 139].

The field of physics and astrophysics of cosmic rays is rather huge, so we
concentrate here only on some aspects of the possible origin of cosmic Ul-
tra high energy particles in its relationship with the effects of new physics in
the inflationary Universe. The interference between large scale structures and
microphysics, presented in the preceding chapters, revealed several possible
forms of such relationship. It makes us to discuss, at least fragmentary, the
corresponding effects in cosmic rays. Namely, it was shown that the micro-
physical Lagrangian could lead to large scale structure of primordial massive
BH clouds, or to islands of antimatter. In the first case, AGNs are formed, be-
ing one of the popular source of cosmic rays. In the second case, the predicted
antinuclear component of cosmic rays provides the direct test of the considered
model (in particular, proving or disproving the supposed form of Lagrangian).
In this Chapter we give another example of such an interference.

The detection [187, 188, 189, 190, 191, 192, 193] of cosmic rays with en-
ergy above Greisen-Zatsepin-Kuzmin (GZK) cut-off of» 5 . 1019eV presents
a serious problem for interpretation. The origin of GZK cut-off [140, 141]
is due to resonant photoproduction of pions by protons on cosmic microwave
background radiation which leads to a significant degradation of proton energy
(about 20% for 6 Mpc) during its propagation in the Universe. Of course, pro-
ton energy does not change by many orders of magnitude if high energy pro-
tons come from the distances� 50 - 100M pc. However, no nearby sources
like active galactic nuclei have been found up to now in the arrival direction. If
there is some correlation with discrete sources, it is claimed to be with very dis-
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tant B Lac objects [168]. According to the common belief, B Lac are QSOs or
AGNs of moderate mass, emitting jets along the line of sight directly towards
us, what makes the observed effect of their activity so strong.

It is difficult also to relate directly the observed ultra high energy events
with the other known particles. For example, in the case of ultra high en-
ergy photons due to interaction with cosmic background radiation (γ � γ *

�}

e�� e�) the photon free mean path should be significantly less than 100 Mpc.
A scenario based on direct cosmic neutrinos able to reach the Earth from cos-
mological distances can not reproduce the observed signatures of ultra high
energy air showers occurred high in the atmosphere.

Different possibilities were considered (see e.g. [194, 195, 196, 197, 198,
199, 200, 201] and references therein) in order to solve this puzzle. Combining
the advantages of different approaches that involve the existence of primordial
superheavy particles we consider in the present Chapter a nontrivial solution –
annihilation of superheavy particles in primordial bound systems as the source
of UHECR.

Stability of superheavy particles assumes that they possess some charge.
Charge conservation makes these particles to be produced in pairs, and the es-
timated separation of particle and antiparticle in such pair is shown to be in
some cases much smaller, than the average separation determined by the av-
eraged number density of considered particles. If the new U(1) charge is the
source of a long range field similar to electromagnetic field, the particle and
antiparticle, possessing that charge, can form primordial bound system with
annihilation timescale, which can satisfy the conditions, assumed for this type
of UHECR sources. These conditions severely constrain the possible proper-
ties of considered particles. So, the proposed mechanism of UHECR origin is
impossible to realize, if the U(1) charged particles share ordinary weak, strong
or electromagnetic interactions. It makes the proposed mechanism of pairing
and binding of superheavy U(1) charged particles an effective theoretical tool
in the probes of the physics of very early Universe and of the hidden sector of
particle theory, underlying it.

The necessary decoupling of superheavy particles from the interactions of
ordinary particles can be related with physics of neutrino mass, resulting in the
dominant annihilation channels to neutrino. It may be importnat for another
approach to a possible solution of the GZK paradox that considers the Ultra
High Energy Cosmic Rays as secondary products of UHE neutrinos, origin-
ated at far cosmic distances, overcoming GZK cut-off, hitting onto relic light
neutrino in Hot Dark Halos, leading to resonant Z boson production. A con-
sequent Z-Shower (Z-Burst)(see [144, 145, 146, 147, 148]) takes place, where
a boosted ultra-relativistic gauge boson Z (or WW, ZZ pairs) decays in flight
and where its UHE nuclear secondaries are the observed UHECR events in
terrestrial atmosphere. These ZeV primary UHE neutrinos may be produced
either inside compact astrophysical objects (Jets GRBs, AGNs,BL Lac [168]
) or by relic topological defects decay [169] or, as in the present Chapter, by
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ultra high heavy particle annihilation. In the first (compact object) case one
may easily understand the observed UHECR clustering as well as the possible
correlation found recently with BL Lac sources. In the second case one may as-
sume the UHECR clustering toward BL Lac as a pure coincidence; otherwise,
one may consider a possible faster induced annihilation of these superheavy
particles inside deeper clustered gravitational wells around AGN and BL Lacs
objects.

The latter possibility can appear in the considered mechanism due to self-
adjustment of bound systems in the regions of their high density, where the
time scale of collisions of bound systems is less, than the cosmological one.
Being dominantly disrupted in collisions, the bound systems can also contract
in their result, thus increasing the rate of their annihilation.

Assuming the presence of necessary elements of the Z-Shower mechanism
(UHE neutrinos and relic neutrinos in the halo of Galaxy), we show in this
Chapter that the existence of low scale gravity at TeV scale could lead to a
direct production of photons with energy above 1022 eV due to annihilation
of ultra high energy neutrinos on relic massive neutrinos of the galactic halo
[151]. Air showers initialized in the terrestrial atmosphere by these ultra ener-
getic photons could be collected in near future by the new generation of cosmic
rays experiments.

2. Primordial bound systems
One of popular approaches to the problem of UHECR origin is related with

decays or annihilation in the Galaxy of primordial superheavy particles [142,
143] (see [149, 150] for review and references where in). The mass of such
superheavy particles to be considered in here is assumed to be higher than
the reheating temperature of inflationary Universe, so it is assumed that the
particles are created in some non-equilibrium processes (see e.g. [152] and
[153] for review), taking place after inflation at the stage of preheating.

The problems, related with this approach, are as follows. If the source
of ultra high energy cosmic rays (UHECR) is related with particle decay in
the Galaxy, the timescale of this decay, which is necessary to reproduce the
UHECR data, needs special nontrivial explanation. Indeed, the relic unstable
particle should survive to the present time, and having the massm of the order
of 1014 GeV or larger it should have the lifetimeτ , exceeding the age of the
Universe. On the other hand, even, if particle decay is due to gravitational in-
teraction, and its probability is of the order of (here and further, if not directly
indicated otherwise, we use the unitsh̄� c � k � 1)

1
τ
�

 

m
MP

!4

mÿ (7.1)

whereMP � 1019 GeV is the Planck mass, the estimated lifetime would be
by many orders of magnitude smaller. It implies strong suppression factor in
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the probability of decay, what needs rather specific physical realization ([142,
149, 150]), e.g. in the model of cryptons [154, 155] (see [156] for review).

If the considered particles are absolutely stable, the source of UHECRs is
related with their annihilation in the Galaxy. But their averaged number dens-
ity, constrained by the upper limit on their total density, is so low, that strongly
inhomogeneous distribution is needed to enhance the effect of annihilation to
the level, desired to explain the origin of UHECR by this mechanism.

Such increase of particle concentration can be hardly reached by the simple
development of gravitational instability in nearly homogeneous medium, and
it appeals to some strong primordial inhomogeneity in particle distribution.

In the present Chapter, we consider the solution of the latter problem, offered
in [157, 158]. If superheavy particles possess new U(1) gauge charge, related
to the hidden sector of particle theory, they are created in pairs. The Coulomb-
like attraction (mediated by the massless U(1) gauge boson) between particles
and antiparticles in these pairs can lead to their primordial binding, so that the
annihilation in the bound system provides the mechanism for UHECR origin.
To realize this mechanism the properties of superheavy particles should satisfy
a set of conditions, putting severe constrains on the cosmological scenarios and
particle models, underlying the proposed mechanism.

2.1 Superheavy particles in inflationary Universe
As we discussed in in the previous chapters, the models of inflationary Uni-

verse assume that thermodynamically equilibrium conditions of hot Universe
(the so called "reheating") do not take place immediately after the end of infla-
tion, and that there exist rather long transition period of the so called "preheat-
ing". The non-equilibrium character of superheavy particle production implies
strong dependence on the concrete physical processes that can take place at
different periods of preheating stage.

It was shown in [152] that the parametric resonance [153] in the end of in-
flation at t » 1�Hend, when preheating begins, can lead to intensive inflaton
field decay, in which superheavy particles with the massm �

�

10Hend can be
produced. HereHend » 1013GeV is the Hubble constant in the end of infla-
tion. The calculations [152] of primordial concentration of such superheavy
particles exhibit strong dependence onm�H and correspond to a wide range
of their modern densities up toΩX » 0.3.

Superheavy particles can be created in the end of preheating, when reheating
takes place att » 1�Hr (Hr being the Hubble constant in the period of reheat-
ing), if the quanta of inflaton field contain these particles among the products
of decay. The modern density of superheavy particles is then given by

ΩX �
Tr

TRD

2m
mφ

Br⒧X⒭ÿ (7.2)

whereTr » ⒧Hr MP⒭
1�2 is the reheating temperature,TRD » 10eV is the tem-

perature in the end of radiation dominance stage and in the beginning of the
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modern matter dominated stage,mφ � 2m is the mass of the inflaton field
quantum andBr⒧X⒭ is the branching ratio of superheavy particles production
in inflaton decay. The conditionΩX �

�

0.3 constrains the branching ratio as

Br⒧X⒭ �
�

0.1
TRD

Tr

mφ

m
. (7.3)

If inflation ends by the first order phase transition, bubble wall collisions in
the course of true vacuum bubble nucleation can lead to formation of primor-
dial black holes (PBH) with the massM » MP

MP
Hend

. Successive evaporation
of such black holes at

Hev» 1�tev»
M 4

P

M3 » Hend

 

Hend

MP

!2

(7.4)

is the source of superheavy particles, when the temperature of PBH evapora-
tion, increasing with the loss of mass asTPBH » M 2

P�M , reachesm. If α X

is the fraction of PBH mass, evaporated in the form of considered superheavy
particles, the relationship between the probability of PBH formationw andΩX

is given by

ΩX �
Tr

TRD
α Xwÿ (7.5)

for dust-like (MD) expansion law at preheating stage and

ΩX �
⒧MPHend⒭

1�2

TRD
α Xwÿ (7.6)

for relativistic (RD) expansion at the stage of preheating. In the latter case
corresponding to the Eq. (7.6), the conditionΩX �

�

0.3 leads tow �

�

3 .
10�25

�α X. Creation of mini black holes with such a low probability does not
imply first order phase transition after inflation, but it is possible even from
Gaussian "tails" (see [3] for review) of nearly flat ultraviolet spectra, that are
strongly disfavored but still not excluded within the uncertainty of the recent
WMAP measurements of CMB anisotropy [74] .

The presence of additional dynamically subdominant fields at the inflation-
ary stage can strongly modify at the small scales the simple picture of nearly
flat power spectrum of density fluctuations, as it was shown in the previous
chapters. It also leads to the possibility of superheavy particle production in
the decay of quanta of such field,φ , at the preheating stage. The relation-
ship betweenΩX and the relative contributionr of the field,ρφ , into the total
densityρ tot, r � ρφ�ρ tot in the period of decay, atτ » 1�Hd, is given by
Eqs.(7.5)-(7.6), in whichα X has the meaning of the branching ratio for super-
heavy particle production (multiplied by the factor» m�mφ , mφ is the mass
of φ , in case of relativistic decay products) andHend is substituted byHd. If φ

decays due to gravitational interaction,Hd is equal to the probability of decay,
Γ, given by Eq. (7.1),Hd � Γ » mφ ⒧mφ�MP⒭

4. In general, forHd � Γ,
the period of derelativization of the relativistic decay products with the energy
ε » mφ �� m corresponds toH » ⒧m�mφ ⒭

2Hd.
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2.2 Pairing of nonthermal particles
Note, first of all, following [157, 158], that in quantum theory particle sta-

bility reflects the conservation law, which according to Noether’s theorem is
related with the existence of a conserved charge, possessed by the considered
particle. Charge conservation implies that particle should be created together
with its antiparticle. It means that, being stable, the considered superheavy
particles should bear a conserved charge, and such charged particles should be
created in pairs with their antiparticles at the stage of preheating.

Being created in the local process the pair is localized within the cosmolo-
gical horizon in the period of creation. If the momentum distribution of created
particles is peaked belowp» mc, they don’t spread beyond the proper region
of their original localization, being in the period of creationl » c�H, where
the Hubble constantH at the preheating stage is in the rangeHr �

�

H �

�

Hend.
For relativistic pairs the region of localization is determined by the size of
cosmological horizon in the period of their derelativization. In the course of
successive expansion the distancel between particles and antiparticles grows
with the scale factor, so that after reheating at the temperatureT it is equal to

l⒧T⒭ �

 

MP

H

!1�2 1
T

. (7.7)

The averaged number density of superheavy particlesn is constrained by
the upper limit on their modern density. Say, if we take their maximal possible
contribution in the units of critical density,ΩX, not to exceed 0.3, the modern
cosmological average number density should ben � 10�201014GeV

m
ΩX
0.3cm�3

(beingn� 4.10�221014GeV
m

ΩX
0.3T3 in the units̄h� c � k � 1 at the temperature

T). It corresponds at the temperatureT to the mean distance (l s » n�1�3) equal
to

l s ½ 1.6 . 107
� m

1014GeV

�1�3
 

0.3
ΩX

!1�3 1
T

. (7.8)

One finds that superheavy nonrelativistic particles, created just after the end
of inflation, whenH » Hend» 1013GeV, are separated from their antiparticles
at distances more than 4 orders of magnitude smaller, than the average distance
between these pairs. On the other hand, if the nonequilibrium processes of su-
perheavy particles creation (such as decay of inflaton) take place in the end of
preheating stage, and the reheating temperature is as low as it is constrained
from the effects of gravitino decays on6Li abundance (Treh � 4 . 106GeV
[3, 277]), the primordial separation of pairs, given by Eq(7.7), can even ex-
ceed the value, given by Eq. (7.8). It means that the separation between
particles and antiparticles can be determined in this case by their averaged
density, if they were created atH �

�

Hs » 10�15 . MP⒧
1014GeV

m ⒭

2�3
⒧

ΩX
0.3⒭

2�3
»

104
⒧

1014GeV
m ⒭

2�3
⒧

ΩX
0.3⒭

2�3GeV.
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If the considered charge is the source of a long range field, similar to the
electromagnetic field, which can bind particle and antiparticle into the atom-
like system, analogous to positronium, it may have important practical implic-
ations for UHECR problem. The annihilation timescale of such bound system
can provide the rate of UHE particle sources, corresponding to UHECR data.

2.3 Formation of bound systems from pairs
The pair of particle and antiparticle with opposite gauge charges forms

bound system, when in the course of expansion the absolute magnitude of
potential energy of pairV �

αy

l exceeds the kinetic energy of particle relative

motionTk �
p2

2m. The mechanism is similar to the proposed in [159] for bind-
ing of magnetic monopole-antimonopole pairs. It is not a recombination one.
The binding of two opposite charged particles is caused just by their Coulomb-
like attraction, once it exceeds the kinetic energy of their relative motion.

In case, plasma interactions do not heat superheavy particles, created with
relative momentump �

�

mc in the period, corresponding to Hubble constant
H �

�

Hs, their initial separation, being of the order of

l⒧H⒭ �
� p

mH

�

ÿ (7.9)

experiences only the effect of general expansion, proportional to the inverse
first power of the scale factor, while the initial kinetic energy decreases as the
square of the scale factor. Thus, the binding condition is fulfilled in the period,
corresponding to the Hubble constantHc, determined by the equation

 

H
Hc

!1�2

�

p3

2m2αyH
ÿ (7.10)

whereH is the Hubble constant in the period of particle creation andαy is the
"running constant" of the long range interaction, possessed by the superheavy
particles. If the local process of pair creation does not involve nonzero orbital
momentum, due to the primordial pairing the bound system is formed in the
state with zero orbital momentum. The size of bound system exhibits strong
dependence on the initial momentum distribution

lc �
p4

2αym3H2 � 2
αy

mβ 2 ÿ (7.11)

where

β �
2αymH

p2
. (7.12)

what, in principle, facilitates the possibility to fit UHECR data in the frame-
work of hypothesis of bound system annihilation in the halo of our Galaxy.
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Indeed, the annihilation timescale of this bound system can be estimated
from the annihilation rate, given by

wann� Ψ⒧0⒭ 2
⒧σ v⒭ann» l�3

c

α
2
y

m2 Cyÿ (7.13)

where the "Coulomb" factorCy arises similar to the case of a pair of electrically
charged particle and antiparticle. For the relative velocityv

c �� 1 it is given by
[24]

Cy �
2π αyc

v
. (7.14)

Finally, takingv�c » β , one obtains for the annihilation timescale

τann»
1

8π α5
y

� p
mc

�10�m
H

�5 1
m
�

4
π mβ 5

. (7.15)

For Hend�
�

H �

�

Hs , the annihilation timescale equals

τann� 1022
 

1014GeV
m

! 

10�12

β

!5

sÿ (7.16)

being forp» mc, αy �
1
50 andm� 1014 GeV in the range from 10�26s up to

1019
⒧

0.3
ΩX
⒭

10�3s. The size of a bound system is given by

lc � 8 . 10�6
⒧50αy⒭

 

1014GeV
m

! 

10�12

β

!2

cmÿ (7.17)

ranging for 2. 10�10
�

�

ΩX
0.3 �� 1 from 7 . 10�7cm to 6 . 10�3cm. One can

obtain from Eqs. (7.16)-(7.17) the approximate relationship betweenτann and
lc, given by

τann

1010yr
»

ù

 

lc

10�7cm

!5�2

. (7.18)

Provided that the primordial abundance of superheavy particles, created on
preheating stage corresponds to the appropriate modern densityΩX �

�

0.3,
and the annihilation timescale exceeds the age of the UniversetU � 4 . 1017s,
owing to strong dependence on the parameterβ , the magnitude

r X �
ΩX

0.3
tU
τ X

(7.19)

can easily take the valuer X � 2 . 10�10, which was found in [142] to fit the
UHECR data by superheavy particle decays in the halo of our Galaxy. It takes
place, provided that

 

ΩX

0.3

!

� m
1014GeV

�

 

β

10�12

!5

� 5 . 10�6. (7.20)
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If the effective production of superheavy particles takes place in the end
of preheating stage atH �

�

Hs, their initial separation is determined by the
min
l⒧H⒭ÿ l s�, wherel⒧H⒭ is given by Eq. (7.9) andl s is determined by their
mean number density (compare with Eq. (7.8))

l s ½ 3 . 107
� m

1014GeV

�1�3
 

0.3
ΩX

!1�3 1
MPH

!1�2

. (7.21)

In the case of late particle production (i.e. atH �

�

Hs) the binding condition
can retain the form (7.10), ifl⒧H⒭ �

�

l s. Then the previous estimations (7.11)-
(7.15) are valid.

2.4 Formation of bound systems without
initial pairing

In the opposite case of late particle production, whenl⒧H⒭ �
�

l s, the prim-
ordial pairing is lost and even being produced with zero orbital momentum
particles and antiparticles, originated from different pairs, in general, form
bound systems with nonzero orbital momentum. The size of the bound system
is in this case obtained from the binding condition for the initial separation,
determined by Eq. (7.21), and it is equal to

lc ½
1015

2αyMP

� m
1014GeV

�2�3
 

0.3
ΩX

!2�3
� p

mc

�2 �m
H

�

½

1
Hs

½ 2 . 10�6cm
� m

1014GeV

�2�3
 

0.3
ΩX

!2�3 10�12

β

!

. (7.22)

The orbital momentum of this bound system can be estimated asM » mvlc
and the lifetime of such bound system is determined by the timescale of the
loss of this orbital momentum. This timescale can be reasonably estimated
with the use of the well known results of classical problem of the falling down
the center due to radiation in the bound system of opposite electric chargese1

ande2 with massesm1 andm2, initial orbital momentumM and absolute value
of the initial binding energyE (see e.g. [160])

t f �
c3M 5

αy⒧2Eµ3
⒭

1�2
⒧

e1

m1
�

e2

m2
⒭

2.

.
⒧⒧µα

2
y⒭

1�2
� ⒧2M 2E⒭1�2⒭�2. (7.23)

Here µ �

m1m2
m1�m2

is the reduced mass. Putting into Eq. (7.23)M � µvlc,

E � µv2
�2, and with the account for 2M 2E » µα

2
y one obtains the lifetime

of the bound system as

τ �
l3
c

64π

m2

α2
y
� 4 . 1020

 

lc

10�6cm

!3� m
1014GeV

�2
⒧50αy⒭

�2yr. (7.24)
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Using the Eq. (7.13) and the conditionl⒧H⒭ �
�

l s, one obtains for this case the
following restriction

r X �
ΩX

0.3
tU
τ X
�

�

3 . 10�10
 

ΩX

0.3

!5 1014GeV
m

!9

. (7.25)

Note that the condition (7.25) admitsΩX � 0.3, when superheavy particles
dominate in the dark matter of the modern Universe.

The gauge U(1) nature of the charge, possessed by superheavy particles, as-
sumes the existence of massless U(1) gauge bosons (y-photons) mediating this
interaction. Since the considered superheavy particles are the lightest particles
bearing this charge, and they are not in thermodynamical equilibrium, one can
expect that there should be no thermal background of y-photons and that their
non equilibrium fluxes can not heat significantly the superheavy particles.

2.5 Particle binding in hot plasma
The situation changes drastically, if the superheavy particles possess not

only new U(1) charge but also some ordinary (weak, strong or electric) charge
[157]. Due to this charge superheavy particles interact with the equilibrium re-
lativistic plasma (with the number densityn» T3) and for the mass of particles
m�

�

α
2MP the rate of heating

nσ v∆E » α
2T3

m
(7.26)

is sufficiently high to bring the particles into thermal equilibrium with this
plasma. Hereα is the running constant of the considered (weak, strong or
electromagnetic) interaction.

Plasma heating causes the thermal motion of superheavy particles. AtT �
�

m⒧ m
α2MP

⒭

2 their mean free path relative to scattering with plasma exceeds the
free thermal motion path, so it is not diffusion, but free motion with thermal
velocity vT that leads to complete loss of initial pairing, sincevTt formally
exceedsl s atT �

�

10�10MP⒧
ΩX
0.3⒭

2�3
⒧

1014GeV
m ⒭

5�3.
In the case, the interaction with plasma keeps superheavy particles in thermal

equilibrium, potential energy of charge interactionV � αy

l s
is less, than thermal

energyT for any αy �

�

3 . 107
⒧

0.3
ΩX
⒭

1�3
⒧

m
1014GeV⒭

1�3. So binding condition
V �

�

Tkin can not take place, when plasma heating of superheavy particles
is effective.

For electrically charged particles it is the case until electron positron pairs
annihilate atTe » 100keV (see [159]) and for colored particles until QCD
phase transition atTQCD » 300MeV. In the latter case colored superheavy
particles form superheavy stable hadrons, possessing U(1) charge. For weakly
interacting particles after electroweak phase transition, when Eq. (7.20) is not
valid, neutrino heating, given bynσ v∆E » G2

F
T7

m , is sufficiently effective until
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Tw ½ 20GeV. AtT � TN, whereN � eÿQCDÿw respectively, the plasma
heating is suppressed and superheavy particles go out of thermal equilibrium.

In the course of successive expansion kinetic energy of superheavy particles
falls down with the scale factora as² a2, and the binding condition is reached
atTc, given by

Tc � TNαy3 . 10�8
 

ΩX

0.3

!1�3 1014GeV
m

!1�3

. (7.27)

For electrically charged particles, forming after recombination atom-like states
with protons and electrons, but still experiencing the Coulomb-like attraction
due to non-compensated U(1) charges, the binding in fact does not take place
to the present time, since one gets from Eq. (7.27)Tc �

�

1K. Bound systems of
hadronic and weakly interacting superheavy particles can form, respectively,
atTc » 0.3eV andTc ½ 20eV.

The size of the bound system is then given by

lc � 1015
 

0.3
ΩX

!2�3� m
1014GeV

�2�3 1
αyTN

ÿ (7.28)

what even for weakly interacting particles approaches a half of meter (30m
for hadronic particles!). It leads to extremely long annihilation timescale of
these bound systems, that can not fit UHECR data. Moreover, being ex-
tremely weakly bound, they should be disrupted almost completely, colliding
in Galaxy. So, for bound systems of weakly interacting superheavy particles,
nσ vtU » 1014 wheren � 3 . 10�15cm�31014GeV

m
ΩX
0.3 is the number density of

bound systems,σ » π l 2
c and their relative velocityv » 3 . 107cm/s. It makes

impossible to realize the considered mechanism of UHECR origin, if the super-
heavy U(1) charged particles share ordinary weak, strong or electromagnetic
interactions.

3. Primordial bound systems as the source of
UHECR

3.1 Evolution of bound systems in the Galaxy
Superheavy particles, as any other form of CDM should participate gravit-

ational clustering and concentrate to the center in the course of Galaxy form-
ation. There are several factors influencing the evolution of bound systems in
the Galaxy.

If the size of primordial bound systemslc �
�

3.10�6cm⒧ 0.3
ΩX

m
1014GeV⒭

1�2 their
collision rate in the vicinity of Solar systemnσ vtU �

�

1. It can take place,
provided that

⒧50αy⒭
4
 

1014GeV
m

!11�5 ΩX

0.3

!9�5

� 6 . 10�6. (7.29)
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Since the binding energy of bound systems

Eb �
�

5 . 10�27mc2
⒧

0.3
ΩX

1014GeV
m

⒭

2�5

is much less than the kinetic energy of their motion in the Galaxy (T �

mv2
�2), the bound systems should be disrupted in such collisions. On the other

hand, large collision cross sectionσ » π l 2
c corresponds to the momentum

transfer of the order of∆p» mβc. Such small momentum transfer leads both
to disruption of the bound system on free superheavy particles and with the
same order of probability to the reduction of their size down tol » lc�4. If
the bound systems are within gravitationally bound cluster (Galaxy, globular
cluster, CDM small scale cluster), both the free particles and contracted bound
systems with the sizel remain in it and the collisions both between bound
systems and between free particles and bound systems continue with the cross
sectionσ » π l 2.

In vicinity of massive objects with the massM tidal effects lead to disrup-
tion of bound systems with the sizel at the distancer , corresponding to tidal
force energy» GMm

r
l
r , exceeding the binding energy» αy�l . So, in the vi-

cinity of a star with the massM � M
þ○

the bound systems are disrupted at the

distances, smaller thanrd �

C

GMm
αy

l . Tidal effects disrupt bound systems in

the regions of enhanced stellar density,nM , if nMπ r 2
dvtU �

�

1. Taking for the
center of GalaxynM » 106M

þ○

�pc3, one finds that bound systems with the
sizel �

�

5 . 10�6cm should be disrupted there due to tidal effects.
As it was shown in [161], tidal effects strongly influence the formation and

mass distribution of small scale CDM clusters, what should also take place for
small scale clusters of primordial bound systems in the Galaxy. On the other
hand, clustering of primordial bound systems may play important role in the
explanation of observed clustering of UHECR events in the framework of the
proposed mechanism. It may be easily estimated that if bound systems are
clustered around globular cluster, their disruption due to stellar tidal effects is
negligible.

3.2 Space distribution of UHECR events
For the initial number density and size of bound systems, corresponding to

nσ vtU �

�

1, most of bound systems disrupt on the free particles, but suffi-
ciently large fraction of them» βc�βU » ⒧lU�lc⒭

1�2 acquires the sizelU , at
which nσ vtU ½ 1. The relative amount of bound systems with smaller size
l � lU is of the order of» ⒧l�lU⒭2, if their annihilation timescaleτ �

�

tU and
of the order of» ⒧l�lU⒭2 τ

tU
for τ �

�

tU . Annihilation of superheavy particles
in bound systems with the smaller size is more rapid, what increases the pro-
duction rate of such UHECR source as compared with the case of superheavy
decaying particles with the fixed lifetime. This effect of the self-adjustment of
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bound systems annihilation leads to the peculiar space distribution of UHECR
sources, corresponding to this mechanism.

The decay rate density,q, of metastable particles with lifetimeτ for the
number densityn⒧R⒭, depending on the distanceR from the center of Galaxy,
is given by

q �

 

n⒧R⒭
τ

!

. (7.30)

Owing to self adjustment of bound systems annihilation the density of UHECR
production rate for the initial number densityn⒧R⒭ of primordial bound sys-
tems with initial annihilation timescaleτ has the order of the magnitude

q �

 

n⒧R⒭
τ

! 

τ

τU

!3�5 
τ

tU

!1�5

. (7.31)

SinceτU ² l 5�2
U ² n⒧R⒭�5�4 the self-adjustment of bound systems leads to

stronger radial dependenceq ² n⒧R⒭7�4, thus sharpening the concentration of
UHECR sources to the center of Galaxy.

In the case of late particle production withl⒧H⒭ �
�

l s, considered in the
subsection 8.2.4, the dependencel ² β

�1, given by Eq. (7.22), andτ ² l3
²

β
�3, given by Eq. (7.24), results in the change of Eq. (7.31) by

q �

 

n⒧R⒭
τ

! 

τ

τU

!2�3 
τ

tU

!1�3

.

SinceτU ² l3
U ² n⒧R⒭�3�2 in this case, the radial dependenceq ² n⒧R⒭3�2

provides the principal possibility to distinguish this case from the casel⒧H⒭ �
�

l s.
It was noticed in [162] that clustering of UHECR events, observed in AGASA

experiment [163], can be explained in the model of superheavy metastable
particles, if such particles with the massm » 1014GeV form clusters in the
Galaxy with the massM » 5 . M

þ○

τ X
1010yr .

For the cluster of N metastable particles with lifetimeτ the decay rate,P, is
given by

P � ⒧
N
τ
⒭. (7.32)

Owing to self adjustment of bound systems annihilation the UHECR produc-
tion rate for the cluster of N primordial bound systems with initial annihilation
timescaleτ reaches the order of the magnitude

P �

 

N
τ

! 

τ

τU

!3�5 
τ

tU

!1�5

. (7.33)

The enhancement of UHECR production rate due to self-adjustment of bound
systems facilitates the possibility to explain clustering of UHECR events in the
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proposed mechanism. Say, instead of cluster with the mass of» 5 . 106M
þ○

of particles with the massm » 1014GeV and the lifetimeτ » 1016yr, cor-
responding to the considered in [162] possible explanation for the clustering
of UHECR events, observed by AGASA, it is sufficient to have the mass of
» 3 . 103M

þ○

in the cluster of primordial bounds systems with the same initial
annihilation timescaleτ ½ 1016yr.

In the case of late particle production withl⒧H⒭ �
�

l s, for p » mc, the
conditionH � Hs constrains the annihilation timescale

τ � 1026s
� m

1014GeV

�9
⒧50αy⒭

�3
�

� 3 . 1018yr
� m

1014GeV

�9
⒧50αy⒭

�3
ÿ

the size of the bound systeml being related withτ by Eq. (7.24). In this case,
owing to the effect of self-adjustment, clustering of UHECR events can be also
reproduced, e.g. in cluster with the massM » 105M

þ○

and number density
n » 10�10cm�3 of superheavy particles with massm » 1013GeV and initial
annihilation timescale of their bound systemsτ � 4 . 1018yr (for metastable
particles with the same mass and lifetime the cluster with the mass 4. 108M

þ○

is needed). Taking into account the possibility of dominance of superheavy
particles in the modern CDM, mentioned above for the considered case, the
estimated parameters of such cluster seem to be rather reasonable.

Owing to the effect of self-adjustment the initial annihilation time decreases
in the dense regions. On the other hand, disruption of bound systems in col-
lisions leads to the decrease of their actual amount in the modern Universe
as compared with their primordial abundance. It leads to the corresponding
corrections in the conditions (7.20) and (7.25). Provided that the inequality
(7.29) is valid and the collisions of bound systems are significant, the annihil-
ation timescaleτ should be corrected by the effect of self-adjustment and one
should substituteΩX by Ωbs � ΩX, whereΩbs is the averaged concentration
of bound systems, surviving after collisions.

3.3 Annihilation into ordinary particles
To be the source of UHECR the products of superheavy particles annihil-

ation should contain significant amount of ordinary particles. On the other
hand, it was shown above that to be the viable source of UHECR the con-
sidered particles should not possess ordinary strong, weak and electromagnetic
interactions. Their interaction with ordinary particles, giving rise to UHECR
production in their annihilation should be related to the superhighenergy sector
of particle theory and/or physics of inflation and preheating. The selfconsistent
treatment of this problem should involve the realistic particle physics model,
reproducing the desired features of inflationary scenario and giving detailed
predictions for physical properties of U(1) charged superheavy particles. It
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may be expected that in such models, there can exist superheavy boson (Y),
interacting both with superheavy and ordinary particles. If it’s mass is of the
order ofmY �

�

m the annihilation channel into ordinary particles with the cross

sectionσ »
α

2
Y

m4
W

m2 will be of the order of the cross section of the twoy-photon

annihilation channel.
With the account for the invisibleyy mode of annihilation, as well as taking

into account effects of self-adjustment and destructions of bound systems in
collisions, one has to re-define the magnituder X, given above by Eq. (7.19),
as

r e f f
X � Bo

Ωbs

0.3
tU

τe f f
ÿ (7.34)

whereBo is the branching ratio of annihilation channels to ordinary particles
andΩbs � ΩX is the modern cosmological density of bound systems. In the
Eq. (7.34)τe f f � ⒧τ Xτ

3
U tU⒭1�5 andτe f f � ⒧τ XτU tU⒭1�3 for the cases of early

and late particle production, respectively.
Note that atBo » 10�5, when annihilation to ordinary particles is strongly

suppressed, the caseΩX » 0.3 is possible also for early particle production.
Neutrino channel may strongly dominate in the annihilation to ordinary

particles, so thatBo ½ Bν and the channels to other ordinary particles are
strongly suppressed (Bop �� 10�5, whereop� qÿ l ÿ γ ÿ gÿWÿ Zÿ h). Then anni-
hilation of bound systems can not be direct local (galactic) source of UHECR,
but it can provide the source of UHE neutrinos for the Z-Shower mechanism
of UHECR origin.

3.4 Discussion
The combination of the constrains on the conditions of particle creation in

the early Universe and on the effective production of UHECR puts additional
constrains on the parameters of the proposed mechanism, which should be
considered in the framework of specific models of particle theory, underlying
the scenarios of very early Universe. The evolution of primordial bound sys-
tems should be also analyzed on the base of such models. One, however, can
make the general conclusion that the two principal types of bound systems are
possible, originated from (i) "Early particle production", when primordial pair-
ing essentially determines the formation of bound systems and from (ii) "Late
particle production", when the primordial pairing is not essential for bound
system formation.

In the both cases bound systems can dominate in the modern CDM, but
the conditions for such dominance are different. In the case (i) annihilation of
bound systems withΩbs» 0.3 can reproduce UHECR events, if the branching
ratio for annihilation to ordinary particles is small (Bo » 10�5), whereas in
case (ii) this branching ratio should maximally approach to 1.

The possibility of bound system disruption in their collisions in galaxies is
specific for the considered mechanism, making it different from the models of
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decaying and annihilating superheavy particles. If effective, such disruption
results in a nontrivial situation, when superheavy particles can dominate in
the modern CDM, while the UHECR sources represent a sparse subdominant
component of bound systems, surviving after disruption.

Self-adjustment of bound systems annihilation in the Galaxy sharpens their
concentration to the center of Galaxy and increases their UHECR produc-
tion rate in clusters. It provides their difference from the case of metastable
particles. This property, however, crucially depends on the probability of con-
traction of bound systems in the course of collisions. More detailed analysis
of such collisions is needed to prove this result. If proven to be really specific
for the considered type of UHECR sources, it will be principally possible to
distinguish them from other possible mechanisms [144, 156, 164] in the future
AUGER and EUSO experiments.

For suppressed channels of annihilation to quarks, charged leptons, gauge
and Higgs bosons, annihilation of superheavy particles in bound systems can
provide the effective source of UHE neutrinos, thus playing important role in
the UHECR production by Z-Shower mechanism.

If viable, the considered mechanism makes UHECR the unique source of
detailed information on the possible properties of the hidden sector of particle
theory and on the physics of very early Universe.

4. Possible signature of low scale gravity in
UHECR

It was proposed in [174, 175, 176, 177] that the space is 4+n dimensional,
with the Standard Model particles living on a brane. While the weakly, elec-
tromagnetically, and strongly interacting particles are confined to the brane in
4 dimensions, gravity can propagate also in extran dimensions. This approach
allows to avoid the gauge hierarchy problem by introducing a single funda-
mental mass scale (string scale)Ms of the order of TeV. The usual Planck
scaleMP � 1�

A

GN »ù 1.22 . 1019GeV is related to the new mass scaleMs by
Gauss’s law:

M 2
P » RnM n�2

s (7.35)

whereGN is the Newton constant,R is the size of extra dimensions. It follows
from (7.35) that

R» 2 . 10�17
 

TeV
Ms

! 

MP

Ms

!2�n

cm (7.36)

gives atn� 1 too large value, which is clearly excluded by present gravitation
experiments. On the other handn �

�

2 gives the valueR
»

� 0.25 cm, which
is below the present experimental limit»1 cm but can be tested for the case
n� 2 in gravitational experiments in near future.

It can be shown that the graviton including its excitations in the extra di-
mensions, so-called Kaluza-Klein (KK) graviton emission, interacts with the
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Standard Model particles on the brane with an effective amplitude» M�1
s in-

stead ofM�1
P . Indeed, the graviton coupling to the Standard Model particle

» M�1
P , the rate [178] of the graviton interactionr » ⒧M�1

P ⒭

2N, whereN is
a multiplicity of KK-states. Since this factor is» (

A

SR⒭n, where
A

S is the
c.m. energy, then substitutingR from (7.36) we getr » M�2

s . Thus the grav-
iton interaction becomes comparable in strength with weak interaction at TeV
scale.

This leads to the varieties of new signatures in particle physics, astrophysics
and cosmology (see e.g. [178, 179, 180, 181, 182, 183, 184, 185, 186]) which
have already been tested in experiments or can be tested in near future.

In this Section we consider the possible signature of the low scale gravity in
ultra high energy cosmic rays.

The origin of cosmic rays with energies, exceeding the GZK cut off energy
[140], is widely discussed as the possible effect of new physics. In particular,
it was proposed [144, 202] that ultra high energy neutrinos reaching the Earth
from cosmological distances interact with a halo of relic light neutrinos in
the Galaxy, producing due to Z, Wù� boson exchange secondaries inside the
galactic halo. Photons fromπ 0 decays and nucleons can easily propagate to the
Earth and be the source of the observed ultra high energy air showers. Crucial
elements of models [144, 202] are: the existence of neutrino mass in the range
0.1-10 eV and significant clustering of relic neutrinos in the halo up to 105nν ,
where nν is the cosmological neutrino number density (nν » 100cm�3). Also
the existence of ultra high energy (� 1021-1023 eV) neutrino flux is necessary
in order to produce multiple secondaries with energies above GZK cut-off.

If the graviton interaction is comparable in strength with weak interaction
at TeV scale, then photons can be produced directly [151, 205] in a reaction

ν � ν �} g�} γ � γ (7.37)

due to virtual graviton exchange (Figure 7.1). In the Standard Model the pro-
cess (7.37) occurs via loop diagram and therefore is severely suppressed.

At high energies the cross section for the process (7.37) can be obtained im-
mediately from that for the processe�e� �} γ γ including graviton exchange
(see for example [179]) by substituting e = 0. Then

dσ

dz
�

π

16
S3

M8
s

F2
⒧1� z4

⒭ (7.38)

where
A

S is c.m.s. energy, z =cosθ is the polar angle of the outgoing photon.
The factorF depends on the number of extra dimensions:

F �

"

log⒧M 2
s �S⒭ÿ

2�⒧n� 2⒭ÿ
n� 2ÿ
n� 2ÿ

at
A

S�� Ms. In Eq. (7.38) it is also taken into account that primary beam of
neutrinos is polarized.
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Integrating (7.38) over the polar angle and including a symmetry factor for
two γ we get

σ �
π

20
S3

M8
s

F2
½ 7 . 10�35F2

⒧

A

S�TeV⒭6⒧TeV�Ms⒭
8cm2. (7.39)

One can see from (7.39) that at TeV energies the rate of the reaction (7.37) is
comparable with the rate of weak processes [144].

AssumingMs »
A

S » TeV we find [151] for example forn � 3 the
following probability for the interaction of ultra high energy neutrinos inside
the galactic halo:P ½ σ nGLG » 10�3, whereLG » 100 Kpc is the size of
the galactic neutrino halo,nG » 105nν is the neutrino number density in the
galactic halo. This probability is significantly greater than the probability of
ultra high energy neutrino interaction in terrestrial atmosphere [203].

Let us note that nearby galaxies also can be sources of additional ultra high
energy photons due to neutrino interaction with relic neutrinos of galactic halos
[144, 202].

TeV range in c.m.s. corresponds to the energy of extragalactic neutrino flux
E ½ 1022

� 1023 eV since

E ½
S

2m
½ 5 . 1022

⒧

A

S�TeV⒭2⒧10eV�m⒭eV (7.40)

wherem is neutrino mass.
Photon distribution in reaction (7.37) in laboratory system is given by

dσ

d⒧ω�E⒭
� 8π F2 m3E3

M8
s

ω

E

�

1�
ω

E

� �

1�
ω

E

�2
�

�

ω

E

�2
(7.41)

whereω �� m is photon energy. This distribution is shown in Figure 7.2.
It follows from (7.41) that photons are produced in the reaction (7.37) mainly
within the energy range 0.2E

»

� ω
»

� 0.8E with an average energy½ E�2.
Therefore existence of low scale gravity at TeV scale or above could lead

to the direct production of photons with energyω � 1022 eV (at these ener-
gies the mean interaction length for pair production for photons in the radio
background is½ 1� 10M pc [204]). Such photons can be hardly produced
in standard weak interaction processes because in last ones photons appear as
a result of cascade processes significantly reducing photon energy in compar-
ison with the initial neutrino energy. For example, as it was shown in [144]
final energy of photons produced due to cascade processes can be by 10-100
times less than the energy of the initial neutrino flux.

Of course photons with the energy» 1023 eV could be produced in cascade
processes induced by neutrinos of the energy� 1024

� 1025 eV but from the
observations of cosmic rays we know that cosmic ray fluxes decrease with the
energy asE�3, and therefore the probability of such events is significantly
suppressed.
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Figure 7.1. Neutrino annihilation into two photons.

Figure 7.2. Energy distribution of photons (x � ω�E).

The effect of prompt gamma production in UHE neutrino collision with
light neutrinos in the galactic halo was estimated in [151] in the assumption
of a very high local neutrino over-density (nG » 105nν ). The calculations of
neutrino concentration in the galactic neighborhood in the framework of CDM
model lead [170, 171], however, to much smaller values of the over-density for
the light neutrino masses (�

�

1eV), estimated from the searches for neutrino
oscillations [12, 13, 14, 15].

5. Conclusions
Pair correlation, considered in the present Chapter, takes place, if the local

process of superheavy particle creation preserves charge conservation. This
condition has serious grounds in the case of a local U(1) gauge charge, similar
to electric charge, but it may not be the case for global charge, say, for mech-
anisms of R-parity nonconservation due to quantum gravity wormhole effects
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[142]. The crucial physical condition for the formation of primordial bound
systems of superheavy particles is the existence of new strictly conserved local
U(1) gauge symmetry, ascribed to the hidden sector of particle theory. Such
symmetry can arise in the extended variants of GUT models (see e.g. [3] for
review), in heterotic string phenomenology (see [24] and references wherein)
and in D-brane phenomenology [26, 27]. Note, that in such models the strictly
conserved symmetry of hidden sector can be also SU(2), what leads to a non-
trivial mechanism of primordial binding of superheavy particles due to macro-
scopic size SU(2) confinement, as it was the case for "thetons" [165, 166, 167].

The proposed mechanism is deeply involved into the details of the hidden
sector of particle theory. The necessary combination of conditions (superheavy
stable particles, possessing new strictly conserved U(1) charge, existence of
their superheavy Y-boson interaction with ordinary particles, nontrivial phys-
ics of inflation and preheating) can be rather naturally realized in the hidden
sector of particle theory. In this aspect, the proposed mechanism offers the link
between the observed UHECRs and the predictions of particle theory, which
can not be tested by any other means and on which the analysis of primordial
pairing and binding can put severe constrains.

Even so, while we may agree that the number and sequence of the assump-
tion of present scenario may sound artificial and ad hoc, (maybe at the same
level of topological defect lifetime) we have taken into account a large number
of astrophysical and cosmological bounds narrowing the parameter window
into a very severe and fragile regime which may soon survive (or not) fu-
ture theoretical self-consistence and experimental test. Indeed, if HIRES and
AGASA data will converge to a GZK cut off with no spectra extensions to
Grand Unified energies or, in a different scenario, in case of more evidence
for UHECR clustering to BL Lac sources compatible only to Z-Shower model
[144], the model may be considered as a untenable solution of UHECR puzzle.
It should be remind that UHE neutrinos of all flavours will be produces by such
heavy particle annihilation leading to important signals in new generation UHE
neutrino telescopes based on Horizontal Tau Showering (or Earth Skimming
Neutrinos) [172] see review in [227].

Fluxes of ultra high energy cosmic rays at the Earth are very smallΦ »

0.03km�2sr�1yr�1. Until now only about 60 events were collected with en-
ergies above GZK cut-off. However in near future improved Fly’s Eye (7000
km2sr) [193] will allow to detect about 20 events/yr. It seems possible that
such detector could collect rare ultra energetic photons (ω � 1022eV). The
detection of such events could be an indication that these ultra high energy
photons were produced inν�ν annihilation in the galactic halo due to effects
of low scale gravity at TeV scale. The possibility of search for this effect is,
however, strongly conditioned by both the existence of UHE neutrino sources
and the sufficiently high local overdensity of relic neutrinos.





Chapter 8

HIGH DENSITY REGIONS FROM FIRST
ORDER
PHASE TRANSITIONS

In this Chapter we consider dynamics of first order phase transitions in the
early Universe. Numerical results indicate that within the certain range of para-
meters it leads to formation of separate relatively long-lived clots - configura-
tions filled with scalar field oscillating around the true vacuum state. Energy is
perfectly localized, and density is slightly pulsating around its maximum. This
process is accompanied by radiation of scalar waves. Under some conditions
the localization of energy leads to formation of small black holes with high
probability.

Analysis of physical processes in the early Universe on the basis of particle
theory, is the important way to study physical conditions in the early Universe
and physical mechanisms underlying those conditions. As a result of such an
analysis, the existence of hypothetical relics of early Universe, such as prim-
ordial black holes, topologically stable or metastable solitons etc, have been
predicted. Confrontation of predicted effects with observational data provides
certain conclusions concerning both cosmological evolution and particle phys-
ics models [3].

First order phase transitions as predicted by unified theories can occur at
several periods of cosmological evolution. Wide class of models of particle
symmetry breaking [288] contain this possibility. Such transitions are also
considered as the final stage of inflation in a wide range of inflationary mod-
els. Detailed study of nonlinear configurations arising at the first order phase
transitions and their dynamics is helpful not only for cosmology - nonlinear
dynamics of field theories describes a lot of phenomena occurring in laborat-
ory physics.

For brief discussion of first order phase transitions, let us consider real scalar
field φ with the Lagrangian

L �
1
2

∂µ φ∂
µ

φ � V⒧φ⒭. (8.1)
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V(f)

fa

Figure 8.1. Potential with nonequivalent minima. Minimum ’a’ is true vacuum of the system,
local minimum ’b’ is false vacuum.

To compare our results with the results obtained by Hawking, Moss and
Stewart [299], and by Watkins and Widrow [298], we choose asymmetric
double-well potential of the same form

V⒧φ⒭ � 1
8λ⒧φ

2
� φ

2
0⒭

2
� εφ

3
0⒧φ � φ 0⒭. (8.2)

This potential possesses two nonequivalent minima with different values of
vacuum energy density - see Figure 8.1. The minimum with larger vacuum
energy density is known as a ’false vacuum’ and the other one is the ’true va-
cuum’. Both of them are classically stable, but quantum fluctuations are able
to destroy false vacuum state, as we know it from quantum mechanics. The
latter teaches us that probability of the false vacuum decay could be exponen-
tially small provided a width and a height of a barrier between two vacua are
large enough. This is true also in the case of field theory, but the picture of the
transition is much more complex and nontrivial in this case.

The transition from false vacuum to true one consists of decay of a meta-
stable phase by nucleation of bubbles of new phase [289]. The most probable
fluctuation is a spherical bubble nucleated at rest with a certain critical size
determined by microphysical processes [289]. The bubbles with true vacuum
inside them are nucleated in different space points and at different instant. Just
after their nucleation due to quantum fluctuations, they start their classical mo-
tion. The last looks like expanding of true vacuum regions by quick growth
of bubble radii. The false vacuum energy is converted into a kinetic energy
of spherical walls that separated both vacua. The picture looks like that on
Figure 8.2.
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Figure 8.2. Typical picture of false vacuum decay. True vacuum inside spheres with false va-
cuum around them. The transition from false vacuum state to true one is performed by growing
of the bubble radii. The elder bubbles are larger. Some of them collide as it is shown in figure

Coleman [289] calculated the bubble nucleation rate in flat space and at
zero temperature using the euclidean path-integral formulation of a scalar field
theory. A nucleated bubble is a true vacuum fluctuation large enough to evolve
classically. The nucleation rate in this case is proportional toe�SE , whereSE

is the euclidean action and the solution to the euclidean equation of motion for
minimal action is theO⒧4⒭ symmetric "bounce" solution.

In the very early Universe phase transitions can occur at a finite temper-
ature leading to temperature-dependent form of a scalar field potential, when
quantum corrections are taken into account [290]. Generalization of Coleman
results to the case of nonzero temperature is based on the remarkable fact that
quantum statistics at nonzero temperature is formally equivalent to quantum
field theory in the euclidean space, which is periodic in time coordinate with
the periodT�1. As a result, most probable fluctuations appear to be notO⒧4⒭
symmetric spherical bubbles butO⒧3⒭ symmetric (with respect to spatial co-
ordinates) cylindric configurations with certain critical size slightly different
from O⒧4⒭ symmetric case [291, 290].

For bubble created with a size smaller than the critical one, it could seem
that the gain in volume energy cannot compensate for the loss in surface energy
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and such the bubbles would have to quickly shrink and disappear. However,
detailed analysis discovered that even in this case effects of nonlinearity lead
to nontrivial dynamics. The evolution of subcritical bubbles - unstable spher-
ically symmetric solutions of nonlinear Klein-Gordon equation - was, firstly,
studied numerically by Bogolubsky and Makhankov [292, 293]. Using a qua-
siplanar initial configuration for the bubbles, they found that for a certain range
of initial radii, the bubble, after radiating most of its initial energy, settled into
long-lived (as compared with characteristic time-scale) stage and only then
disappeared by quick radiating their remaining energy. Those configurations,
called ”pulsons”, were later rediscovered and revised by Gleiser, who found
that their most characteristic feature is not pulsating mechanism for radiating
the initial energy, but the rapid oscillations of the amplitude of a scalar field
during long-lived pseudo-stable regime, when almost no energy was radiated
away and radial pulsations were rather small [294]. It was shown [294, 295]
that those configurations called ”oscillons” exist for symmetric and asymmet-
ric double-well potentials, are stable against small radial perturbations, and
have lifetimes ”far exceeding naive expectations” [295].

Although it is well known, that three-dimensional nontrivial configurations
of a scalar field are unstable, they can be relevant for systems with short dy-
namical time-scales. Detailed study of unstable but long-lived configurations
can clarify dynamics of nonlinearities in field theories and their role in a wide
class of phenomena ranging from nonlinear optics to phase transitions both in
the Universe and in the laboratory [295].

For the bubbles formed with the radii large enough (overcritical bubbles) it
is classically energetically favorable to grow. The newly formed bubble of true
vacuum is separated from the surrounding false vacuum region by the wall
at rest. Immediately after nucleation, the wall starts to accelerate outwards
absorbing energy stored in false vacuum region and converting difference of
false and true vacuum energy density into kinetic energy of the wall. That
way a bubble spreads off converting false vacuum into the true one. This pro-
cess continues up to the collision with a spherical wall of another bubble. In
the first-order phase transitions at the end of inflation the collision of bubbles
is considered as the leading mechanism of reheating by converting the wall
energy into radiation.

However, situation with two bubbles appears much more complicated [296],
[297]. Even nucleation of two bubbles is not yet studied in the literature in gen-
eral [298]. Only in the case when bubbles are widely separated at the time of
nucleation and thus can be treated as noninteracting (at the stage of nucleation)
the generalization of a single bubble solution is straightforward. Two bubble
collisions were studied in detail by Hawking, Moss, and Stewart [299] and
then by Watkins and Widrow [298], in elegant approach using symmetry of the
problem in zero temperature case. For zero temperature bubbles produced by
quantum tunneling, initial state isO⒧4⒭ symmetric, as well as euclidean equa-
tion of motion, in natural assumption that a scalar fieldφ is invariant under
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4-dimensional Euclidean rotations. In analytical continuation to Minkowski
space this becomesO⒧3ÿ1⒭ symmetry. For two bubbles, the line joining their
centers is the preferred axis and solution to the euclidean equation of motion
is found in the classO⒧3⒭ (O⒧2ÿ1⒭ as continued to the Minkowski space) solu-
tions, and field configuration arising in collision belongs to the class ofO⒧3⒭
symmetric solutions.

In this Chapter following [296], [297] we investigate two-bubble collision
in the case of finite temperature. We are interested not in reheating by two
bubble collisions [300] but in evolution of two bubble configuration during
and after collision. As was noted by Hawking, Moss and Stewart [299] and
confirmed by Watkins and Widrow [298], collision of two domain walls does
not lead to immediate conversion of the wall energy into a burst of radiation.
Two walls reflect off one another and move apart creating a new region of false
vacuum between them [298]. Our aim is to investigate an evolution of this new
false vacuum region to look if it can form a separated object. We connect with
such a possibility the hope of formation of metastable relics of the first order
phase transitions such as primordial black holes or selfgravitating particlelike
structures with de Sitter-like cores [301, 302]. It appears that a false vacuum
configuration evolved into a compact clot filled with an oscillating scalar field.

The fundamental difference of this object from an oscillon is that it arises
dynamically as the result of bubble collisions (which increases probability of
its production) and that it is made up from an oscillating scalar field at the
background of true vacuum. We call it, following [297], clot (of energy).
In numerical simulations [297] non-singular configurations of self-interacting
scalar field were observed with asymmetric potential, perfectly localized, but
we cannot say that they are non-dissipative, although they are rather long-lived
as compared with the characteristic scale for the first order phase transitions.

1. Temperature transitions vs. quantum
transitions

To study mechanism of formation and evolution of false vacuum regions, we
shall consider [296], [297] most favorable regime for their appearance which
corresponds to high nucleation rateΓH4

�� 1, whereΓ is the nucleation rate
per unit 4-volume andH is the Hubble parameter [299]. We also neglect grav-
ity effects on the process of bubble formation and growth which means that
we consider bubbles with the initial size much less than cosmological horizon,
R⒧0⒭H �� 1 [289, 298].

Lagrangian (8.1) with potential (8.2) may be considered as effective Lag-
rangian for a large number of more complex models of Universe involving the
first order phase transitions (see [290] for more details). In the "thin wall"
approximation,ε�λ �� 1ÿ some analytical results are known [289], and we
will work in the frame of this approximation. AtT � 0 the parametersλÿ φ 0

and ε are specified by the particle model. At nonzero temperature they are
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influenced by temperature corrections. In the case of high nucleation rate, a
first order phase transition is a quick process and we can consider parameters
as λ »

ù λ⒧Tc⒭ÿ φ 0 »ù φ 0⒧Tc⒭ÿ ε »ù ε⒧Tc⒭, i.e. being constant during the phase
transition at the temperatureT � Tc.

The potential (8.2) has two minima at different values of fieldφ . False
vacuum (metastable) state is characterized by the fieldφ � φ 0⒧1� ε�λ �

3�2⒧ε�λ⒭
2
⒭, whereas the global minimum of the potentialV⒧φ⒭ represents the

true vacuum stateφ � �φ 0⒧1� ε�λ � 3�2⒧ε�λ⒭
2
⒭. In our analysis we assume

that both mechanisms of the false vacuum decay could take place - tunneling,
that is creation of O(4) symmetrical bubbles, and formation of O(3) symmet-
rical bubbles due to temperature fluctuation. Evidently, if the temperature is
small enough, the tunneling mechanism of the false vacuum decay dominate.
On the contrary, at large temperatures the decay is realized by the nucleation
and growth of the O(3) symmetrical bubbles.

Consider conditions of dominance of the false vacuum decay due to tem-
perature effects. The temperature decay probability was found in [291], [290]:

PTemp² e�S3�T
ÿ (8.3)

whereT is the temperature of a phase transition andS3 is three-dimensional
action for O(3) symmetrical bubble. The probability of the vacuum decay due
to tunneling, is given by

Ptun ² e�S4
ÿ (8.4)

whereS4 is the action for O(4) symmetrical bubble. The temperature decay
dominates, ifS3�T � S4. The straightforward calculations of the actionsS3

andS4 give for our potential the condition for the dominance of the temperature
decay (the term proportional to⒧ε�λ⒭

2 was omitted):

T �
32

27π

ε

λ
(8.5)

in the unitsmϕ � h̄� c � 1 that are used throughout this Chapter. Equation
of motion of the scalar field in spherical coordinates has the form

∂
2
φ

∂ t2 �
∂

2
φ

∂ r 2 �
2
r

∂ φ

∂ r
� �V′⒧φ⒭. (8.6)

Neglecting terms of order of O(⒧ε�λ⒭
2 ), we obtain the well known one-dimensional

equation

d2
φ

dt2
�

d2
φ

dr2 � �V′⒧φ⒭ ε�0 . (8.7)

The properties of this equation have been extensively discussed in the literature
since 1975 [303]. The fundamental time independent solution is defined by

r �
@

φ

0

dφ
B

2V⒧φ⒭
.
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It can be easily checked by straight substitution, that for the theory defined by
potential (8.2), an approximate solution is represented in the form

φ � φ 0
th
γ m
2
⒧r � R⒧t⒭⒭ � ε�λ�ÿ R⒧t⒭ � vt� R0ÿ (8.8)

whereγ � 1�
A

1� v2
ÿ v � 1, mϕ �

A

λφ 0 andR0 � 2λ�⒧3εmϕ ⒭ is critical
radius of the nucleated bubble. This approximation is valid, ifR⒧t⒭ �� 1�m,
what is equivalent to the thin-wall approximation. The initial field configura-
tion can be defined at the moment of the bubble formationt � 0 with velocity
v � 0. But it takes too much computer time and memory to study the devel-
opment of collision from this initial moment, because the kinetic energy of the
walls of the colliding bubbles should be large enough to produce false vacuum
bag (clot of energy (CE)) and hence the initial distance between the centers
of colliding bubbles should be large comparing with critical radiusR0 as well.
So, we have to use the initial configuration with already moving walls.

The one-bubble solution (8.8) is the approximate solution to exact Eq. (8.6).
It also satisfies the correct boundary conditions at infinity up to the terms of
order⒧ε�λ⒭

2 and hence can be chosen as the new initial condition at specific
momentt or at definite radius of the expanding bubbleR � R⒧t⒭. The only
thing that remains to do is to connect the radiusR and the velocityv. To find
the velocityv in the one-bubble solution (8.8) at an arbitrary momentt or at
definite bubble radiusR⒧t⒭ we note that the energy

E �
@
 

1
2
⒧

dφ

dt
⒭

2
�

1
2
⒧∇φ⒭

2
� V⒧φ⒭

!

d3x

is conserved if the fieldφ is governed by Eq. (8.6). The substitution of the field
φ in form (8.8) leads after simple calculations to the expression

E »ù
8π

3
1
λ

R⒧t⒭2 γ � R⒧t⒭ ε�λ � Const. (8.9)

The Constcan be determined att � 0ÿ because we know the values of the
parameters at this moment:γ ⒧t � 0⒭ � 1 andR⒧t � 0⒭ � 2λ�3ε [290].
Substituting it into expression (8.9), we find the connection between the bubble
radiusR� R⒧t⒭ andγ�factor (or, equivalently, the velocityv):

γ � R
ε

λ
�

4
27

λ
2

ε
2R2

. (8.10)

Thus, the initial conditions for one bubble of radiusR is represented by
formula (8.8) with theγ�factor (8.10).

2. Wall motion through thermal background
Two factors effect on the kinetic energy of the colliding walls: the dis-

tance between the bubble centers and the interaction of the walls with thermal
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plasma. As it was mentioned above, the horizon heats the Universe by the
evaporation of all possible sorts of particles. It is the interaction with these
particles that leads to a friction and that slows down the wall motion. For ex-
ample the walls move with the velocity» 0.5 in the case of late electroweak
phase transitions [253].

In Chapter 4 we have investigated friction of wall which was born after the
end of inflation. It was shown for specific form of potential (4.45) that the
friction is negligible in wide range of parameters. As it is shown below, this
conclusion takes place also during inflation with different sorts of interaction.
The only restriction is that particles must not change their mass, when crossing
the wall.

Let us investigate separately the scattering of the inflaton particles and other
’light’ particles with the massesm�� T by the wall at rest. It is well known
that there are two regimes in dependence on whether a mean free path of the
particles is much more or much less, than the wall widthL [253]. The wall
width can be estimated easily:L ½ 1�mϕ � 1 in the chosen units. The main
uncertainty is contained in the mean free path that depends on cross sections.
To estimate them suppose the interaction in the form:

Lint � g1ϕψ
�

ψ � g2ϕ
2
φ

2
� g3φψ

�

ψ ÿ (8.11)

whereψ is an operator of spinor particles,φ is an operator for scalar particles,
other than that is responsible for the inflation. The interaction of the inflaton
(scalar) particles can be obtained from Eq. (8.1) and equalsλϕ

4. No sym-
metries are assumed to be broken yet and all the constants are supposed of the
same orderg1 » g2 » g3 » λ �� 1. The temperatureT » ε�λ (see(4.80)) is
small comparing the mass of inflaton quanta and large comparing the masses
of other particles. The interaction of light particles leads to the largest cross
section that can be estimated asσ » g4

3�T
2. Here the expressionEp ½ 3T for

the energy of relativistic particles at the temperatureT is presumed.
The mean free path equals tol � 1�σ n, where

n� κσ s�3 . T3 (8.12)

is the number density of the light particles at the temperatureT [304]. The con-
stant isσ s � π

2
�15 in our units and a total number of sorts of the light particles

isκ » 50. Thus one can easily check that the mean free pathl » 1�⒧10g4
3T⒭ is

much more than the wall widthL ½ 1 (remind that we are working in the limits
g3ÿ ε�λ �� 1 ). Therefore we can consider the interaction of the wall with the
particles supposing them to be free, on the contrary to the electroweak phase
transition [253]. Another, and may be more essential difference consists of the
equality of the particle masses at both sides of the wall because the inflaton
field is not responsible for the mass generation.

To estimate the strength of the interaction at the end of inflation we neglect
further the asymmetry of the potentialV⒧ϕ⒭, that is proportional to the small
parameterε�λ, and a curvature of the wall.
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To describe the scattering of inflaton particles one can consider them as
small fluctuations around classical solutionϕ � ϕcl � ϕ

′, where

ϕcl � ϕ 0th⒧z�2⒭

is the ’flat wall’ solution to the classical equation of motion

Öϕ �
∂V
∂ϕ

� 0. (8.13)

After a linearization Eq. (8.13) has the form [252]

 

d2

dz2 � 4ω
2
� 4�

6
ch2z

!

ϕ
′

� 0. (8.14)

The one-particle scattering by the wall with the particle energyω and mo-
mentumk should satisfy the boundary conditions

ϕ
′

⒧t } �±ÿ z⒭ � exp⒧�iω t � ikz⒭;

ϕ
′

⒧t }±ÿ z⒭ � Aexp⒧�iω t � ikz⒭ � B exp⒧�iω t � ikz⒭.

It can be shown that the solution to Eq. (8.14) is reflectionless [285], i.e.

ReA� 1ÿ B � 0

and hence the momentum transfer equals zero. Scalar particles do not scatter
by a flat wall made of the same scalar field and do not slow down the wall.

The only what remains is to estimate the pressure of the other particles:

pp � qnW. (8.15)

Here q is the momentum transfer, the particle number density is equal to
n ½ 10T3 according to (8.12) andW is the probability of the scattering of the
incoming particle. The wall at rest can be considered as an external field and
conservation of energyEk and of parallel projection of the particle momentum
k determines the momentum transfer:q � ⒧0ÿ 0ÿ �2kz⒭.

The probabilityW can be expressed in the form

W �

H

HMkÿk�q
H

H

2
�⒧8kzEk⒭

in the case of planar wall perpendicular toz axis. The matrix element is ob-
tained using the first term of the expression (8.11), where only classical part
ϕcl of the fieldϕ is taken into account:

Mkÿk�q � g1ϕ 0 lim
α}0

@

±

�±

dzeiqz�αz2
th⒧z�2⒭. (8.16)
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The integral is easily estimated, if one substitutes a linear function forth⒧z�2⒭
in the region z � 2, which gives the dominant contribution:

Mkÿk�q � i2g1ϕ 0
cos 2q� sin 2q�q

q
�

�

i2g1ϕ 0.

The last inequality takes place due to the fact that theq-dependent ratio is less,
than approximately one. So expression (8.15) becomes

pp �
�

n
g2

1ϕ
2
0

Ek
.

The energy of the incoming particle in the rest frame of the wall isEk » γ T
and the upper limit of the pressure can be written as

pp �
�

10
g2

1

γ λ

�

ε

λ

�2
. (8.17)

The incoming particles cause the pressurepp that decelerates the wall. On
the other side the wall is accelerated by a pressure differencepϕ � ρV � 2ε�λ

2

in the true and false vacuums that are separated by the wall. Its ratio is given
by

pp

pϕ

�

�

g2
1

γ

ε

λ
. (8.18)

This ratio is always much less then unity because bothg1 andε�λ are supposed
to be small values. Note that expression (8.18) is the upper limit for the pres-
sure. As it follows from the form of the matrix elementMkÿk�q, the pressure
tends to zero not only at small momentum transfer but at large one as well. The
same estimation of upper limit of the pressure could be done for the scattering
of light scalar particles.

The conclusion on the absence of the friction is in agreement with that for
electroweak transition [253] in the limit of the particle mass equality on the
both sides of the wall. In our case the masses are equal because the absolute
value of the fields in the two minimums are approximately equal. If the Lag-
rangian has the local minimum atϕ � 0 the friction would appear. The similar
situation was considered in [305].

Thus the friction of the wall that moves through the heated medium at the
end of inflation is small enough and the bubble walls collide having large kin-
etic energy. It could be in its turn the reason of the large density fluctuation of
the inflaton field. Now we have all ingredients to perform numerical calcula-
tions, but let’s start with qualitative analysis.

3. Bubble collisions - Qualitative analysis
Let us introduce the dimensionless variablesψ � φ�φ 0, λ

1�2
φ 0t } t and

λ
1�2

φ 0r } r . The classical equation of motion for the scalar field of Lag-
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rangian (8.1) has the form

∂
2
t ψ � ∇2

ψ � �

1
2

ψ ⒧ψ
2
� 1⒭ � ε�λ (8.19)

The suitable initial two-bubble configuration has in our dimensionless vari-
ables the form

ψ � ψ0
th
γ

2
⒧r
�

� R⒭ � ε�λ�ÿ z� 0ÿ

ψ � ψ0
th
γ

2
⒧r
�

� R⒭ � ε�λ�ÿ z� 0ÿ (8.20)

r
ù

�

�

C

x2
� y2

� ⒧z
ù

� b⒭2ÿ b� R.

To start numerical simulations of bubble collisions, we need a set of simple
criteria indicating a proper range of parameters favorable to formation of sep-
arated false vacuum regions.

Let us first find the condition at which the region of a false vacuum can
be formed as a result of a collision of two relativistic bubbles. A field con-
figuration in a bubble wall is just the transition from the true vacuum inside
the bubble to the false vacuum outside it. While propagating through the false
vacuum before collision, the bubble absorbs the energy of a surrounding false
vacuum and transforms it into the kinetic energy of the wall. The kinetic en-
ergy is characterized by the Lorentz factorγ � 1�

A

1� v2. To get a region of
a false vacuum between bubbles as a result of a collision, energy absorbed by
walls from a false vacuum to the moment of a collision, must be sufficient to
form a false vacuum state at least at the scale of the wall width. Let us estimate
the lower limit forγ at which such minimal region can be formed.

Consider collision of two sphericalO⒧3⒭ bubble walls described by the solu-
tion (8.8) with the parametersR� b andγ in to the moment of a collision. The
leading term in the energy density of a wall, as calculated for the quasiplanar
solution (8.8), is

ρw »ù γ
2
�4 cosh4 ⒧γ ⒧R� vt⒭�2⒭.

Before the collision, in the solid angle

∆Ω �

π r 2

R2 �� 1ÿ

each wall has the energy

Ein �
2
3

∆ΩR2
γ in.

After the collision, the walls reflect with a final kinetic energyE f in . If a false
vacuum region of a radiusr and widthh within the solid angle∆Ω is formed
between reflecting walls, we must have

Ein � E f in �
2
3

∆ΩR2
γ f in � 2

ε

λ
Vf vr ÿ
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whereρvac � 2ε�λ is the false vacuum energy density for the case of the
potential (8.2), andVf vr is the volume of a false vacuum region within a cone
with a solid angle∆Ω, which is given by

Vf vr �
π

6
h⒧3r 2

� h2
⒭ ½

1
2

∆ΩR2h

The width of the false vacuum region is of order of the width of the wall,
which is equal to 2�γ f in, to the moment of reflection. Forγ f in � 1, the width
is h � 2. It gives us the constraint forγ in, with which the wall comes to the
first collision, in the form

γ in �
�

1�
3
2
ε

λ
h�
�

1� 3
ε

λ
. (8.21)

Now let us specify the line joining centers of bubbles asz axis. Let us show
that the energy conservation puts constraint on the propagation of a false va-
cuum region inzdirection. Consider a slice of a false vacuum region originated
from the collision in the element∆Ω of spherical bubble walls, which have ra-
diusR in the moment of collision. The acceleration of the considered element
of the wall comes from the transformation of the energy of surrounding false
vacuum into the kinetic energy of the wall on the way to its first collision,
when the true vacuum bubbles grow from the initial radiusR⒧0⒭ to the radius
R�� R⒧0⒭ in the moment of collision. So, the kinetic energy absorbed by the
wall from a false vacuum to the moment of collision, is

Ekin �
2ε
λ

∆Ω
1
3
⒧R3

� R⒧0⒭3⒭ »ù
2ε
λ

∆Ω
1
3

R3.

The walls reflect each other in the moment of the first collision and move
outwards, creating a false vacuum region between them. Each wall stops when
all its kinetic energy has been transformed into the energy of a false vacuum
region formed between the walls. In this moment the walls radius isRmax and
the false vacuum, created by each wall, fills a region between the spherical
shellsRmax andR. The energy balance gives

2ε
λ

∆Ω
1
3

R3
»

ù

2ε
λ

∆Ω
1
3
⒧R3

max� R3
⒭ÿ

so that
Rmax»ù 21�3R. (8.22)

Since we consider overcritical bubbles, the wall surface energy is neglected
in this treatment, provided thatεRmax�λ �� 1 The same result has been ob-
tained for the case ofO⒧4⒭ symmetric bubbles in [299]. One finds from the
equation (8.22) that after the collision a false vacuum is formed and occupies
a region between the outgoing walls, with a maximal size given by a distance
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between the planesz �
ù

�

⒧21�3
� 1⒭b, where 2b is the initial separation of

the centers of true vacuum bubbles. After the walls stop their outward move-
ment in the region of walls intersection atRmax � ù

�

⒧21�3
� 1⒭R, the parts

of walls in this region reflect off one another and next time they collide at
∆t » 2⒧21�3

� 1⒭R after the first collision. The shortest interval between the
two subsequent collisions is atr � 0, whenR� b. Using the condition (8.21),
we find from the Eq. (8.10) the minimalγ , at which the false vacuum region
is formed between the walls after the second collision. Before the second col-
lision at r � 0, the value ofγ for the walls in the second collision is given
by

γ 2 � R
ε

λ
½ ⒧21�3

� 1⒭b
ε

λ
. (8.23)

Remind that before the first collision this factor for the walls atr � 0 is given
by the Eq. (8.10) as

γ 1 � b
ε

λ
. (8.24)

If we want the false vacuum region be maintained after the second collision
of the reflected parts of walls, we must satisfyγ 2 � γ in. Then it follows from
the Eqs. (8.21), (8.23), (8.24), thatγ before the first collision must be

γ 1 � γ min �
1� 3ε�λ

⒧21�3
� 1⒭

. (8.25)

It indicates the favorable range of theγ parameter before the first collision
needed for numerical simulation, and also, with the use of (8.10) and (8.24),
the favorable range for the parametersR and b. In the caseγ 1 �� γ min, a
false vacuum region undergoes the succession of oscillations – expansions and
contractions – along thez axis in the region confined by

�b⒧21�3
� 1⒭ � z� b⒧21�3

� 1⒭. (8.26)

Repeating the above reasoning for the subsequent collisions we find easily that
in the limit of largeγ the period of then�th oscillation decreases as⒧

A

2n⒭�1.
This agrees with the result [299] for theO⒧4⒭ symmetry case. The reason for
such a coincidence can be easily understood.

The main difference between theO⒧3⒭ andO⒧4⒭ cases is in the form of the
initial wall configurations, taken in our case as a quasiplanarO⒧3⒭ solution.
However, in all the above reasoning the internal structure of the walls was not
involved, which just resulted in the similar estimation for the decreasing of
the period of oscillations. For largeγ we can treat the oscillations of a false
vacuum region along the axisz as the continuous propagation of a spherical
wave moving with speed of light (in our unitsc � 1). In the frame with the
origin in, say,z � �b, the element∆Ω of the wall with the angleα with
respect to thez axis, follows the trajectoryr � z tanα. Assume that to the
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moment of reflection considered element of the wall has the coordinatez� ct.
At the same moment its radial coordinate isr � z tan α. The region of causal
contact along the axisr satisfies the conditionr �

�

ct. It follows then that only
for the anglesα � π�4, the region of intersection of walls is in the causal
contact. Therefore the boundary of the region of causal contact within a false
vacuum region is the cone

α � π�4. (8.27)

It means that further evolution of the false vacuum region confined, within the
boundary (8.27), does occur independently on dynamics of field outside this
boundary. So, the considered region of the false vacuum is separated from the
bulk false vacuum space in its further causal and hence dynamical evolution.
Now we can easily estimate the total energy of the separated false vacuum
region. The energy density of a false vacuum is given byρvac � 2ε�λ. The
volume of a CE is the volume of two cones whose height is equalb and base
areaπ b2. So, the mass, confined within this region, is equal to

M �

4ε
λ

π b3

3
. (8.28)

It is evident that separation occurs at the time of order oftsep� ⒧
A

2� 1⒭b.

4. Bubble collisions - numerical results
The qualitative analysis, given above, has revealed the possibility of forma-

tion of high - energy density regions during first order phase transitions. Nu-
merical calculations represented below confirm this guess, reveal new features
and give the range of parameters for which this process could take place.

In the cylindric coordinates the equation of motion for the scalar field (8.19)
equation takes the form

∂
2
t ψ � ∂

2
r ψ � ∂

2
zψ � �

1
2

ψ ⒧ψ
2
� 1⒭ � ε�λ

The solution to this equation has the axial symmetry and reflection sym-
metry with respect toz � 0 plane. The initial configuration, described by the
solution is chosen in the form suitable for numerical calculation (compare with
(8.20))

ψ � th γ �2⒧r
�

� R� vt⒭ � th γ �2⒧r
�

� R� vt⒭ � 1� ε�λ . (8.29)

The profile is shown in Figure 8.3. The walls already have kinetic energy that
is indicated by theγ factor. Time evolution of the scalar field in the center of
the region of collisionψ ⒧tÿ r � z� 0⒭ shown in Figure 8.4, was calculated for
the parametersγ � 5;b � 52;R � 50. The qualitative behavior of the field
with time has been discussed in the previous Section. From the beginning the
field changes in the manner discussed in [298], [299], then, as it is clear from
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Figure 8.3. The initial two-bubble configuration just before collision.

Figure 8.4. Time dependence of the field at the center of collision
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Figure 8.5. The field configuration at large time. It is seen that energy of this configuration
is concentrated in the center of the collision with radius» 5.

Figure 8.4, it oscillates around the true vacuum for a long time and finally,
large secondary fluctuations appear again.

As we shall see below, the energy of oscillations is perfectly localized. This
behavior does not change with changing the step in numerical calculations.
Figures 8.5 and 8.6 display field configurations at different moments of time.

The energy density profile calculated from scalar field potential, is shown
in the next series of figures. They demonstrate concentration of field energy in
the center of region of collision. In the Figure 8.7 one can see time dependence
of energy density in the center of the region of collision. Large secondary peak
is created due to the coherent field oscillation which are coming from outside.
The density profile at this time is represented in the Figure 8.8.

The localized configuration described above oscillates for some time and
finally is converted into outgoing radiation. Only gravity could prevent this
process.

Till now we did not consider gravitational effects, but they will be estimated
below. Consider the evolution of energy contained in the sphere of certain
radius as shown in Figures 8.9, 8.10

These pictures indicate two peaks of energy - the first is due to the energy in
the moment of collision, the second is the energy of the clot which is formed as
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Figure 8.6. The same as in Figure 8.5 at slightly different moment.

Figure 8.7. Time evolution of density energy in the center of two bubble collision,z� r � 0.
Secondary peak is formed att ½ 129
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Figure 8.8. Energy density at the time of secondary peak formation.

a result of the collision. It becomes evident by comparing these figures that the
energy is strongly localized for the second time. Indeed, the energy contained
in internal sphere of radiusr0 � 5 of the second peak is only in 1.5 times
smaller than that contained in external sphere of radius equal tor0 � 10, while
the ratio of their volumes is 8. One could conclude that substantial part of the
energy is contained within sphere with radiusr0 � 5. It has to be compared
with the gravitational radius of the clot. The last is equal to

rg �

 

m
MP

!2

E�λ (8.30)

in our units. If the first order phase transition happens at the end of inflation, the
massm of inflaton field is rather large andmϕ�mpl » 10�5. Substituting this
value into (8.30) and the value of energyE ½ 1000 obtained from Figure 8.9,
one can easily find the condition, when gravitational radius is comparable with
the size of the clot, which can be taken asr0 ½ 5 in our dimensionless units.
Evidently, this condition is satisfied, if coupling constantλ » 10�8. For λ �

10�8 gravitational forces become essential and the probability of black hole
formation grows up to unity, whenλ tends to 10�8. If the bubble collision
takes place at GUT energies and we deal with a scalar (not inflaton) field with
a mass of its quanta of the order of 1016 GeV, black holes could be formed at
λ � 10�4.
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Figure 8.9. Field energy inside a sphere of radiusr0 � 5

Figure 8.10. Field energy inside a sphere of radiusr0 � 10
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Thus in bubble collisions the interaction of bubble walls leads to formation
of a nontrivial vacuum configuration. The subsequent collapse of this vacuum
configuration induces black hole formation with high probability.

The primordial black holes that have been created by this way in the first-
order phase transitions at the end of inflation could give an essential contribu-
tion into the total density of the early Universe. The possibilities of establish-
ing some nontrivial restrictions on the inflation models with first-order phase
transition are discussed below (Section 7).

5. Mass distribution of BHs in the early Universe
Previous sections were devoted to capability of black holes formation at

bubble collisions. Below we investigate a mass spectrum of such black holes.
Consider a theory predicting the probability of false vacuum decay to be equal
to Γ and the difference of energy densities between the false and true vacua
equal toρV. Initially bubbles are produced at rest, however, the bubble walls
quickly increase their velocity up to the speed of lightv � c � 1 because
the conversion of the false vacuum energy of the bubble into the kinetic one is
energetically favorable.

Let us discuss following [296] the dynamics of a collision of two true va-
cuum bubbles which have been nucleated at the points⒧r1ÿ t1⒭ and⒧r 2ÿ t2⒭ and
which are expanding into the false vacuum. Following the papers [299, 298],
one could assume for simplicity that the horizon size is much greater than the
distance between the bubbles. Just after the collision, mutual penetration of
the walls up to distances comparable with their widths is accompanied by a
significant potential energy increase [306]. Then the walls are reflected and
accelerate backwards. The space between them is filled with the field in the
false vacuum state converting the kinetic energy of the wall back to the energy
of the false vacuum state and slowing down the velocity of the walls.

Meanwhile, the outer area of the false vacuum is absorbed by the outer wall,
which expands and accelerates outwards. Evidently, there is an instant, when
the central region of the false vacuum is separated. One can note that this CE
does not possess spherical symmetry. But, as it was shown above, gravitational
forces are very strong when the clot is forming and are able to convert it into
black hole and further evolution of the CE consists of several stages:

1) The CE grows up to a certain sizeDM with its energy stored both in
kinetic and potential part;

2) Secondary oscillation of the CE occurs.
3) The waves caused by outer interacted walls are concentrated in the center

of bubble collision supplying new peak of energy.
The process of periodical expansions and contractions leads to CE energy

losses in the form of scalar field quanta. It has been shown in [299, 298] that
only several oscillations take place. On the other hand, it is important to note
that secondary oscillations might occur only if the minimal size of the CE is
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greater than its gravitational radius,D*
� rg. The opposite case (D*

� rg)
leads to BH creation with a mass close to the mass of the CE. As we will
show later, the probability of BH formation is almost unity in a wide range of
parameters of theories with first order-phase transitions.

Consider, in more detail, the conditions of converting an CE into a BH. The
massM of the CE can be calculated in the framework of a specific theory and
can be estimated in a coordinate frameK ′

ÿ where the colliding bubbles are
nucleated simultaneously. The radius of each bubbleb′ in this frame equals
to half of their initial coordinate distance at the first instant of collision. Ap-
parently, the maximum sizeDM of the CE is of the same order as the size of
the bubble, since this is the only parameter of necessary dimension on such a
scale: DM � 2b′C . The value of the parameterC �

�

1 has to be obtained
by numerical calculations in the framework of specific theory, but its exact nu-
merical value does not affect the conclusions significantly. One can express
the mass of CE that arises at the collision of two bubbles of radiusb′ in the
form:

M �

4π

3

�

Cb′
�3

ρV . (8.31)

This mass is contained in the shrinking area of the false vacuum. Suppose for
estimations that the minimal size of the CE is of the order of the wall width
∆. The BH is created, if the CE minimal size is smaller, than its gravitational
radius. It means that at least under the condition

∆ � rg � 2GM (8.32)

the CE can be converted into a BH (whereG is the gravitational constant).
As an example consider a simple model with the Lagrangian (8.1)

L �
1
2
⒧∂µ Φ⒭2 �

λ

8

�

Φ2
� Φ2

0

�2
� εΦ3

0 ⒧Φ � Φ0⒭ . (8.33)

In the thin-wall approximation the width of the bubble wall can be expressed

as∆ � 2
�

A

λΦ0

�

�1
. Using (8.32 ), one can easily derive that at least a CE

with the mass

M �

1
A

λΦ0G
(8.34)

should be converted into a BH of massM . The last condition is valid only
in case the CE is completely contained in the cosmological horizon, namely,
MH � 1�

A

λΦ0G, where the mass of the cosmological horizon at the instant
of the phase transition is given byMH

»

�

M3
P�Φ2

0. Thus for the potential (8.33)
under the conditionλ � ⒧Φ0�MP⒭

2 the BH is formed. This condition is valid
for any realistic set of parameters of the theory.

The bubbles do not nucleate simultaneously, at the same instant of time. It
leads to some mass distribution of CE and/or BH. Besides, they have differ-
ent velocities because colliding bubbles were created at different instants and
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hence have different kinetic energy of their walls to the moment of collision.
Our nearest aim is to find mass and velocity distributions of the BH, which
satisfy inequality (8.34). Apparently the mass and velocity of specific BH de-
pends on coordinates and instants of both bubbles whose collision leads to the
BH formation: M � M⒧ r 2 � r1 ÿ t2 � t1⒭; v � v⒧ r 2 � r1 ÿ t2 � t1⒭.

The probabilitydP of collision of two specific bubbles depends on coordin-
atesr 2ÿ r1 and instantst1 t2 of their creation

dP� dP1 . dP2 . P
�

ÿ

dP1 � Γdt1d3r1ÿ (8.35)

dP2 � Γdt24π r 2 � r1
2d r 2 � r1 ÿ

wheredP1 is the probability of bubble formation with 4-coordinates⒧r1ÿ t1⒭,
dP2 - the probability of the second bubble formation at the distancer 2 �

r1 ù

ù

ù 2b from the first one ( space isotropy was taken into account). Factor
P
�

� e�ΓΩ is the probability of absence of another bubbles inside 4-volume
Ω, which could prevent the collision of the two bubbles in question. Below we
treat the probability density of a vacuum decayΓ as a free parameter. Integ-
rating out the variabler1, we obtain

dP�V � 32π Γ2e�ΓΩb2dt1dt2db. (8.36)

HereV - is the volume within the cosmological horizon at the moment of the
phase transition.

Let us substitute the variablest1ÿ t2ÿ b by more suitable onesMÿ vÿ t. Here
M is the mass of CE (or BH) created due to bubble collision,v is its velocity
andt � b� ⒧t1� t2⒭�2 is the instant of a first contact of the two bubbles. In
the following it will be suitable to choose reference frameK ′ where the two
bubbles are nucleated simultaneously. Its velocity is

v � ⒧t2 � t1⒭�2bÿ ⒧c � 1⒭.

Apparently it is the velocity of CE or BH in the initial reference frame as well.
In this frame the bubble radii are equal to each other and it is described by the
formulab′ � b�γ ÿ γ � ⒧1� v2

⒭

�1�2. Using expression (8.36) one can obtain
mass and velocity distribution of the BH

dP�VdvdM�

64π

3
Γ2e�ΓΩ

γ
4
 

M
Cρv

!1�3 1
Cρv

dt. (8.37)

To estimate the 4 - volumeΩ, assume that any bubble, whose wall has reached
the sphere of radiusb′ with the center in the pointO before instantt′ÿ prevents
the formation of CE by the two bubbles in question. Then one can easily obtain

Ω �

@ t′

0
dτ
′d3r ′θ

�

r ′ � τ
′

� b′ � t′
�

�

π

3



�

b′ � t′
�4
� b′4�
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The parameterb′ is expressed in terms of massM according to (8.31), the
instantt′ of the first instant of the bubbles contact isγ t in the reference frame
K ′. Integrating out the variablet one comes to the desired mass and velocity
distribution of the CE

dP�VdvdM�

64π

3
Γ2 exp


π

3
Γ⒧

M
Cρv

⒭

4�3
�γ

4
 

M
Cρv

!1�3 1
Cρv

I ÿ

I �
@

±

t
�

dτ exp
�
π

3
Γ
 

M
Cρv

!1�3

� γ τ

4

�ÿ (8.38)

t
�

� ⒧1� v⒭ γ

 

M
Cρv

!1�3

.

It is interesting to compare the volumeVbag, containing one CE inside it,
with the volumeVbubble of the bubble at the end of the phase transition. After
numerical integration of expression (8.38) one obtains

Vbag
»

�

3.9Γ�3�4. (8.39)

On the other hand average volume of the bubble is

Vbubble�
4
3

π

 

3
π

!3�4

Γ�3�4
»

�

4.0Γ�3�4. (8.40)

An approximate equalityVbag
»

�

Vbubble points out that one bubble produces
one CE, i.e. the probability of CE formation during bubble collision is close
to one. Expression (8.38) can be represented in terms of dimensionless mass
parameter

µ ù
ù

ù

�

π

3
Γ
�1�4

 

M
Cρv

!1�3

in the form

dP

Γ�3�4Vdvdµ
� 64π

�

π

3

�1�4
µ

3eµ
4
γ

3J⒧µÿ v⒭ÿ (8.41)

J⒧µÿ v⒭ �
@

±

τ
�

dτ e�τ
4
ÿ τ
�

� µ 1� γ
2
⒧1� v⒭ .

Velocity distribution of BHs gives little information and this variable can
be integrated out. The distribution in dimensionless mass is represented in
Figure 8.11.

Almost any theory incorporated a possibility of first order phase transition
contains at least two parameters. They are the difference of energy density
of the two vacuaρv and the density probability of false vacuum decay in unit
timeΓ. The last can be connected with BH concentration at the moment of the
phase transition

nBH
»

�

0.25Γ3�4
ÿ
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Figure 8.11. The probability of BH nucleation in dependence on dimensionless massµ

where expression (8.39) was taken into account. As it can be seen from Fig-
ure 8.11, the average value of dimensionless mass parameterµ »ù 0.32, what
helps to express the average mass of the BH in terms of the main parameters
of the phase transition

�MBH
 »ù 0.03CρvΓ3�4. (8.42)

Remind that the constantC is a model dependent parameter, being less or of
the order of unity. Constraints on concentration and average mass of the BH
lead to constraints on the both parameters of a specific theory of a cosmological
scenario. The mass and velocity distribution of CEs, supposing their masses
are large enough to satisfy the inequality (2), has been found in [307], [296].
This distribution can be written in terms of the dimensionless mass parameter
µ

dP

Γ�3�4Vdvdµ
� 64π

�

π

3

�1�4
µ

3eµ
4
γ

3J⒧µÿ v⒭ÿ (8.43)

J⒧µÿ v⒭ �
@

±

τ

dτ e�τ
4
ÿ τ
�

� µ 1� γ
2
⒧1� v⒭ .

Numerical integration of (8.43) revealed that the distribution is rather nar-
row. For example, the number of BHs with mass 30 times greater than the
average one is suppressed by a factor of 105. The average value of the dimen-
sionless mass is equal toµ � 0.32. It allows one to relate the average mass of
BHs �MBH
 and the volume containing one BH�VBH
 at phase transition:

�MBH
 �
C
4

µ
3
ρv �VBH
 »ù 0.012ρv �VBH
 . (8.44)



High density regions from first order phase transitions 193

6. First order phase transitions in the early
Universe

Inflationary models ending with a first-order phase transition, to which we
further refer as to the first-order inflation models, occupy a significant place
in modern cosmology of the early Universe (see e.g. [308, 288, 296]). The
interest in these models is due to the fact that such models are able to generate
the observed large-scale voids as remnants of the primordial bubbles for which
the characteristic wavelengths are several tens of Mpc. A detailed analysis of
a first-order phase transition in the context of extended inflation can be found
in [288]. Hereafter we will be interested only in the final stage of inflation,
when the phase transition has been completed. Recall that a first-order phase
transition is considered to be completed immediately after establishing the true
vacuum percolation regime. Such a regime is established approximately when
at least one bubble per unit Hubble volume has been nucleated. An accurate
computation [288] shows that a first-order phase transition is successful, if the
following condition is valid:

Q ù

ù

ù

4π

9

 

Γ
H4

!

tend

� 1. (8.45)

HereΓ is the bubble nucleation rate. In the framework of first-order inflation
models the filling of the whole space with the true vacuum takes place due to
collisions of bubbles, nucleated at the final moment of exponential expansion.
The collisions between such bubbles occur when they have a comoving spatial
dimension smaller or equal to the effective Hubble horizonH�1

end in the trans-
ition epoch. If we takeH0 � 100h Km/s/Mpc in anΩ � 1 Universe, the
comoving size of these bubbles is approximately 10�21h�1 Mpc. In the stand-
ard approach one believes that such bubbles are rapidly thermalized without
leaving a trace in the distribution of matter and radiation. However, in the
previous section it has been shown that, for any realistic parameters of theory,
a collision between only two bubble leads to BH creation with a probability
close to 100% . The mass of this BH is given by (see (8.42))

MBH � γ 1Mbubÿ (8.46)

whereγ 1 »ù 10�2 andMbub is the mass that could be contained in the bubble
volume in the epoch of collision under the condition of full thermalization of
bubbles. The discovered mechanism leads to a new direct possibility of PBH
creation in the reheating epoch in first-order inflation models. In the standard
picture PBHs are formed in the early Universe if density perturbations are suf-
ficiently large, and the probability of PBH formation from small post-inflation
initial perturbations is suppressed exponentially. Completely different situ-
ation takes place in the final epoch of first-order inflation: namely, collisions
between bubbles of Hubble size in the percolation regime leads to PBH form-
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ation with the masses

M0 � γ 1Mhor
end�

γ 1

2
M 2

P

Hend
ÿ (8.47)

whereMhor
end is the mass within the Hubble horizon at the end of inflation. Ac-

cording to (8.42), the initial mass fraction of these PBHs is given byβ0 ½

γ 1�e½ 6 . 10�3. For example, for the typical value ofHend½ 4 . 10�6MP the
initial mass fractionβ is contained in PBHs with the massM0 ½ 1 g. In general
the Hawking evaporation of mini-BHs could give rise to a variety of possible
final states. It is generally assumed that evaporation proceeds until the PBH
vanishes completely [72], but there are various arguments against this proposal
(see e.g. [309, 310]). If one supposes that BH evaporation leaves a stable relic,
then it is natural to assume that it has a mass of the ordermrel � kMP, where
k »ù 1 ..�102. We can investigate the consequences of PBH formation in the per-
colation epoch after first-order inflation, supposing that a stable relic is a result
of BH evaporation. As follows from our previous consideration, the PBHs are
preferentially formed with a typical massM0 at a single timet1. Hence the
total densityρ at this time is

ρ⒧t1⒭ � ργ ⒧t1⒭ � ρPBH⒧t1⒭ �
3⒧1� β0⒭

32π t2
1

M 2
P �

3β0

32π t2
1

M 2
P. (8.48)

The evaporation time scale can be written in the following form:

τBH �
M3

0

g* M 4
P

ÿ (8.49)

whereg* is the number of effective massless degrees of freedom. Let us derive
the density of PBH relics. There are two distinct possibilities to consider. The
Universe is still radiation-dominated atτBH. This situation will hold if the
following condition is validρ BH⒧τBH⒭ � ργ ⒧τBH⒭. It is possible to rewrite this
condition in terms of the Hubble constant at the end of inflation

Hend

MP
� β

5�2
0 g�1�2

*
»

ù 10�6. (8.50)

Taking the present radiation density fraction of the Universe to beΩγ 0 � 2.5 .
10�5h�2 (h being the Hubble constant in the units of 100 km.s�1Mpc�1), and
using the standard values for the present time and the time when the density of
matter and radiation became equal, we find the contemporary density fraction
of relics:

Ωrel ½ 1026h�2k

 

Hend

MP

!3�2

. (8.51)

It is easy to see that the relics overclose the Universe (Ωrel �� 1) for
any reasonablek and Hend � 10�6MP. The second case takes place if the
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Universe becomes PBH-dominated in the periodt1 � t2 � τBH. This situation
is realized under the conditionρBH⒧t2⒭ � ργ ⒧t2⒭, which can be rewritten in the
form

Hend

MP
� 10�6. (8.52)

The present-day relics density fraction takes the form

Ωrel ½ 1028h�2k

 

Hend

MP

!3�2

. (8.53)

Thus the Universe is not overclosed by relics only if the following condition
is valid:

Hend

MP
�

�

2 . 10�19h4�3k�2�3. (8.54)

This condition implies that the masses of PBHs created at the end of inflation
have to be greater than

M0 �
�

1011g . h�4�3 . k2�3. (8.55)

On the other hand, there are a number of well–known cosmological and
astrophysical limits [71] which prohibit the creation of PBHs in the mass range
(8.55) with an initial fraction of mass density close toβ0 ½ 10�2. So one has to
conclude that the effect of the false vacuum bag mechanism of PBH formation
makes impossible the coexistence of stable remnants of PBH evaporation with
first-order phase transitions at the end of inflation.

7. Summary
In this Chapter we give qualitative arguments supported by numerical sim-

ulation for the existence of long-lived fluctuation that arise as a result of a
collision of two expanded bubbles. The two-bubble collision leads, first, to the
formation of short-living false vacuum region in the center of collision. Nu-
merical results indicate separation of a false vacuum region at the timet » b.
Then it evolves into rather compact object - clot made up of a scalar field os-
cillating around its true minimum, with lifetime enough to be captured by its
gravitational field. At small coupling constants black hole can be produced.
Till now the similar object discussed in literature was oscillon [311, 294].

The main difference between these two objects is as follows.
i) Oscillon represent a subcritical bubble of true vacuum inside a false va-

cuum, that arise due to temperature fluctuations. Our object is the fluctuation
of scalar field in the true vacuum background that arise as a result of dynamical
process.
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ii) To be long-lived, oscillon should have rather large initial radius, though
less, than the critical one, and rather flat initial distribution of scalar field.
The evolution of the oscillon consists of oscillation of field value with almost
constant radius of the field configuration. Our clot of energy is much more
compact object with the amplitude value of scalar field being much larger, than
that of the field in its potential minimum. Forλ �

�

10�4 ..� 10�8 gravitational
forces are essential and the probability of PBH creation is of order unity.

iii) Oscillon, being produced in spite of small probability [312], is extremely
long lived object with lifetime 103�104m�1, mbeing the mass of scalar field.
The life-time of our clot of energy is of the same order of magnitude but they
could be produced with much bigger probability, because they result from col-
lisions of overcritical bubbles, whose rate of nucleation is much bigger than
for subcritical bubbles.



Chapter 9

FINE TUNING OF MICROPHYSICAL
PARAMETERS IN THE UNIVERSE

One of the advantages of being dis-
orderly is that one is constantly making
exciting discoveries.

A. A. Milne

General way of development of the physics is supported by the whole num-
ber of observational and experimental data. On the other hand, some phenom-
ena which we expected to be discovered for a long time, are still only hypo-
theses. Another data, being very impressive, are not explained yet. As an ex-
ample, it is worth mentioning the existence of dark matter and dark energy, of
superhigh energy particles in cosmic rays and ’bursts’ - almost instantaneous
energy explosion with energy release of order 1053 erg. These astrophysical
data specify presence of the new phenomena, which should be comprehended.

One of the cornerstone of the modern particle physics is the Weinberg -
Salam model of electroweak interaction. Its success became evident after a dis-
covering ofWù

� and Z bosons. Meanwhile, another prediction of this model
– the existence of Higgs particles – is not confirmed yet. Their detection is
the challenge for experimental searches at the modern accelerators. It would
specify the properties and the parameters of the Standard model, being the ne-
cessary step for its further development, related with the predictions of new
physics beyond it. So, the theoretical arguments make us to expect the discov-
ery of SUSY particles at future accelerators.

The high level of precision in the measurements of cosmological data makes
observational cosmology more close to the proper experimental physics. The
coming era of precision cosmology provides additional source of information
about new physics, hardly accessible to accelerator study. In particular, it is
just astronomical and cosmic data that is expected to provide the information
on neutrallino, a popular SUSY candidate for the dominant form of the modern
cosmological dark matter.

197
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One could conclude that cosmology and microphysics stand before quant-
itative progress that has to reconcile theoretical investigations with essentially
new experimental data. The important aspect of this progress, with which
the development of cosmoparticle physics is related, is the question on the
mutual relationship between the fundamental parameters of cosmology and
particle physics. It is worth to analyze some basic postulates, which underlie
the modern theory, and to study, whether the fundamental physical parameters
are eternal and givenad hoc, or their choice is specific just for our Universe.
As we’ll see, it is really possible that the physical laws, governing the mod-
ern state of our Universe, come from the same process that have lead to its
creation.

The widespread approach consists of choosing from the beginning dynam-
ical variables and the form of a Lagrangian. It is supposed that the smaller is
the number of parameters the better is the quality of the theory. This approach
being successful in a field of specific calculations, suffers with some problems.
These problems are not discussed and even not mentioned usually:

A) Why do we suppose that minimum of a potential is exactly zero?
B) What a mechanism is responsible for the specific form of potential with

concrete values of parameters in our Universe?
C) To what extent the quantum corrections to the form of potential are im-

portant?
D) The question of renormalazability of a theory appears to be not so simple

if one takes into account an interaction of particles with gravitons. The last is
usually extremely small and sure should not be considered in real calculations,
but its existence is of principal importance. The general relativity, being un-
renormalizable theory, leads to the same property of any theory connected with
it.

These problems are not very important for low energy physics and scient-
ists usually wave off them. But the modern accelerator physics approaches the
energies of the order of 1 TeV and higher. Not only experimenters, but theor-
eticians as well feel necessity to deal with new level of energies - theories of
the early Universe would operate with Planck densities. Moreover, as we have
already discussed in Chapter 7, the low scale gravity can influence the physical
processes even in the range of TeV energies.

The problem A) becomes topical after a discovery of dark energy [73], that
could be explained most easily as nonzero vacuum energy density. The last,
being» 120 orders of magnitude smaller than Planck scale, allows the forma-
tion of the large scale structure of our Universe.

The problem B), or, more widely a problem of creation of the Universe with
observable properties attracted attention of large number of scientists and gave
rise to a prolonged discussion [313, 314]. This discussion is continued up to
the present time [75, 315, 316, 317].
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Neglecting quantum corrections (problem C)) seems doubtful at high ener-
gies. Moreover, new terms in a Lagrangian appeared due to quantum correc-
tions are used for creation of inflationary models [57] and models of element-
ary particles [318]. It is evident that quantum corrections have double meaning.
On the one hand they add significant uncertainty to predictions of any model of
the early Universe starting from inflationary stage. On the other hand, the same
corrections give new possibilities for elementary particle models and hence for
models of the early Universe tightly connected with them. Quantum correc-
tions to gravitational field can directly lead to inflationary scenario [50, 51]. In
addition, the fluctuations of the same gravitational field may renormalize the
parameters of a Lagrangian responsible for low energy physics. One of a res-
ult of wormhole physics is a continuum of disconnected sectors, with different
values of the parameters [319].

Anthropic principle plays significant role in the discussion of fine tuning of
parameters of the Universe and, in particular, of the problem of nonzero dark
energy [315, 316, 320, 321]. In general, this principle proposes an existence
of a set of universes with different properties. Some of them are similar to our
Universe. The other ones representing the dominant majority, are not suitable
for our existence. "The only what remains" is to create a theory which could
base the existence of such a set of universes. In this Chapter we argue that
modern quantum field theory can supply us the necessary ingredients to solve
this problem.

We will show that the issues listed above are connected tightly with each
other and with the problem of fine tuning. So, within many years it was sup-
posed that we live in a space with Friedmann-Robertson-Walker (FRW) met-
ric. From the astrophysical point of view it means an expanding universe with
small negative acceleration. From the point of view of modern field theory it
means the vacuum energy density being strictly zero or, equivalently, a vanish-
ing cosmological constant. There were no clear theoretical reasons for this, but
there were speculations about a hidden symmetry, implying this strict equality
(see, for example, [322] and the review [75]). Several years ago observations
[73] indicated some positive value of the cosmological constantΛ ½ 0.7ρ M ,
which is only a little less than the average density of matterρ M in the Universe.
All quantum effects, which give contribution to the vacuum energy, exceed this
value by many orders of magnitude.

The mechanism of almost complete cancellation of different contributions is
still not understood. And at the same time, if the cosmological constant would
be approximately 200 times larger as its present value, galaxies would not have
been formed [323] and life would have been impossible. The impression that
the Universe is specially arranged to create the life [323] is rather strong.

The restriction on the cosmological constant described above is not the only
case where our existence implies a constraint on parameters in nature. In ele-
mentary particle physics there are a number of similar examples. We recall
here only one aspect of this fine tuning - the fine tuning of proton, neutron and
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electron mass. The electron mass is about 2000 times smaller than the nucleon
mass. One might suppose that it would not to matter if it would be several
times larger than its value 0.511MeV�c2. But in this case neutrons would be
stable and the processp� � e� } n� ν̄ would result in a sharp decrease of
proton abundance in the Universe with adverse consequences for our existence
[314].

We see that the Universe is "adjusted to life" by a set of parameters and the
cosmological constant is only one of them (for a recent review see e.g. [324]).
It looks like that nature has in store a large number of worlds and only a small
number of them is suitable for our existence.

A mechanism of realization of a large number of worlds is considered be-
low. New approach, offered in [360, 321, 317], is proposed in this Chapter. It
is supposeda priori that contribution of quantum corrections in a Lagrangian
must not be neglected. This supposition permits to validate the existence of the
universes with different properties and look from another side at the problem
listed above. The worlds differ from each other by microphysical parameters
as well as by the global properties that result from the stochastic realization
of these parameters. It is shown that worlds with parameters suitable for cre-
ation of the life are necessarily produced as a result of quantum fluctuations.
Modern accelerators supply us by ways of experimental test of the considered
approach. Some of the possibilities are discussed below.

As we have seen in the preceding chapters inflation, baryosynthesis and
nonbaryonic dark matter are determined by particle theory and provide ne-
cessary conditions for the cosmological expansion, creation of baryonic mat-
ter and galaxy formation. The microphysical parameters that determine these
phenomena are unknown and model dependent. In the present Chapter we
concentrate on the problem of fine tuning for another set of microphysical
parameters that determines the energy density of the modern physical vacuum
and the properties of of known particles, described by the Standard model. The
notions "creation of life", "conditions suitable for life" or "our existence" are,
evidently, used below not in biological, but in the fundamental physical sense.
They undermine the set of the observed physical conditions of the modern
Universe, essentially determined by the laws of microphysics.

1. Basic postulates
Microphysical description, based on Lagrange field theory, postulates, first

of all, a concrete Lagrangian for elementary particles. Coupling constants are
assumed to be small such that quantum corrections to the original Lagrangian
are considered to be small as well. Nevertheless, corrections are small only for
weak fields, while for strong fields it does not hold.

To be more specific, let us consider the Lagrangian of a scalar fieldϕ

L �
1
2
⒧∂µϕ⒭

2
�

m2

2
ϕ

2
�

λ

4
ϕ

4 . (9.1)
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One can compute one-loop quantum corrections to the potential and finds [57]

δV �

�

3λϕ
2
�m2

�2

64π 2 ln

�

3λϕ
2
�m2

�

2m2 � aϕ
2
� bϕ

4. (9.2)

The last two terms renormalize the mass and coupling constant of the Lag-
rangian and depend on the scheme of renormalization. The first term signific-
antly complicates the form of the potential. This is the most important term for
the nearest considerations. Multi-loop corrections as well as interaction with
other fields may add new terms to the potential. It is important to note that any
simple interaction causes an infinite number of additional terms to the original
Lagrangian.

One can easily see, comparing expressions (9.1) and (9.2), that new terms
are small in comparison with the original terms ifϕ �� m . exp⒧1�λ⒭. To get
an estimate, one may choosem� 100 GeV,λ � 0.1, then quantum corrections
to the potential become large atϕ » 106 GeV. It is a rather large energy for an
accelerator. However, at the early inflationary stage of our universe the aver-
age value is assumed to be much larger,ϕ � 1019 GeV. Hence, it is necessary
to take into account an infinite number of additional terms in the Lagrangian
(9.1). Moreover, the amplitude of a scalar field is restricted even more strin-
gently. The logarithm in expression (9.2) is the result of the summation of an
infinite number of terms [325], which converges only whenϕ � m�

A

3λ. Be-
sides, one can see directly from Lagrangian (9.1) that the interaction term is of
order of the mass term whenϕ » m

B

2�λ.
Two last estimations are in good agreement with each other and give a much

smaller value of the field when quantum corrections are really small. A similar
problem was discussed in the framework of hybrid inflation [262]. Thus, when
considering phenomena in strong fields, i.e.ϕ � m�

A

λ, it is necessary to take
into account all additional terms, inevitably arising due to quantum corrections.
The potential acquires much more complex form, than the one based on the low
energy limit of the theory. This can be visualized by the picture of mountains
and valleys. In a mountain area it is possible to have smooth surfaces with
small curvature only in valleys, i.e., in minima of the potential energy. After
climbing to some height, it becomes obvious that the shape of the terrain is
much more rocky.

The potential of a scalar field interaction is usually assumed to be of the
most simple form. The property of renormalizability of the theory is not so
essential if one supposes that gravitational effects on Planck scale regularize
integrals. Usually, the fields are weak and quantum corrections are reduced to
the renormalization of parameters of a Lagrangian under the assumption that
the final corrections are small.

As consequence of the previous discussion, at the moment of formation of
our Universe, i.e., at large amplitudes of a field, quantum corrections most
likely were comparable with original terms of the Lagrangian, and its form
was much more complex than the Lagrangian considered above. If we limit
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ourselves with one scalar fieldsϕ , naive calculations of the quantum correc-
tions lead to the potential represents a polynomial containing all powers of the
scalar field

V⒧ϕ⒭ �
±

∑
k

akϕ
k. (9.3)

Generally speaking, negative powers are not excluded. Calculation of the coef-
ficientsak seems impossible and waste effort for two reasons. Firstly, it is hard
to believe that this Tailor set is correct at large values of the fieldϕ . Secondly,
each term of the polynomial is a result of superposition of interactions with
particles of every sort. Their contributions vary unexpectedly with increasing
of a degree of a term. Consequently, any information about a shape of the po-
tential in a vicinity of a chosen field valueϕ 0 is useless atϕ �� ϕ 0. Thus,
any model of elementary particles with postulated from the beginning specific
form of a potential with small number of parameters is doomed to failure at
large values of the dynamical variables.

The main conclusion is that the choice of any simple form of Lagrangian
with specific parameters leads to difficult problems: one must explainab initio
the origin of both the form of Lagrangian and numerical values of parameters
and finally manage to prove that quantum corrections are small at high ener-
gies.

In addition, the field is only a dynamical variable which has no physical
meaning. It enters the expressions for the potential and kinetic energy and it
contributes the measurable quantities ONLY in such a form. It reminds trans-
lational invariance in the classical physics. It is not clear why we must single
out the valueϕ � 0 when postulating the form of a potential. The minimum
of potential could happen at any field value with the same probability.

Let us take, following [360], the opposite point of view and limit ourselves
to the minimal number of specific assumptions about the form of a potential.
As a possible solution of the problem new postulate is proposed. This postu-
late is an analogue of the concept of attenuation of correlations known in the
statistical physics. As in the latter, probabilistic approach used below, allows
one to obtain new results and clarify already known problems.

To proceed, let us introduce first of all the concept of probability density
P⒧V; ϕ⒭ to find specific valueV of a potential at given field valueϕ . Then the
only requirement to the form of the potential is expressed in the form of the
postulate:

(* ) Let a value of the potential V0 is known at a given field valueϕ 0. Then
there exists such aΦ (0 � Φ � ±), so that for any V andϕ , provided
ϕ � ϕ 0 � Φ: P⒧V; ϕ⒭ � 0 and does not depend onϕ 0.

Correctness of this postulate, as any other postulates, is not directly proved.
Nevertheless, it must lead to testable consequences if it pretends on description
of the reality. Some of them are discussed below.
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As an important example, consider the following Lagrangian of a scalar
field

L �
1
2
⒧∂µϕ⒭

2
� V⒧ϕ⒭ . (9.4)

The fieldϕ is determined in the interval⒧�±ÿ�±⒭, what appears to be im-
portant in the following consideration. The potentialV⒧ϕ⒭ is assumed to obey
the postulate (* ). Then, two general corollaries may be proved on the basis of
the postulate.

The first direct corollary is that the potential (9.4) possesses infinite but
countable set of zeros. Indeed, if we make the inverse supposition that this
set is finite, then, starting from some field valueϕ , the functionV⒧ϕ⒭ is pure
positive or pure negative atϕ � ϕ . Consequently, one of the statements is
sure true in this case:P⒧V � 0⒭ � 0, or P⒧V � 0⒭ � 0, what contradicts to
the postulate (* ). Countable set of zeros means obviously a countable set of
extrema of the potential. Thus, if one wishes to express the potential in terms
of Tailor series, it will be a sum with infinite number of terms. It is interesting
that the general postulate (* ) leads inevitably to the form of potential (9.3) that
is dictated by the quantum corrections.

The second important corollary looks as follows. Let one knows that some
minimum of the potential takes place at field valueϕ � ϕ m. Then according to
postulate (* ), there is probabilityP⒧Vm⒭dVm � 0 to find the potential value in
given interval⒧VmÿVm� dVm⒭. It immediately follows that there exists infinite
but countable set of such a minima in the interval in question.

Figure 9.1 gives a representative form of the potential of the scalar field
within some interval. If one bears in mind the scalar field as inflaton, a universe
formation takes place at the minima with numbersm� 1ÿmÿm� 1ÿm� 2....
Hence, the transparent consequence of the postulate (* ) is the prediction of
a nonzero cosmological constant because the probability to find out a local
minimum with a preset energy density is equal to zero.

The shape of the potential is unique in the vicinity of each minimum and
hence the process of the inflation is unique. The minimum values of the poten-
tial (energy density of the vacuum) are materialized with some density prob-
ability that differs from zero for any intervalV ..� V � dV. Hence, there is a
countable set of the low - lying minima what is necessary, but not sufficient
condition for the formation of universes similar to our Universe.

It should also be stated that the Lagrangian (9.3) is a special case of a more
general Lagrangian, where quantum corrections to the kinetic term would be
taken into account.

Logical extension of the previous discussion is the inclusion of matter and
gauge fields. It needs a generalization of postulate⒧*⒭ to any parameters of the
theory, which are influenced by the quantum corrections.

⒧** ⒭ All quantities of the theory, which are deformed by the quantum
corrections, comply with postulate⒧*⒭.
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Figure 9.1. Characteristic form of the potential discussed in the text. Points mark minima
where universes of different sorts are formed and evolve. Causal connection between the uni-
verses is absent.

In a substantiation of this postulate it is possible to refer to the same reasons,
which have resulted in a postulate (* ). Here it is important to note, that, due
to the quantum corrections, all parameters of the theorygnÿ n� 1ÿ 2...Nÿ ⒧N
- number of parameters of the theory) turn into (random) functions of a scalar
field gn⒧ϕ⒭. The values of a scalar fieldϕ m deliver minima of the potential, but
not of the functionsgn⒧ϕ⒭. The valuesgn⒧ϕ m⒭ are considered as constants in
the ordinary low energy physics.

The Universe is located in one of the minima, where the potentialV⒧ϕ⒭ can
be approximated in a simple way:

V⒧ϕ⒭ ½ V⒧ϕ m⒭ � aφ
2
� bφ

4
ÿ φ � ϕ � ϕ m .

Usually a similar potential is postulated from the beginning with specific con-
stantsa andb. The constanta is connected with mass of a quanta of the field
ϕ ÿ a � m2

ϕ
�2, if a � 0. Other universes occupy other minima which are

characterized by a potential with different parametersa andb.
Most unpleasant thing is the occurrence of unstable areas withV � 0, a

couple of them are shown in Figure 9.1. The similar situation was already
revealed and discussed. For example, the quantum corrections from an inter-
action with fermions can result to potentials of scalar fields, unlimited from
below (see for example [326]). Accurate renormalization of a Higgs - like
potential reveal new minima [327], some of them being unstable. However,
spatial areas withV � 0 are not causally connected to the visible part of our
Universe. It is as the result of the initial, inflationary period of evolution of
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the Universe when its size has increased up to» exp⒧1012
⒭ cm., what many

orders of magnitude greater than the size of the observable Universe» 1028

cm.
The transition to probabilistic description is the cornerstone of this approach.

It greatly enriches the possibilities of our description, as it has happened, when
the transition from classical description to quantum mechanical one was per-
formed. It is worth to underline that a form of the potential is not postulated
from the beginning. Instead, only one, rather general property of the potential
is proposed. Nevertheless, this property leads to multiple consequences that
could be experimentally tested. As we will show below, some of them could
be done in the nearest future what would validate or invalidate the postulate.

2. Selection of universes
All (quasi-) stationary states are located in the minima of the potential and

our Universe, not being an exception, is located in such a minimum as well.
There is an enumerable set of minima (remind that the potential in question is
the polynomial with infinite number of terms), each of which is characterized
by some specific energy density. To form a universe similar to our Universe,
one has to find first of all a minimum with a very small energy density. For
an estimate of this probability, let us assume the uniform distribution ofρ

⒧m⒭
V

in an interval⒧0ÿM 4
pl⒭. In this case, the probability to find a minimum of the

potential with energy densityρ⒧m⒭V � V⒧ϕ m⒭ in an intervaldρ
⒧m⒭
V is given by

dP
�

ρ
⒧m⒭
V

�

� dρ
⒧m⒭
V �M 4

P (9.5)

The estimated value of dark energy density in our Universe isρV » 10�123M 4
P.

Thus, we come to the conclusion that the fraction of universes with vacuum en-
ergy density similar to ours is½ 10�123. It is hard to believe that an event with
so small probability has happened in Nature. Nevertheless, given an infinite
number of the universes, we conclude that a setℜ0 of such a universes (i.e.
those with vacuum energy densityρV » 10�123M 4

P) is still infinite.
As it was discussed above, not only small vacuum energy density is neces-

sary to create a universe similar to ours, i.e. with conditions suitable for life of
our type. For example, appropriate range of fermion masses is one of the con-
dition. The generation of the fermion masses gives a nice lesson of how one
can overcome in the same framework the difficulties, caused by the postulate
(* ).

Interaction with fermions

The interaction of a scalar field with fermions is usually considered in the
form of Yukawa coupling

VF � gϕψ̄ψ (9.6)
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In this case we arrive to a serious problem. The minima of the potential, guar-
anteeing conditions suitable for life, are very rare and they are most likely
to take place far from the valueϕ � 0. Hence, the term contributing to the
fermion massMF � gϕ m will be huge comparing with the experimentally
measured fermion masses.

A hint to the way of solution becomes clear if one notices that the choice
(9.6) a priory selects the field valueϕ � 0 what contradicts the main postu-
lates. The parameterg should be also changed by quantum correction. Hence,
according to the postulate (** ) it must be substituted with a function of the
scalar fieldϕ . Then interaction (9.6) acquires the form

VF � G⒧ϕ⒭ψ̄ψ ÿ (9.7)

which is a generalization of the expression (9.6). The functionG⒧ϕ⒭ is chosen
to be a polynomial with random factors in analogy with the scalar potential
V⒧ϕ⒭. In this case the fermion massMF and the constantg of interaction with
the fieldφ � ϕ � ϕ m depend on the numberm of the universe

MF � G⒧ϕ m⒭; g� G′

ϕ
⒧ϕ m⒭. (9.8)

This expressions are obtained by expansion of Eq. 9.7 in a power series around
the minimumϕ m.

As we have an infinite number of universes, it is obvious that for any given
interval of fermion mass⒧µ F ; µ F � δ ⒭ and functionG⒧ϕ⒭, one can find an
appropriate universe such that the value of the potential at the minimumV⒧ϕ m⒭

satisfies the equalityµ F
»

�

G⒧ϕ m⒭ with the desired accuracy.

Retrieval of the universes

It becomes now possible to use this mechanism for fine tuning of other
parameters, specifying the universe, but not only its vacuum energy density.
For example, the existence of life is possible if the fermion mass lies in an
interval ⒧µ li f eÿ µ li f e � δ m⒭. Then from an infinite setℜ0 of universes with
energy density suitable for life, one can always extract a subset of universes
ℜ1 with suitable valuesG⒧ϕ m⒭, such that the fermion mass appears in the
given interval. Moreover, this new restricted set of universes still contains an
infinite number of universes and we can choose a subset of universes with other
parameters suitable for life.

Let us introduce physical parametersðk of a universe. It includes various
coupling constants and masses of particles, for example. The creation of the
life is possible only if the values of these parameters are in some, rather tight,
intervals. Total numberNli f e of such a parameters is supposed to be finite.
The process of fine tuning now looks as follows. Fix an interval of values
for a first parameter (for example, the vacuum energy density). It gives us
enumerable subset of universesℜ⒧
ð�1⒭. Here
ð�n is a set ofn parameters
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ð1ÿ ð2ÿ ...ÿ ðn. Next step consists of fixing the interval for a second parameter
(for example, a mass of an electron). It gives us more weak, but still infinite
subset of the universesℜ⒧
ð�2⒭ ¦ ℜ⒧
ð�1⒭. Thus, the process of finding of
suitable universe looks like consequent choice of more and more weak but
enumerable set

ℜ⒧
ð�0⒭ � ℜ⒧
ð�1⒭ � ℜ⒧
ð�2⒭ � ... � ℜ⒧
ð�Nli f e⒭.

The last subset of the universes satisfies the conditions for all necessary para-
meters, the number of which isNli f e. This subset is very weak comparing with
initial one, but still contains infinite number of terms. We are not able to estim-
ate exactly what part of the universes are suitable for life. This defect seems
not very meaningful because we have no possibility to visit even neighbouring
universe.

Neighboring universes

Suppose that a process of inflation takes place at high values of a poten-
tial, as it is discussed in Chapter 2. Strong quantum fluctuations supply us by
field values inside causally connected areas in wide range of the values. The
further destiny of the area strongly depends on field configurations within this
area. Configurations being important for our considerations are those where
spatial derivatives are small, i.e.⒧∂ϕ µ⒭

2
�� V⒧ϕ⒭. In this case we can use

well developed methods of inflation theory - see Chapter 2 - and in particular
chaotic inflation [57]. If a causally connected domain starts its evolution at the
potential valueV⒧ϕ⒭ the size of this domain in modern epoch could be easily
estimated ( see (2.35))

a⒧t⒭ � H⒧t � 0⒭�1 exp
@

H⒧t⒭dt � H⒧ϕ in⒭
�1 exp

ϕ f
@

ϕ in

H
dϕ

ϕ̇

� H⒧ϕ in⒭
�1 exp �

ϕ f
@

ϕ in

3H⒧ϕ⒭2dϕ

V′⒧ϕ⒭
� H⒧ϕ in⒭

�1 exp
�8π

M 2
P

ϕ f
@

ϕ in

Vdϕ

V′⒧ϕ⒭

The estimation for the simplest form of the potentialV⒧ϕ⒭ � m2
ϕ

2
�2 is

a⒧t⒭ � H⒧ϕ in⒭
�1 exp 2π

ϕ
2
in

M 2
P

. (9.9)

Here we have take into account that final field valueϕ f is much smaller than
initial oneϕ in.

The highest energy density which can be treated theoretically is the Planck
density whereV⒧ϕ⒭ »M 4

P. It is an upper limit where the concept of time can
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be used. Consequently, the initial field valueϕ in » M 2
P�m. The spatial size

of fluctuations is then equal to the Planck scaleH�1
» M�1

P ⒧» 1019GeV ½
10�33cm⒭ as it follows from the relationship between the Hubble parameterH

and the energy densityρ ½ V⒧ϕ⒭, H �

C

8πV⒧ϕ⒭�3M 2
P. Thus, using formula

(9.9) one can obtain the size of a metauniverse

a⒧t⒭ � M�1
P exp 2π

M 2
P

m2 ½ 10�33e1013
cm. (9.10)

Numerical estimation was done for the mass of inflatonm� 1013GeV.
Let us consider the evolution of two neighbor causally disconnected do-

mains with slightly different field values marked by lettersC andC′ in Fig-
ure 9.2. Their destiny is rather different because their initial field values are
separated by the maximum of potential. The domain which was nucleated in
point C will reach a minimum marked asA, while its neighbor nucleated in
pointC′ will reach pointB. Two metauniverses will be produced from the two
initially neighboring domains. The size of at least one of them is huge com-
paring with the size of our Universe (1028cm), the last being incorporated by
one of the metauniverses. It means that we never reach neighboring universes.

Another important question arises if one looks at Figure 9.2 more thor-
oughly. Indeed, a probability of a strict equalityV⒧ϕ A⒭ � V⒧ϕ B⒭ is zero. It
means that one minimum is able to decay in the manner discussed in Chapter
10. It does not sound much optimistic for our civilization and it is worth to
estimate the probability of such a decay. Suppose that the maximum in the
Figure 9.2 is of orderVmax » M 4

P. Function that approximates correctly the
local form of the potential presented in Figure 9.2 may be chosen in the form

U �

λ

8

�

ϕ
2
� a2

�2
�

ε

2a
⒧ϕ � a⒭ . (9.11)

Density probability of the vacuum decay in one - loop approximation was cal-
culated in papers [289, 328] (see also Chapter 10, Sections 1,3) and has the
form

Γ ½ Ae�SE .

Here SE is the Euclidean action on a classical trajectory connected the two
minima and multiplierA depends on quantum corrections. Exact value of the
multiplier is not very important and we putA � M 4

P for estimation. what
seems reasonable in the considered scale of Planck energies. The Euclidean
action is expressed in terms of Lagrangian parameters [289, 328]

SE ½
π

2

6
a12

λ
2

ε3
.
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Figure 9.2. A part of the potential

As we have supposed thatVmax» M 4
P, the parametera can be expressed in the

form a� ⒧8�λ⒭
1�4 MP. The action acquires final form

SE ½
28

π
2

3
M12

P

λε3
.

This result was obtained in the thin-wall approximation limit, that looks like
ε �� M 4

P in our case. Coupling constantλ is usually chosen less than unity,
λ � 1. Most unpleasant situation, i.e. the largest value of decay probability, is
realized at the parameters valuesε » M 4

Pÿ λ » 1. ThenSE ½ 28
π

2
�3½ 800.

Straightforward utilization of the formulae written above leads to the estim-
ation of the decay probability of our Universe within the scaleLU » 1028cm

ΓU » ΓL3
U » 10�200s�1.

Thus, life time of our Universe is about 10200s and we may not worry about
this problem during at least those time interval.

Nearly disposed minima
As it follows from the proceeding discussion, the inflaton potential may

have rather complicated form. It may happen accidentally that two minima are
situated closely. The minima in question are marked as ’A’ and ’D’ in Fig-
ure 9.2. The potential can be approximated by the same function (9.11) with
another values of parametersλÿ a and ε . Inflation takes place when Hubble
parameterH⒧ϕ⒭ �� m which is supposed to hold in this case,m2

� U ′′

⒧ϕ A⒭.
In the vicinity of the local minimum, point ’D’, the equation of motion be-
comes simpler,

ϕ̈ � 3H⒧ϕ D⒭ϕ̇ � M 2
⒧ϕ � ϕ D⒭ ½ 0. (9.12)
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If H⒧ϕ D⒭ �� M , dissipation of energy is large and the field could be located
in the local minimum for a long time. We encounter serious problems, which
were discussed in connection with the old inflationary models [288], where our
universe was formed from the domain in a local potential minimum. Never-
theless, if a height of the local maximum happens to be small, first order phase
transition at the very end of inflation could take place. It could lead to effective
transformation of the inflaton into particles. The last problem is some shortage
of many inflationary scenarios because weak selfcoupling of the inflaton takes
place only if couplings with fermions are also small. Otherwise, quantum cor-
rections lead inevitably to strong selfinteraction of inflaton. It means that the
fermion production is suppressed.

In the caseH⒧ϕ D⒭ �
�

M the situation differs from the previous one. The
field slowly decreases, according to equation (9.12) until it appears in the vi-
cinity of the local minimumϕ � ϕ D, where the equation of motion can be
reduced to

ϕ̈ � M 2
⒧ϕ � ϕ D⒭ ½ 0 ÿ (9.13)

and the total energy of the field is approximately conserved. In this case the
classical field could overcome the local maximum between the two minima ’A’
and ’D’ and approach the nearest deeper minimum of the potential. It gives rise
to fractal structures in the future. The process of the fractal structure formation
performs in the same manner that was discussed in Chapter 4 and we shortly
repeat these arguments, applying them to the case in question.

Let classical motion of the field is governed by the equation

ϕ̈ � 3Hϕ̇ � �dV�dϕ . (9.14)

The destiny of spatial areas where the field just overcomes potential maxima is
rather interesting. The fact is that classical motion is accompanied by quantum
fluctuations. Consider the fluctuations of the field in a nearest vicinity of such
a maximum (right slope). The initial spatial size of this fluctuation is» 1�H.
After some time of the order of» 1�H has passed this spatial area will be
separated intoe3 causally disconnected domains with different field values.
The average value of the fieldϕ inside some of these domains could fluctuate
into the other side of the maximum (left slope). In its turn, each of these
domains will be divided ine3 subdomains of the size of½ 1�H in time 1�H
and some of them will pass back through the maximum of the potential. This
process continuously reproduces itself and already after several steps a picture
of a fractal structure will be observed.

Meantime, classical field moves away from the maximum what could pre-
vent the formation of the fractal structure. Hence, the development of rich
fractal structure in a final stage can take place only if the fluctuations are large.
More specifically, let us assume that the classical field changes its value by
∆ϕcl in the time 1�H. Then a fractal structure arises if the condition of the
fluctuation dominance∆ϕ f luct �� ∆ϕcl is satisfied. It gives enough time for
formation of a fractal structure due to the fluctuations around a maximum.
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An average value of fluctuations is well known, given by∆ϕ f luct »ù H�2π .
The classical motion can be computed explicitly if one approximates the po-
tential around a maximum by the function

V⒧ϕ⒭ »ù V0 � ⒧ϕ � ϕ Max⒭
2a2
�2 .

An approximate solution of Eq. (9.14) has the form

ϕ⒧t⒭ »ù ϕ Max� ϕ⒧t � 0⒭ � ϕ Max exp

 

a2MP
A

24πV0
t

!

ÿ

where the second time derivative is neglected as is usually done at the inflation
stage. The initial field valueϕ⒧t � 0⒭ ½ ϕ Max� ∆ϕ f luct�2 and the condition
of quantum fluctuation dominance is easily found to be

η ù
ù

ù

∆ϕ f luct

∆ϕcl
½

16πV0

a2M 2
P

� 1. (9.15)

The larger the parameterη the richer fractal structure will be formed. These
fractal structures being small in comparison with the size of our Universe could
result in observable consequences.

It is well known that two domains with field values separated by a potential
maximum, are separated by a wall [252]. Classically, fields in such domains
tend to various (neighboring) minima ’A’ and ’D’ and hence the energy density
of the wall grows relative to the rest of the space.

The picture, represented above, includes the picture of the eternal inflation
[129] and provides realization of the set of universes with intrinsically different
properties.

3. Weinberg - Salam model
Let us consider modifications of the standardSU⒧2⒭

Q

U⒧1⒭ Veinberg -
Salam model (SM), which are the results of postulates⒧*⒭ÿ ⒧** ⒭.

3.1 Higgs field

Potential of the Higgs fieldχ �

 

χ1

χ 2

!

is supposed usually in the form

VHiggs⒧χ⒭ �
λ

4

�

χ
2
� v2

�2
�2

. (9.16)

i.e. nonzero vacuum average is postulated from the beginning. The con-
sequence of our postulates is that it is not necessary now - quantum corrections
lead to multiple minima for any potential, including the Higgs one. The prob-
lem is however, more complicated because the Higgs field should interact with
inflaton (at least owing to multiloop corrections) and we get inevitably, instead
of (9.16), an expansion with infinite number of terms,

V⒧ϕ ÿ χ⒭ �
±

∑
kÿn�0

aknϕ
k

χ
2n. (9.17)
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The application of a postulate (* ) simultaneously to the both fields results
in a potential of a complex form with a lot of extrema and valleys in vari-
ous directions. Minima of the potential are situated in points with field value
⒧ϕ mÿ vm⒭ÿ vm ù

ù

ù

B

χ m
2. One can see that there is no need to include nonzero

vacuum average artificially. Of course, the probability that two neighbour
vacua appears to be symmetrical, as it is in the SM is very small. It should
not disturb us for this symmetry is not important feature of the model. In this
connection, we would like to mention an article [329] devoted to the Weinberg
- Salam model with two asymmetrical vacua. One of them is placed in Planck
scale.

3.2 Modernization of the Standard Model
The Weinberg–Salam model is described by the Lagrangian

L � Lgauge� Llept� Lscalar� Lint;

Lgauge� �
1
4

F i
µν

F iµν
�

1
4

Bµν Bµν ;

Llept � R̄i
�

`∂ � ig′ `B
�

R� L̄i `∂ � i
g′

2
`B� i

g
2

τ
i
`Ai L;

Lscalar �

H

H

H

H

`∂ � i
g′

2
`B� i

g
2

τ
i
`Ai χ

H

H

H

H

2

� V⒧ χ
2
⒭;

Lint � �G R̄χ
�L � L̄χ R ÿ (9.18)

with the notations

F i
µν
� ∂µ Ai

ν
� ∂ν Ai

µ
� gε

i j k Aj
µ

Ak
ν
ÿ

Bµν � ∂µ Bν � ∂ν Bµ .

V⒧ χ
2
⒭ � λ⒧ χ

2
� v2

�2⒭. (9.19)

Here A and B are gauge fields,L and R are left and right fermions. The
Higgs fieldχ has nonzero vacuum expectation value

� 0
v�
A

2

�

. The parameters
gÿ g′ÿ vÿG of the model are expressed in term of observable values - a mass of a
chargedW� bosonMW, a mass ofZ� bosonMZ, electric chargee and Fermi
constantGF .

MW � gv�2ÿ MZ �
v
2

C

g2
� g′2ÿ e�

gg′
B

g2
� g′2

ÿ GF �
1

A

2v2
.

(9.20)

As it was shown in the paper [330], a procedure of renormalization could be
chosen in such a manner to preserve gauge invariance of the Lagrangian (9.18).
That is why, following [360] we limit ourselves by an investigation of results
of renormalization of parametersgÿ g′ÿG. According to postulates⒧*⒭ÿ ⒧** ⒭,
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these parameters are transformed into polynomials of the type (9.17)

gÿ g′ÿG� g⒧ϕ ÿ χ
2
⒭ÿ g′⒧ϕ ÿ χ

2
⒭ÿG⒧ϕ ÿ χ

2
⒭. (9.21)

At the same time, the potential of the Higgs fieldV⒧ χ
2
⒭ acquires form (9.17)

due to the same postulates⒧*⒭ÿ ⒧** ⒭.
Let us discuss now the last term in expression (9.18) describing fermion

interaction with the Higgs particles. It will be shown that it gives a nontrivial
result that differs from the prediction of SM and is accessible to experimental
test. The substitution of the constantsgÿ g′ÿ vÿG with functions (9.21) leaves a
trace in an effective Lagrangian.

The expressionLint in the Standard Model permits to obtain a fermion mass
mf one-to-one related to the vacuum expectation valuev�

A

2 imbedded by
hand,

mf � Gv�
A

2. (9.22)

If one takes into account that the parameterG is now a polynomial of the form
(9.17), the result appears to be rather different. Indeed, let us parameterize the
Higgs doublet as usual:χ � eiΘ⒧x⒭� 0

χ 0

�

, whereΘ⒧x⒭ is SU⒧2⒭ matrix that is
removed from the final Lagrangian by a gauge transformation. As a result, the
term in question is

Lint � �G⒧ϕ ÿ ⒧χ 0
⒭

2
⒭χ

0 f R fL . (9.23)

Potential (9.17) is disposed in some minimum numberm at the field values
ϕ mÿ χ

0
m ⒧χ

0
m � v�

A

2 in usual notations). First terms in the Tailor expansion
of the expression (9.23) in the powers ofh� χ

0
� χ

0
m have the form

Lint »ù �χ
0
m

. G⒧ϕ mÿ ⒧χ
0
m⒭

2
⒭ f R fL �G f h f R fLÿ

G f �
∂G⒧ϕ mÿ ⒧χ

0
m⒭

2
⒭

∂ χ 0
m

χ
0
m�G⒧ϕ mÿ ⒧χ

0
m⒭

2
⒭. (9.24)

Fermion mass
mf � χ

0
m

. G⒧ϕ mÿ ⒧χ
0
m⒭

2
⒭ (9.25)

appears to be dependent on numberm of specific minimum (see also [331]),
in which a universe evolves. The field valuesϕ mÿ χ

0
m represent the minimum of

the potential (9.17), but not the minima of the other functions likeG⒧ϕ mÿ ⒧χ
0
m⒭

2
⒭.

That is why the usual proportionality (9.22) of the fermion massmf to the con-
stant of its coupling to Higgs particle is absent in this case.

Another deviation from the SM could be found in couplings of a selfinter-
action of the Higgs particles. For example, the constant of three-linear interac-
tion in the framework of Weinberg - Salam model is equal toλhhh � 3

A

2λv
in zeroth order of a perturbation theory and hence is proportional to the known
value of the vacuum expectation valuev. Another prediction follows from the
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potential (9.17). This constant has the formλhhh � ⒧1�6⒭∂ 3V⒧ϕ mÿ χ m⒭�∂ χ
3
m

and it does not have any connection with the other parameters.
It may be shown [360] that this approach is able to restore Weinberg - Salam

model with the exception of those interactions with Higgs particlesh.
It is instructive to consider the part of the LagrangianLlept responsible for an

interaction of leptons (electrons) with gauge fields. After standard substitution
of the fieldsBµ ÿ Ai

µ
by physical fieldsWù

�

µ
ÿ Zµ ÿ Aµ one obtains [332]

Llept � C1 ν̄eγ
µ
⒧1� γ 5⒭eW�

µ
� h.c.

� C2 ⒧2ēRγ
µ eR� ν̄eγ

µ
νe� ēLγ

µ eL⒭ Zµ

� C3 ⒧ēLγ
µ eL � ν̄eγ

µ
νe⒭ Zµ � eAµ ēγ

µ e. (9.26)

The quantitiesCi ÿ e are expressed in ordinary way in terms of the initial para-
meters

C1 �
g

2
A

2
; C2 �

e
2

tanθ W; C3 �
e
2

cotθ Wÿ

e�
gg′

B

g2
� g′2

; tanθ W � g′�g (9.27)

and, according to (9.21), are functions of the fieldsϕ andχ . Both fields are
placed in the vicinity of some minimum of potential (9.17) and we can limit
ourselves with first terms in Tailor expansion

Ci »

ù Ci⒧ϕ mÿ χ
0
m⒭ �

∂Ci⒧ϕ mÿ χ
0
m⒭

∂ χ 0
m

h;

e »

ù e⒧ϕ mÿ χ
0
m⒭ �

∂ e⒧ϕ mÿ χ
0
m⒭

∂ χ 0
m

h. (9.28)

The inflaton field is supposed to be sufficiently massive so that we can
neglect any interaction with its quanta. The first terms in expansion (9.27)
were determined experimentally as far as they are connected with known para-
meters - electron chargee and Weinberg angleθ W according to expressions
(9.27). Second terms are responsible for new vertexes of interaction of the
leptons with the quanta of Higgs fieldh. More definitely, these vertexes are:
ν̄eWehÿ ēeZhÿ ν̄eνeZhÿ ēeAh, in the Lagrangian (9.26)

L′lept � Γ1 hν̄eγ
µ
⒧1� γ 5⒭eW�

µ
� h.c. �

� Γ2 ⒧2hēRγ
µ eR� hν̄eγ

µ
νe� hēLγ

µ eL⒭ Zµ �

� Γ3 ⒧hēLγ
µ eL � hν̄eγ

µ
νe⒭ Zµ � ΓehAµ ēγ

µ e. (9.29)

As far as the four vertexes are expressed in terms of two unknown paramet-
ers,B ù

ù

ù ∂ g�∂ χ
0
m andB′ ùùù ∂ g′�∂ χ

0
m, they are connected with each other as
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follows

Γ2 � Γe
1
2

�g
e

�2
 

e2g′

g3 � 1

!

� Γ1

A

2
eg′

g2

 

e2g
g′3

� 1

!

�

e
g

 

g
g′

!3 e2g′

g3 � 1

!

ÿ

Γ3 � Γe
1
2

�g
e

�3 eg
g′2

 

e2g′

g3 � 1

!

(9.30)

� Γ1
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e
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e2g
g′3

� 1

!

�

eg
g′2

 

g
g′

!3 e2g′

g3 � 1

!

.

The existence of new vertexes (9.28) obeying the relations (9.30) is direct
consequences of the initial postulates⒧*⒭ÿ ⒧** ⒭. On the other hand, they could
be checked experimentally in the nearest future. For example, properties of the
Higgs bosons will be investigated in modern accelerators. Such a possibility is
discussed in the paper [333] fore�e� annihilation at the energies 500 GeV in
the center of mass system. In case of discovering the Higgs bosons, it allows
to validate or invalidate connections (9.30) and hence the postulates proposed
above.

4. Discussion
In this Chapter were considered some consequences of the postulates⒧*⒭,

⒧** ⒭, proposed in [360]. These postulates are used instead of strict fixing of a
Lagrangian from the very beginning. It gives rise to nontrivial consequences
both in cosmology and in physics of elementary particles. First of all, it allows
one to prove the existence of countable set of universes disposed in potential
minima with different values of microscopic parameters. It serves as necessary
ingredient of the anthropic principle which permits to explain the origin of a
universe similar to ours.

The problem listed in the beginning, looks quite solvable if the solution is
based on probability language used for formulation of the postulates. In this
framework, the answer to the problem A) is: "Minimal value of a potential is
not equal to zero. Instead, there exists infinite set of universes with sufficiently
small values of the potential minimum. It is necessary condition for nucleation
and formation of universe similar to ours". One could extract from this set of
universes a subset with parameters close to those presented in our Universe.
The last statement is the answer to the problem B) mentioned above. Addi-
tional pleasant property of the potential (9.3) is its absolute renormalizability
(problem D)). Indeed, it contains terms with any power of the scalar field from
the beginning and any quantum correction could be included in the Lagrangian
parameter. The answer to the question C) is evident from the above discussion.

Postulates⒧*⒭ÿ ⒧** ⒭ lead with necessity to scalar - tensor theories of gravity.
Different sorts of such a theories are discussed in e.g. [334, 336, 337]. If we
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wish to be consistent, then we have to admit, according to postulates⒧*⒭ÿ ⒧** ⒭,
that the quantum corrections convertall parameters of a Lagrangian, including
the gravitational constantGN into polynomials. In this case, general form of
the Lagrangian can be readily written

L � �
F⒧ϕ⒭

16πGN
R�

K⒧ϕ⒭
2

⒧∂ϕ⒭
2
� Vren⒧ϕ⒭. (9.31)

Immediate conclusion from expression (9.31) is that Newton gravitational
constant is an effective one and it is different in different universes enumerated
by numberm: GN⒧m⒭ � GNÿourF⒧ϕ m⒭�F⒧ϕ our⒭ (index ’our’ relates to our
Universe).

Important thing is that in spite on generality and brevity of the postulates
they not only give new sight to the abstract problems listed in the beginning
of this Chapter. They possess predictive power and some of their predictions
could be tested in the nearest future. More definitely

a) new vertexes of interaction of leptons, gauge fields and Higgs bosons take
place in this framework. One-to-one connections (9.30) between them could
be checked experimentally in the nearest future;

b) Strict connection between a mass of fermions and coupling constant of
their interaction with scalar particles is absent. It could be very important for
axion models because it strongly enriches their ability to satisfy the stringent
limits following from the observational data [3];

c) The constant of the three-linear interaction appears to be a free parameter
on the contrary to the prediction of the standard Weinberg - Salam model.

The serious argument against the proposed postulates would be strict equal-
ity to zero of the vacuum energy density (density of the dark energy) because a
measure of such a universes is zero. The evidences that the cosmological dens-
ity of the dark energy is not zero are considered rather firm these days, but we
still could not exclude the opposite possibility. Formally, if the future observa-
tions indicate that vacuum energy density is strictly equal to zero, it will make
the postulates very doubtful. On the other hand, this hypothetical possibility
can never be experimentally proven, since the observational data can only put
upper limit on this quantity and can not rule out its existence below the level
of experimental sensitivity.

In this Chapter the mechanism of creation of universes with given set of
microscopic parameters is developed. The process of formations of each uni-
verse is unique, because the form of potential is unique in the vicinity of each
minimum. The formation of universes is described by different types of infla-
tionary models in different minima. Presently, a large number of models with
a wide range of different potentials are considered as potentially realistic. Ap-
parently, each of them describes some subset of the universes of our type. It
is shown, that at an early stage of formation of our Universe primordial fractal
structures could be created in natural way.



Chapter 10

INFLATION: ADDITIONAL RESOURCES

Up to now our consideration was performed in the framework of the chaotic
inflation. We revealed that scalar field(s) connected with gravity gives rise to
a very interesting and important period of the evolution of our Universe. A lot
of observational data can find new nontrivial explanation in this framework. In
addition, new phenomena are predicted, some of them have been discussed in
this book.

Nevertheless, not everything is as good as it seems. For example, coupling
constant must be very small to fit the observed temperature fluctuations of the
relic radiation. Another problem is energy transition from inflaton to fermions
and photons during the end of the inflation. Indeed, if coupling constants are
small, the decay of inflaton is suppressed. The problem could be cured if one
takes into account an effect of a parametric resonance [338], [339]. Thus, this
problem is not unresolved in principle, but it would be instructive to discuss
other mechanisms of the inflation.

In this Chapter we consider a mechanism of a first order phase transition
at the end of inflation, an effect of auxiliary massive fields on inflationary
processes, a decay of cosmological constant as the Bose - Einstein condensate
evaporation and a quite general case of inflation based on so called scalar-
tensor theories.

1. First order phase transition as a terminator of
inflation

Let us treat the case when inflation is finished due to vacuum decay with
probability densityΓ per unit time. The false vacuum is percolated exactly in
the same manner as it is discussed in Chapter 8. The only difference is that
topical consideration concerns the inflaton field. A space is filled by the state
with lowest energy density (true vacuum) due to the tunnel transition from
metastable (false) vacuum state to true one, what indicate the end of inflation.

217
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The picture looks as it is shown in Figure 8.2 in the physical reference frame.
The bubbles with true vacuum inside them are nucleated by quantum tunneling.
Their initial size is dictated by specific values of parameters of a Lagrangian.
Just after creation, the bubbles are expanding with velocity that is quickly ap-
proaching the speed of light. The walls of the bubbles collide, the energy of
the false vacuum stored in the walls is converted into radiation and the false
vacuum regions are vanished. The only thing that could prevent this process
is the cosmological expansion, as it should take place in de Sitter space. The
cosmological expansion is determined by scale factor

a⒧t⒭ � H�1 exp⒧Ht⒭ÿ

with Hubble parameterH is supposed being constant. If this parameter is
sufficiently large, the expansion of the space filled by the false vacuum could
prevent its obliteration.

The process described above may be treated ’from the coordinate (comov-
ing) point of view’. Consider false vacuum with initial coordinate volume
VF⒧0⒭. The decay is performed by creation of true vacuum bubbles. Their
initial radius is supposed to be small comparing with final one. The walls are
ultrarelativistic predominantly and their size equals to horizon size with good
accuracy after one cosmological time passed. Hence, the final comoving radius
of the bubble nucleated at the momentt0 is

r ⒧t0⒭ � exp⒧�Ht0⒭ÿ

see expression (2.19). The later the bubble have been nucleated, the smaller
is its final radius. If the Hubble parameter is small, the infinite set of bubbles
with exponentially decreasing radiuses could not fill the whole Universe and
some of de Sitter domains survive.

Let us consider the process of vacuum decay in more detail (see e.g. [288]).
As we saw above, there are two important parameters. They are the Hubble
parameterH and the probabilityΓ of a bubble nucleation per unit (physical)
volume per unit time. By definition, the coordinate volumevF filled with false
vacuum is decreasing as

dvF⒧t0⒭ � �ΓVF⒧t0⒭dt0vbubble⒧t0⒭. (10.1)

HereVF⒧t0⒭ � a⒧t0⒭
3vF⒧t0⒭ is the physical volume filled by false vacuum at

the momentt0, vbubble⒧t0⒭ �
4π

3 r ⒧t0⒭
3 is the volume of one bubble nucleated

in the time intervalt0ÿ t0 � dt0. The solution of Eq. (10.1) is trivial one

vF⒧t⒭ � vF⒧0⒭ exp �Γ
@ t

0
a⒧t0⒭

3vbubble⒧t0⒭dt0 ÿ

if the valueΓ � Const. Assembling all formulas written above one obtains
time behaviour of the volume of false vacuum space

vF⒧t⒭ � vF⒧0⒭ exp �

4π

3
Γ
H3 t . (10.2)
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We see that a fraction of the false vacuum spacevF⒧t⒭�vF⒧0⒭ inevitably tends
to zero. Nevertheless a conclusion about the end of the inflation would be too
hasty.

To proceed, we have to determine exactly what does the words "end of in-
flation" mean. If one prefers the definition in the form: "inflation lasts finite
period of time ifvF⒧t⒭�vF⒧0⒭ } 0", expression (10.2) solves the problem - the
inflation is finished at the timet � 3

4π

H3

Γ .
Another definition is: "inflation is finished if the space volume filled by false

vacuum tends to zero in physical coordinates". It means that the valueVF⒧t⒭

VF⒧t⒭ � a⒧t⒭3vF⒧t⒭ � vF⒧0⒭H
�1 exp �

4π

3
Γ
H3 t � 3Ht } 0ÿ

what is possible only under condition4π

3
Γ
H3 � 3H. Finally, we obtain the

condition for the total vanishing of the false vacuum space in the form

4π

9
Γ
H4 � 1. (10.3)

It was noticed (see review [288]) that if we choose the second definition
(what is usually supposed) some problem arises inevitably. Indeed, if we wish
the inflation to last finite time, thenΓ �

�

H4 according to expression (10.3).
This inequality leads immediately to the conclusion that the life time of false
vacuum isτ �

�

H�1. This period is too small to increase the space volume of
the Universe sufficiently strong to satisfy the observational data. To resolve
this contradiction, one has to complicate the model so that decay probability
Γ could vary with time. This value must be small from the beginning to allow
the Universe to expand the proper period of time. Then, when the value of the
decay probabilityΓ is increased, the vacuum decay dominates the expansion
and the inflation is finished.

A lot of models were created to realize this ’graceful exit problem’ - see
substantial review [288]. Main idea is to start with more complex potential
like those represented in Figure 10.2. There are two valleys and those marked
by dotted line is disposed lower. It is supposed that our Universe was born in
a state ’A’ and has to evolve to a state ’C’ characterized by a lowest energy.
Immediate tunneling is forbidden due to high barrier and fieldσ is slowly
varied along the direction pointed by arrow to a state ’B’. Parameters of the
potential are chosen to supply enough time for the Universe expansion during
this period. The potential is arranged in such a manner to decrease the barrier in
the arrow direction. When the Universe arrives at point ’B’ the barrier appears
to be small enough to make the process of tunneling considerable. The vacuum
decay from the false vacuum state (point ’B’) to the true vacuum state (point
’C’) signifies the end of the inflation. An example of such a model could be
found in [340].
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Figure 10.1. Typical form of a potential which leads to false vacuum decay. False vacuum
state is denoted as ’F’ while true vacuum state is marked as ’T’

We see that if we involve new fields in the consideration, it gives new in-
teresting effects and possibilities to solve topical problems. Next section is
devoted to an interplay of inflaton and an auxiliary massive field.

2. Massive fields and superslow motion during
inflation

Early inflation mechanisms [52, 51] were based on the consistent equations
of scalar and gravitational fields. Nevertheless, the simplest inflation models
could not explain the totality of the observed data. In particular, the predictions
of the chaotic inflation model [55] about temperature fluctuations in cosmic
background radiation do not contradict observations only for a rather unnatural
form of the inflaton field potential.

At the same time, the interaction of a large number of various fields existing
in nature should give rise to new phenomena in inflation scenario. Further de-
velopment of the theory has led to the emergence of inflation models involving
additional fields, among which are the models of hybrid inflation [260] and
inflation on the pseudo Nambu - Goldstone field [341], for example. The in-
teraction of the classical inflaton field with other particles is one of the basic
elements of inflationary models. Back reaction of the produced particles on
the dynamics of inflaton field was considered in [302, 342] and in the Section
1 of this Chapter.
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Figure 10.2. One of possible form of a two-field potential for solution of the graceful exit
problem

Below we study an effect of an additional field on the classical motion of
the basic inflaton field [343]. It is assumed that the additional field is massive
enough for it to be at the minimum of its effective potential during final stage of
the inflation. Nevertheless, it is shown below that its influence could noticeably
decelerate the system motion.

In what follows, the simplest form of interaction is considered allowing the
analytical results to be obtained. Namely, we introduce, apart from the inflaton
field ϕ , an additional scalar fieldχ and write the action in the form [343]

S�
@

d4x
A

�g
1
2

ϕ
ÿµϕ

ÿµ
� V⒧ϕ⒭ �

1
2

χ
ÿµ χ

ÿµ
�

1
2

m2
χ

2
� κ χu⒧ϕ⒭ ÿ

(10.4)
whereu⒧ϕ⒭ is a polynomial of degree no higher than three for the renormaliz-
able theories. Below, particular caseu⒧ϕ⒭ � ϕ

2 is taken for definiteness. The
first power of the fieldχ in the interaction is necessary in order to obtain com-
pact analytical results valid for an arbitrary coupling constantκ , rather than
the expansion in powers of this constant. The interaction of this type arises in
supersymmetric theories and is considered in hybrid inflation scenarios [344].
Dolgov and Hansen [342] used this type of interaction in studying the back
reaction of produced particles on the motion of classical field.
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The set of the classical equations for both fields is written as

1
A

�g
∂µ ⒧

A

�g∂
µ

χ⒭ �m2
χ

χ � κϕ
2
� 0ÿ (10.5)

1
A

�g
∂µ ⒧

A

�g∂
µ

ϕ⒭ � V′⒧ϕ⒭ � 2κϕ χ � 0. (10.6)

Let us consider the case of heavyχ particles. In the inflationary era, this means
that

mχ �� H⒧ϕ⒭ÿ (10.7)

and the Hubble constantH⒧ϕ⒭ is determined by the slowly varying classical
field ϕ . The last plays the role of inflaton. The Eq. (10.5) can be brought to the
form

χ⒧x⒭ � �κ

@

G⒧xÿ x′⒭ϕ 2
⒧x′⒭dx′. (10.8)

The right-hand side of Eq. (10.8) can be simplified using the equation for the
Green functionG⒧xÿ x′⒭ [345] written as

G⒧xÿ x′⒭ �
1

m2 δ ⒧x� x′⒭ �
1

m2

1
A

�g
∂µ

A

�g∂
µG⒧xÿ x′⒭. (10.9)

After two iterations, the fieldχ takes the explicit form

χ⒧x⒭ »ù �
κ

m2
χ

ϕ
2
⒧x⒭ �

κ

m4
χ

∂
µ
A

�g∂µ

 

1
A

�g
ϕ

2
⒧x⒭

!

ÿ (10.10)

which is valid if the derivatives of the inflaton fieldϕ are small. Substitut-
ing this expression into the Eq. (10.6), one arrives at the following classical
equation for the inflaton field:

∂µ

A

�g∂
µ

ϕ �
A

�gV′ren⒧ϕ⒭ �
2α

2

m2
χ

ϕ∂µ

A

�g∂
µ

ϕ
2
� 0ÿ (10.11)

whereα ù
ù

ù

κ

mχ
a dimensionless parameter and

Vren⒧ϕ⒭ � V⒧ϕ⒭ �
α

2

2
ϕ

4 (10.12)

is the potential of inflaton field renormalized due to interaction with the field
χ . The last term on the left-hand side of Eq. (10.11) is usually treated as a
back reaction of radiation [342]. Equation (10.11) corresponds to the effective
action for inflaton field

Se f f �

@

d4x
A

�g
1
2

ϕ
ÿµϕ

ÿµ
� Vren⒧ϕ⒭ �

1
A

�g
α

2

2m2 ϕ
2
∂µ

A

�g∂
µ

ϕ
2 .

(10.13)
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Figure 10.3. Feinman diagrams for first order corrections to coupling constantλ. Solid lines
represent fieldϕ , dotted lines represent fieldχ .

Note that the correctionδV � �

α
2

2 ϕ
4 to the potential follows from the

analysis of classical Eqs. (10.5)-(10.6). At the same time, the same expression
can be obtained by calculating the first quantum correction to the potential of
the fieldϕ due to interaction with the fieldχ . Necessary diagrams for the first
order corrections are shown in Figure 10.3. External lines correspond to the
quanta ofϕ-field at zero 4-momenta. The internal lines correspond to theχ -
field propagator in thes and t channels. The calculation of these diagrams
leads to a renormalized coupling constant

λ � λ0 �
κ

2

2m2 ÿ

what gives renormalized potential (10.12).
The last term in Eq. (10.11) is important for further consideration. Non-

minimal kinetic term arises in equations for density fluctuations in early Uni-
verse [346]. Morris [347] showed that a change in the form of kinetic term in
the scalar-tensor theory leads to the inflation at a lower, than ordinary, energy
scale, in agreement with the conclusions of the work [343]. Similar result can
be obtained by introducing a nonminimal interaction between an inflaton and
a gravitational field [348], [349].

In general, the renormalized potential contains the sum of contributions
from the corrections due to interaction with all the existing fields. In the first
model of chaotic inflation with theλϕ

4 potential, the observational data im-
plied a value ofλ » 10�13. This means that the corrections contributed to
the expression for the potentialV � λϕ

4 by all fields, including the correc-
tion δV � �⒧α

2
�2⒭ϕ 4 considered above, must cancel each other with high

accuracy.
We demonstrate below that the renormalization of the kinetic term allows

one, in particular, to weaken significantly the conditions imposed by the obser-
vations on the parameters of the theory. In weak fields, the contribution from
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the last term in Eqs.(10.11), (10.13) is negligible. As to the inflation stage, it
can be substantial at large field magnitudes.

During inflation, the field is assumed to be uniform; i.e.,ϕ � ϕ⒧t⒭, and
Eq. (10.11) is greatly simplified. Taking into account that the scale factor
a is expressed in terms of the Hubble constantH in the ordinary way,a �
H�1exp⒧

?

Hdt⒭, Eq. (10.11) can be rewritten as

d2
ϕ

dt2
� 3H

dϕ

dt
� V′ren⒧ϕ⒭ � (10.14)

4α
2

m2
χ

3Hϕ
2 dϕ

dt
� ϕ

2 d2
ϕ

dt2
� ϕ

 

dϕ

dt

!2

� 0.

Slow time variation of the fieldϕ implies that the terms proportional tod2
ϕ�dt2

and ⒧dϕ�dt⒭2 are small. Neglecting them, one obtains the easily integrable
equation

(

3H �

12Hα
2

m2
χ

ϕ
2

)

ϕ̇ � V′ren⒧ϕ⒭ � 0. (10.15)

In what follows, the nonrenormalized potential is taken in the formV⒧ϕ⒭ �
λ0ϕ

4, and, therefore,Vren � λϕ
4 where,λ � λ0 � α

2
�2. Taking into account

the usual relationH �

B

⒧8πVren⒧ϕ⒭�3⒭�MP between the Hubble constant and
the potential, one can easily obtain the field variableϕ as an implicit function
of time:

t �

B

3π�2

MP
A

λ
ln⒧ϕ 0�ϕ⒭ �

2α
2

m2
χ

⒧ϕ
2
0 � ϕ

2
⒭ . (10.16)

Here, the first term reproduces the result of the standard inflation model. The
second term results from the interaction of the inflaton field and the fieldχ . It
follows from Eq. (10.15) that the second term dominates at

ϕ �
�

ϕc ù
ù

ù

mχ

2α
. (10.17)

Therefore, there are two inflationary stages: the ordinary stage atϕ �
�

ϕc and
the ultraslow stage atϕ �

�

ϕc. Indeed, the field motion velocity obtained from
(10.15) with allowance made for Eq. (10.17) is much smaller than its ordinary
valueϕ̇ � V′�3H. The first inflation stage is completed when the condition
(10.17)) ceases to be true. Then the ordinary inflation stage ¨ϕ �� 3Hϕ̇ begins
and continues as long as the condition is satisfied.

Since the second stage has been widely studied, we will analyze the first
stage, for which the second term in Eqs.(10.15), (10.16) dominates, i.e., for
ϕ � ϕc. In this case, the field depends on time as

ϕ⒧t⒭ �

E

ϕ
2
0 � t

MPm2
χ

α2
A

6π
. (10.18)
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This expression is derived under the “ultraslow roll-down’ condition, which,
according to Eq. (10.14), has a rather unusual form

ϕ̈ �� 12Hϕ
2
ϕ̇α

2
�m2

χ
.

Let us determine the amplitude of quantum fluctuations arising at the first
inflation stage for the potentialλϕ

4. This can most easily be done by taking
into account that the first term in Eqs.(10.11) and (10.15) is much smaller,
than the third one and introducing a new effective fielddϕ , after which the
substitution

dϕ � ⒧α�mχ ⒭ϕ
2

brings action to the form

S�
@

dx
A

�g
1
2

∂µ ϕ̃∂
µ

ϕ̃ �
1
2

m̃2
ϕ̃

2
ÿ (10.19)

corresponding to a free massive field with mass ˜mù

ù

ù mχ

A

2λ�α. The new field
dϕ does not represent a new physical field, but it is only a suitable dynamical
variable. Indeed, this variable is always positive, what is not true for real fields.
An interaction with fermions, having the ordinary form in terms of inflaton,
ϕψψ , looks rather strange in terms of the fielddϕ -

B

dϕψψ .
Nevertheless, this substitution is useful and valid at the inflation stage under

consideration, when the field value is positive. The fluctuation amplitude for
the massive noninteracting field is known to be∆dϕ �

B

3�⒧8π 2
⒭H2

�m̃ [351],
see Chapter 3 of this book as well. On the scale of modern horizon, the con-
straint on the mass of quanta of this field is also known: ˜m » 10�6MP, as is
obtained from the comparison with the COBE measurements of the energy-
density fluctuations,δ ρ�ρ ½ 6 . 10�5 [245]. Expressing ˜m in terms of the
initial parameters, one obtains the following relation between them:

mχ

MP

A

λ

α
» 10�6 (10.20)

Let us determine the fieldϕU at which a causally connected area was formed,
which generated the visible part of the Universe. The number ofe-foldings
necessary to explain the observed data isNU ½ 60. Then, using the relation
NU �

?

ϕ end

ϕU
Hdt

NU �

ϕc
@

ϕU

H⒧ϕ⒭
ϕ̇

dϕ �

ϕ end
@

ϕc

H⒧ϕ⒭
ϕ̇

dϕ � (10.21)
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Here we have taken into account that the time dependence of the fieldϕ at the
first and the second inflation stages are different. The second stage is com-
pleted atϕ � ϕ end. Assuming that the first term containing the initial value of
the fieldϕU dominates, one obtains the desired expression

ϕU »ù

 

NU

2π

!1�4
D

MPmχ

α
. (10.22)

Note that the visible part of the Universe in this case can be formed atϕ � MP,
i.e., rather late. This is explained by the fact that at the first stage the field
moves ultraslow and the Universe had enough time to expand up to the suitable
size.

Expression (10.22) differs substantially from the standard resultϕU » MP,
which is obtained for the inflaton field with potentialλϕ

4 without regard for
the interaction with the massive fields of other sortsϕU �

B

NU�π MP.
The second term in Eq. (10.21) determines the numberN2 of e-foldings at

the second inflation stage. Assuming thatϕ
2
c �� ϕ

2
end and substituting the

valueϕc from Eq. (10.17), one has

N2 �
π

4

 

mχ

α MP

!2

. (10.23)

Evidently, over a wide range of parametersα andmχ , the second stage may be
short or it even can be absent at all.

The above arguments are valid if the fieldmχ is massive enough so that it is
placed at the minimum of its effective potential during inflation. As is known,
the field rapidly rolls down to the minimum if the Hubble constant becomes
smaller that the field mass, i.e., ifH � mχ . The Hubble constant depends
on the magnitude of the inflaton field and it is enough to estimate its value
at the instant when the visible part of the Universe was originated (ϕ � ϕU ).
It corresponds to the largest scale in modern Universe. Simple mathematics
gives

mχ � H⒧ϕU⒭ }

A

λ

α
�

�

E

3
4NU

» 0.1. (10.24)

This restriction indicates that one cannot fully avoid the fine tuning of the
parameters. Indeed, as it was shown above renormalized coupling constant
λ � λ0 � α

2
�2 and, according to constraint (10.24),α

2
�

�

100λ. It means
that two valuesλ0 andα

2 of order�
�

100λ each, must cancel each other to
obtain small value of orderλ. Nevertheless, this fitting is much more weak
than that requiring the cancellation of all quantum corrections down to a value
of » 10�13 in the early inflationary models with the potentialλϕ

4. Using
Eqs.(10.20) and (10.24 ), one can easily obtain a rather weak limitation:mχ

�

�

10�5MP on the mass of the additional fieldχ .
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Thus, a particular example was taken here to demonstrate the fact that massive
fields, even being at their minimum (which in its turn depends on the mag-
nitude of inflaton field), can materially decelerate the motion of the main3

inflaton field at the first inflation stage. Due to the first, ultraslow, stage, the
visible part of the Universe could form atϕ � MP. The second stage precedes
the completion of inflation and evolves in the ordinary way, but it is rather
short. In particular, for the parametersmχ � 10�3MP and λ � 10�6, one
has: the visible part of the Universe formed atϕU ½ 5 . 10�2MP; the first and
second stages are separated atϕc ½ 5 . 10�4MP; and the second inflation stage
is much shorter than the first one.

The inclusion of the interaction between the inflaton field and more massive
fields enables one to weaken essentially the constraints imposed on the poten-
tial parameters by the smallness of energy density fluctuations, although one
fails to fully avoid the fine tuning of the parameters. The effects considered
here are associated with the renormalization of the kinetic term for the inflaton
field interacting with an additional massive field. Because the similar renor-
malization takes place for every sorts of additional fields [332], the inclusion
of new fields will enhance the effect of deceleration of classical motion at high
energies.

3. Suppression of first order phase transitions by
virtual particles in the early Universe

In the previous Section we discussed the role of massive fields on inflation.
It was shown that the interaction of inflaton with these fields could influence
significantly the classical motion of the inflaton. On the other hand, first or-
der phase transitions are important cosmological consequence of high energy
physics. In the following we show [350] that the effects of virtual particles de-
crease significantly the probability of vacuum decay even at zero temperature.
It could lead even to an permutation of the order of phase transitions in the
early Universe.

Let us start with the double-well potential of the scalar field with nondegen-
erate vacua. Following the logic, discussed in the Section 2 of this Chapter,
consider an auxiliary fieldχ with action (10.4). Phase transitions are investig-
ated usually in Euclidean space [328, 289], what means the substitutiont } iτ
in the formulae written above.

The calculations similar to those in the previous section lead to an effective
Euclidean action for the scalar fieldϕ

SE �

@

d4x
1
2
⒧∂ϕ⒭

2
� Vren⒧ϕ⒭ �

α
2

2m2
χ

@

d4x
∂u⒧ϕ⒧x⒭⒭

∂ xµ

2

. (10.25)

(Here and below gravitational effects are omitted). The last term can be inter-
preted as an influence of the virtualχ - particles.
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Let the fieldϕ be placed initially in a metastable minimum of the potential
Vren. In this case the decay of the vacuum goes by nucleation and expanding
of bubbles with true vacuumϕT inside it. The outer space is filled with a
metastable phaseϕ F . This process is described by O(4) - invariant solution
ϕ B⒧r ⒭ of the classical equation of motion in Euclidean space with boundary
conditionsϕ B⒧0⒭ � ϕT; ϕ B⒧±⒭ � ϕ F . The probability of the vacuum decay
was obtained in [289] and it has the form

Γ�V �
 

SE⒧ϕ B⒭

2π

!2 H
H

H

H

Det′D̂⒧ϕ B⒭

DetD̂⒧ϕ F⒭

H

H

H

H

�1�2

e�SE⒧ϕ B⒭
ÿ (10.26)

where the kernelK of the operatorD̂⒧ϕ⒭ is

K⒧xÿ y⒭ ùùù
δ

2SE⒧ϕ⒭

δ ϕ⒧x⒭δ ϕ⒧y⒭
.

The determinant in the denominator is usually reduced to well known de-
terminant of operatorDet⒧�∂

2
� Const⒭, whereConst� ϕ F . In our case

however, effective action is nonlocal one and evaluation of the determinant is
not easy. To proceed, let us determine
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and the problem consists of calculation the determinant of operatorD⒧ϕ F⒭

with the kernel

KF⒧xÿ y⒭ �
�

δ ⒧x� y⒭
�

�∂
2
x � Ω2

�

� M 4GE⒧x� y⒭
�
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This kernel is not diagonal one, but it can be expressed using diagonal op-
erators (see [352]). It is useful to determine the operator

Ĝ�1
E
ù

ù

ù ⒧�∂
2
x �m2

χ
⒭.

Then, some operator algebra simplify the expression
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The problem of calculation of the determinant of the nonlocal operator in the
predexponent factor of the expression (10.26) is reduced to the calculation of
known determinants of oscillator-like operators.

Nevertheless, main factor of the expression (10.26) is the effective action in
the exponent. On the other side, as it is shown below, the value of effective
action increases in orders of magnitude under the influence of virtual particles.
It gives rise to a huge suppression of tunneling processes, much more than a
’naive’ estimation gives.

Let us choose the potential in the form

Vren �
λ

8

�

ϕ
2
� a2

�2
�

ε

2a
⒧ϕ � a⒭ . (10.31)

The instanton solution of the Euclidean equation of motion for the fieldϕ may
be parameterized in the following way

ϕ⒧x⒭ � ϕ B⒧r ⒭ � A tanh

 

M
2
⒧r � R⒭

!

� Bÿ (10.32)

wherer 2
ù

ù

ù ∑4
α�1 x2

α
. ParametersR and M are to be determined by minim-

ization of the action (10.25), while parametersA andB are chosen to satisfy
boundary conditions

ϕ B⒧r }±⒭ � ϕ F ;

ϕ B⒧r } 0⒭ � ϕT . (10.33)

Higher derivatives are neglected in the expression (10.25) of the action. This
approximation is correct if∂ xϕ B�mχ ϕ B �� 1 (mχ is the mass ofχ -particles
which have formed the virtual cloud). On the other hand the derivative of
instanton trajectory∂ xϕ B is of the ordermϕ ϕ B, wheremϕ is the mass ofϕ-
particles. Numerical calculations indicate that the transition from false vacuum
to true one becomes noticeably wider due to the influence of virtual particles,
i.e. M �� mϕ . Thus our approximation is valid at least ifmϕ�mχ �� 1.
Numerical O(4) - symmetrical solution of the equation

∂
2
r ϕ �

3
r

∂r ϕ � V′⒧ϕ⒭ � (10.34)

�

α
2

m2
χ

u′⒧ϕ⒭
3
r

u′⒧ϕ⒭∂r ϕ � u′′⒧ϕ⒭⒧∂r ϕ⒭
2
� u′⒧ϕ⒭∂ 2

r ϕ � 0

is supposed to have the form (10.32). The results of calculations are represen-
ted in Figure 10.4. The standard result, when the effect of virtual particles is
not taken into account, corresponds to the curve atζ � κ � 0. It is clearly seen
that the effective action increases in orders of magnitude and vacuum decay is
exponentially suppressed as compared with the well known result.

As the result, we found that virtual particles at high energies could signi-
ficantly influence the classical motion and vacuum decay. It is shown that in
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Figure 10.4. Dependence of effective action on parameterζ � 2κ
2
�m4

χ . The parameters of
potential (10.31) have the values:a� 1ÿ λ � 0.1ÿ ε � 0.01 in unitsmχ � 1.

a wide range of parameters the first stage of inflation consists of ’superslow’
motion of inflaton field. One of the useful effect of virtual particles is the
considerable weakening of conditions on model parameters which is given by
observational data. Tunneling processes could be strongly forbidden compar-
ing with textbook result as well.

4. Inflation from slow evaporation of Bose
condensate

Here we consider, following [302, 112], the process of decay of symmetric
vacuum state as evaporation of a Bose-Einstein condensate of physical Higgs
particles, defined over asymmetric vacuum state. Energy density of their selfin-
teraction is identified with cosmological constantΛ in the Einstein equation.Λ
decay then provides dynamical realization of spontaneous symmetry breaking.
The effective mechanism is found for damping of coherent oscillations of a
scalar field, leading to slow evaporation regime as the effective mechanism for
Λ decay responsible for inflation without special fine-tuning of the microphys-
ical parameters. This mechanism is able to incorporate reheating, generation
of proper primordial fluctuations, and nonzero cosmological constant today.
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4.1 Introduction

Any thing which contributes to the stress-energy tensor asTµν � ρvacgµν ,
behaves like a cosmological termΛgµν in the Einstein equation. Develop-
ments in particle physics and quantum field theory, as well as confrontation
of models with observations in cosmology, compellingly indicate that the cos-
mological constantΛ ought to be treated as a dynamical quantity (for recent
review see [122]). At the very early stage of the cosmological evolution huge
value of cosmological constant is needed corresponding toρvac �

�

ρGUT, to
drive inflation as providing the reason for the expansion of the Universe and
its isotropy and large scale homogeneity [48, 49, 52, 109, 35, 120]. Now cos-
mological constant is estimated from the variety of observational data at the
levelρvac» ⒧0.6� 0.8⒭ρ today [96, 121, 355].

Several mechanisms have been proposed involving and supporting a negat-
ive vacuum energy density growing with time to cancel initial pre-existing
positive cosmological constantΛ. All those mechanisms utilize the basic
property of de Sitter space-time - its quantum and semiclassical instabilities
[51, 119, 114, 107, 108, 118, 116].

In scalar field dynamics the potential of a scalar fieldV⒧ϕ⒭ plays the role of
an effective cosmological constant in regimes when its derivatives are close to
zero. Starting from such a regime as an initial state, field equations typically
lead to successive coherent field oscillations [36, 120]. In the context of infla-
tionary models with effectiveΛ related to inflaton field in slow rolling regime,
the further decay of coherent oscillations involves inflaton interactions with
other fields in models of preheating [339, 231, 117, 126, 104, 128].

On the other hand, we can treat the classical scalar field as the Bose-Einstein
condensate of physical quanta of this field defined over its ground state (true
vacuum). In the papers [110, 105] it was shown that process of emergence of
massive scalar particles in (from) de Sitter vacuum looks like evaporation of a
Bose condensate. In the paper [111] the model of self-consistent inflation was
proposed in which the same self-interacting scalar field is responsible for both
initial value ofΛ and its further decay.

In the case of the Higgs field this approach involves both space-time and
particle internal symmetries. In gauge theories mechanisms of spontaneous
symmetry breaking imply that unbroken symmetry state is false vacuum state.
At the same time this is the highly symmetric state of space-time geometry
invariant under de Sitter group. In Ref.[111] this state was interpreted as Bose-
Einstein condensate of physical Higgs particles whose self-interaction energy
density corresponds to a scalar field potential in the state with the unbroken
symmetry. The process of decay of inflationary vacuum appears then as slow
evaporation of a Bose condensate responsible for inflation and further trans-
ition to the standard FRW model without special fine-tuning in initial condi-
tions for inflation. Dynamics of the cosmological term is directly related to the
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hierarchy of particle symmetries breakings, which makes such an approach
physically self-consistent [111].

In the present Section, following [302, 112], we identify cosmological con-
stant Λ with the energy density of self-interaction of scalar bosons bound in
the condensate. We show the existence of the slow evaporation mechanism
which seems to be generic for dynamics of Bose condensates. This mechan-
ism for Λ decay produces an effective kinetic damping involving decoherence
of coherent scalar field oscillations due to self-interaction and back reaction of
decay products.

4.2 The condensate of Higgs bosons
Let us start with the simplest example of the Higgs fieldϕ

V⒧ϕ⒭ �
λ

4
⒧ϕ

2
� ϕ

2
0⒭

2. (10.35)

In the context of particle theories, constant part of the Higgs potential is usually
omitted [4]. However, as we saw in the preceding chapters, in the cosmological
context this term becomes important. In theories with spontaneous symmetry
breaking the vacuum expectation value of the Higgs field, which couples to
bosons and fermions to give them masses, plays the role of an order para-
meter. The nonzero vacuum expectation value in the asymmetric vacuum state
� ϕ �� ϕ 0, is interpreted as the development of a condensate ofϕ particles,
leading to the spontaneous symmetry breaking [36, 4].

On the other hand,ϕ particles are not physical particles, they are tachionic,
with the imaginary mass, that reflects the instability of the symmetric state
of the theory. In the asymmetric, physically stable vacuum state (the state
with the broken symmetry) physical particles areχ particles, related toϕ
particles byϕ � χ � ϕ 0. It is χ particles who acquire the mass by the Higgs
mechanism, and whose vacuum state is the true vacuum with zero potential
and with zero expectation value,� χ �� 0. Therefore, in terms of particles
χ , the true vacuum of theories with spontaneous symmetry breaking, cannot be
a condensate, and we would rather have to treat the symmetric vacuum state of
a theory as a condensate ofχ particles in bound state. Replacingϕ condensate
by χ condensate sheds some light on the origin ofΛ, which in ϕ condensate
picture, where an effectiveΛ is related to the state of zero field [52], looks
mysterious. As we shall see below, inχ condensate picture effectiveΛ is
related to nonzero value of the fieldχ as its energy density in symmetric state.

The Higgs fieldχ in this simple model is described by the Lagrangian [111]

¨ �

A

�g
1
2

gµν
χ ;µ χ ;ν �

λ

4
⒧2ϕ 0χ � χ

2
⒭

2
ÿ (10.36)

where we dropped, for simplicity, the indices of internal variables. The poten-
tial takes the form

V⒧χ⒭ � λϕ
2
0χ

2
� λϕ 0χ

3
�

λ

4
χ

4. (10.37)
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In the state with unbroken symmetry� χ �� �ϕ 0 , � χ
2
�� ϕ

2
0 ,

� χ
3
�� �ϕ

3
0 , and the energy density of a condensate ofχ particles is

given by

� V⒧χ⒭ ��
λ

4
ϕ

4
0. (10.38)

We see that the constant term, playing the role of the cosmological constantΛ
in the Einstein equation, is identified with the energy density of condensate of
χ particles being precisely the energy density of their self-interaction.

The potential (10.37) describes physical particlesχ with masses of Higgs
bosonsm�

A

2λϕ 0, self-interacting and interacting with condensate.
The term λϕ 0χ

3 (if re-written as λ � χ⒧t⒭ � χ
3 with the account for the

time-variation of� χ⒧t⒭ � that we discuss below) corresponds to decay of a
condensate � χ⒧t⒭ � via the channel⒧� χ⒧t⒭ �} 3χ , and describes
evaporation of Higgs bosons from condensate ofχ particles. Remind that
in the considered picture theinitial state of condensate� χ⒧0⒭ �� �ϕ 0

corresponds to the state of local maximum withϕ � 0 in the terms of usually
consideredϕ particles. This state possesses the energy density (10.38), what
formally makes its decay energetically possible. However, if� χ �� �ϕ 0 ,
i.e. remains constant, no evaporation is possible. Only the existence of fluctu-
ations, causing the time dependence of� χ⒧t⒭ �, can provide the condensate
evaporation (as we’ll see in the next subsection).

The term λχ
4
�4 reproduces the runaway particle production discovered

by Myhrvold [119]. The difference from the Myhrvold result is in the ori-
gin of Λ. Gravity-mediated decay ofΛ in Myhrvold approach is due to
particle creation by gravitational field generated by pre-existingΛ not related
to created particles. In the approach [302]Λ » m2

ϕ
2
0 is the energy density of

self-interaction of the same particles bound within a condensate.
The Hubble parameterH during the Λ dominated stage isH »

A

Λ. In
the context of particle theories withϕ 0 �� MP, the case [302] corresponds to
creation of bosons withm�� H. Therefore the mechanism [302] differs from
that proposed by Mottola who studied creation of particles by gravitational
field via the Hawking quantum evaporation which leads to the exponential
suppression of massesm�� H [118]. In the Mottola mechanism light scalar
particles with m � H are evaporated from de Sitter horizon induced by
pre-existing Λ. In the mechanism [302] Higgs bosons withm �� H are
evaporated from the bound state within a condensate into the free states.

The approach [302] differs also from Parker and Zhang theory of relativ-
istic charged condensate as a source of slow rolling inflation [123, 124]. In the
aproach [302] condensate ofχ particles is essentially globally neutral, since
it corresponds to the state with unbroken symmetry - totally symmetric state in
both space-time and internal degrees of freedom [111]. The condensate decays
by evaporation, as well as by runaway production ofχ particles which cor-
responds to conversion of energy of initial globally neutral state into thermal
energy of χ particles.
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4.3 Decaying Λ -term
Roughly, scenario [302] ofΛ decay looks as follows. Within aχ condens-

ateχ particles have four-momentak } 0. It corresponds to the trivial solution
χ � �ϕ 0 of the Klein-Gordon equation that for the potential (10.37) in the
condensate regime (V′⒧χ⒭ � 0) reduces to ¨χ�3H χ̇�Γχ̇ � 0, whereΓ is a de-
cay rate. Its solution readsχ � χ 0�χ̇ 0e�⒧3H�Γ⒭t

�⒧3H�Γ⒭ and givesχ � �ϕ 0

for the initial conditionsχ 0 � χ⒧t � 0⒭ � �ϕ 0, χ̇ 0 � χ̇⒧t � 0⒭ � 0. The
time-independence of this solution stabilizes particle state in condensate with
zero four-momentum ( ˙χ } 0). This means that theχ condensate is the clas-
sical collective state within which decay ofχ particles is impossible. (Their
de Broglie wavelength far exceeds the horizon, so that the asymptotic states
cannot be defined for the quantum transitions corresponding to decay inside
a condensate.) Therefore decay ofχ particles occurs in free states which
correspond to the coherent field oscillations.

The fluctuations δ � χ � ϕ 0 over the state with unbroken symmetry
� χ �� �ϕ 0 are described by the potential

V⒧δ ⒭ �
λ

4
ϕ

4
0 �

λ

2
ϕ

2
0δ

2
�

λ

4
δ

4
ÿ (10.39)

which reflects the instability of the state with unbroken symmetry. Wrong
sign of the mass term corresponds to the excitation of the growing mode of
perturbation δ over the symmetric vacuum state, leading to its decay. The
evolution of fluctuations is governed by the Klein-Gordon equation

δ̈ � 3H δ̇ �
m2

2
δ � λδ

3
� 0. (10.40)

Let us estimate the characteristic time scale for the linear stage of develop-
ment of instability, neglecting theδ 3 term and taking into account that in the
considered case (ϕ 0 �� MP )

m
H
�

D

3
π

MP

ϕ 0
�� 1ÿ (10.41)

In this approximation the solution to the Eq. (10.40) is given by

δ ⒧t⒭ � C1e�
m
A

2
t
� C2e

m
A

2
t
ÿ (10.42)

Growing mode ofδ ⒧t⒭ corresponds to decay of condensate with characteristic
timescale τ » m�1 . To estimate efficiency of decay the fluctuation density
can be introduced [302]

nδ �

m
4

δ
2. (10.43)

Then

V⒧δ ⒭ �
λ

4
ϕ

4
0 �mnδ �

4λnδ
2

m2
. (10.44)
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The last term can be interpreted as self-interaction of fluctuations with the reac-
tion rate 4λ�m2 leading to effective decoherence of coherent field oscillations.
In the minimum of the potential (10.44) fluctuation densitynϕ � m3

�8λ cor-
responds, by Eq. (10.43), toδ 2

� ϕ
2
0 . We see that stationary distribution

of fluctuations aroundδ � ϕ 0 looks like a gas ofχ particles with masses
m �

A

2λϕ 0, evaporated from the state within a condensate into the fluctu-
ations. The potential (10.44) achieves its minimumV⒧δ ⒭ � 0 , which corres-
ponds to the total decay ofΛ condensate into decoherent gas ofχ particles, in
characteristic timeτ » m�1

�� H�1. So, the decay ofχ condensate provides
the efficient mechanism forΛ decay.

We see, that identifyingV⒧�ϕ 0 ⒭with the energy density of self-interaction
of physical particlesχ in the bound state of a Bose condensate, we can treat
instability of de Sitter vacuum as dynamical realization of symmetry break-
ing. The process ofΛ decay proceeds in this picture as the Bose condensate
evaporation.

4.4 Back reaction of decay products
Now let us show, following [302, 112], that the effective mechanism exists

related to this approach which makes the process of evaporation slow enough
to guaranteee�folding needed for inflation.

Higgs bosons are generally unstable. Bothχ particles and products of their
decay interact with Hawking radiation from de Sitter horizon and with each
other. This leads not only to decoherence ofχ particles but also to appearance
of relativistic particles over the condensate with the effective equation of state
p � ε�3 . Presence of relativistic gas in thermodynamic equilibrium with
condensate facilitates its further decay.

The dynamical role of not exponentially small thermal component in the
evolution of an inflaton field has been studied by Berera and Li-Zhi Fang [98]
and then incorporated into the scenario called warm inflation [99, 100, 101,
102, 103]. The classical equation of motion for a scalar fieldϕ in the de Sitter
universe reads [36]

ϕ̈ � 3Hϕ̇ � Γϕ ϕ̇ � V′⒧ϕ⒭ � 0.

The friction termΓϕ is introduced phenomenologically to describe the decay
of the inflaton fieldϕ due to its interaction with thermal component. Berera
and Li-Zhi Fang have shown, first, that ifΓϕ » H, then thermal component
can play essential role in generation of a primordial density fluctuations [98].
Second, in the regimeΓϕ �� H thermal component becomes dominant in
the equation of motion leading to warm inflation [99, 100, 101, 102, 103]. The
question of self-consistency of this regime as governed by thermal components
has been addressed in the papers [99, 100, 101, 102, 103, 127, 97].

In the case [302, 112] the mechanism leading to this condition, which we
can write asΓχ �� H, is not related to thermal components and thus it avoids
the general problem of warm inflation scenario, pointed out in [127]. It is
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related to the effective friction due to interaction of free particles with the en-
semble ofχ particles bound in condensate with the large occupation number,
which damps oscillations and leads to stationary regime of slow evaporation
of χ condensate.

Let us show, following [302, 112], that decoherence ofχ particle states and
back reaction of their relativistic decay products lead to the effective damping
of fluctuations. The kinetic equations can be written in the standard way (see,
e.g.[36]). The kinetic equation describing the growth and decay of fluctuations
is

dnχ

dt
� mnχ � Γnχ � nr nχ σ � 3Hnχ ÿ (10.45)

whereσ is the cross-section of the interaction ofχ particles with relativistic
products of their decay. In the units̄h� c � 1 the reaction rate in the kinetic
equations coincides withσ . The first term in the right hand side describes
creation of χ particles, the second - their decay, the third - their interaction
with products of decay, and the fourth - their redshifting.

The kinetic equation for products of decay, effectively relativistic matter
with the equation of statep� ε�3 , reads

dnr

dt
� �3Hnr � nr nχ σ � Γnχ . (10.46)

In the equilibrium

mnχ � Γnχ � nr nχ σ � 3Hnχ � 0ÿ

�3Hnr � nr nχ σ � Γnχ � 0. (10.47)

Decay of χ particles into light species impliesm �� Γ , which corres-
ponds to applicability of perturbation theory for calculations of decay, and is
valid in models with coupling less than the unity. Then, taking into account
Eq. (10.41), we get

ρr �
m2

σ
; ρχ �

3mH
σ

. (10.48)

Equilibrium density of relativistic particlesρr is achieved when the density of
evaporated and decayedχ particles

ρχd » Γ
1
m

ρvac� Γ
1
m

m2
ϕ

2
0

8

satisfies the condition

Γ
1
m

m2
ϕ

2
0

8
�

m2

σ
.

This gives the lower limit on the characteristic width ofχ particles decay

Γ �
8m

ϕ
2
0σ

. (10.49)
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If this condition is satisfied, the potential evolves not to the valueV⒧δ ⒭ � 0,
but owing to the effective decay of physicalχ particles and their destruction
by the decay products theχ field oscillation is damped and the equilibrium
moves the potential to the valueVmax� ρχ � ρr , becoming successively more
flat. Slow evaporation ofχ condensate acts in such a way to flatten the
potential near its symmetric state.

We see that back reaction of evaporated particles and products of their de-
cay produces an effective damping of scalar field oscillations which leads to
effective flattening of initially nonflat potential and provides mechanism re-
sponsible for inflation without fine-tuning of the potential parameters. This
is qualitatively similar to effective flattening found around spinoidal line in
the Hartree-truncated theory of spinoidal inflation [106] (which involves fine-
tuning at the slow rolling stage preceding the spinoidal regime).

4.5 Regime of slow evaporation
The process ofΛ decay is governed by the equation (2.47) of Chapter 2

which accounting for the equilibrium condition (10.48) has the form [112]

dρvac

dt
� �3H⒧ρχ � ρr �

1
3

ρr ⒭ � �4H
m2

σ
. (10.50)

We can estimate the characteristic time of decay for two limiting cases of min-
imal and maximal cross-sectionσ . The lower limit on cross-sectionσ is
σ � 4π�m2 which is the hard ball approximation cross-section for scattering
of particles of massesm�2. In this case [112]

dρvac

dt
� �

H
π

m4. (10.51)

Taking into account that at the stage ofΛ dominanceH ²

A

ρvac the law for
Λ decay follows from the solution of this equation

ρvac� ρ0

 

1�
t
τ

!2

; τ �

D

3π

2

MP
A

ρ0

m4 �

D

3π

32λ

MP

m2
. (10.52)

The solution (10.52) (as well as the Eq. (10.51) itself) is obtained under the
condition of Λ dominance and thus is valid only att �

�

τ . It gives thee-
folding number

Hτ �
π

8
1
λ

(10.53)

and sufficient inflation for reasonable values of couplingλ � 6 . 10�3. The
characteristic time for reheating isτ » λH�1 and the reheating temperature
TRH » λ

1�4m.
The upper bound forσ is given byσ � π�H2. In this case

dρvac

dt
� �

4
π

H3m2; ρvac�
ρ0

⒧1� t�τ ⒭2
ÿ (10.54)
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where

τ �

 

33

211π

!1�2 1

λ3�2

 

MP

ϕ 0

!4

τPl . (10.55)

Thee-folding number is then

Hτ �
3
32

1
λ

 

MP

ϕ 0

!2

(10.56)

and, for the considered caseϕ 0 �� MP, inflation is sufficient for any λ.
Reheating temperature isTRH » λ

1�4H.
More detailed investigation of dynamics of a vacuum decay needs particular

model for calculatingσ , but the results will be within the range between the
cases of minimal and maximalσ . For example, the picture of evaporation
investigated in the Ref.[110] corresponds to the case of evaporation of Higgs
bosons and their reheating to the Hawking temperatureTRH » H [115]. The
rate ofΛ decay is given in this case by

dρvac

dt
� �3Hm⒧mH⒭3�2. (10.57)

4.6 Discussion
Here we consideredΛ decay in the case of vacuum dominance. When ra-

diation density starts to exceed vacuum density at the last stage of evaporation
we would have to change the equation (10.50) taking into account the evolution
of Hubble parameter as well as of matter and radiation density, which in the
standard FRW cosmology evolves as² t�2. The Eq. (10.54) reproduces this
behavior starting at the stage of vacuum dominance for the case of maximum
possible cross-sectionσ . Provided that this behavior remains dominating at
successive stages, this corresponds to the existence of remnant evaporating
condensate today with the density comparable to the total density in the Uni-
verse which seems to agree with results of recent analysis of observational data
[96, 355].

The generalization of this approach to the case of arbitrary scalar field po-
tential is straightforward. Any cosmologically reasonable potential must sat-
isfy the conditionV⒧ϕ 2

� ϕ
2
0⒭ � 0. True vacuum state� ϕ �� ϕ 0 is

determined as the minimum of the potentialV � 0. The physical particles
χ � ϕ � ϕ 0 are defined over the true vacuum state. Their mass is given, as
usual, by∂

2V�∂ϕ
2. Any state withV⒧χ⒭ � 0 we can treat as bound state

of χ particles trapped inside a Bose condensate. The equilibrium fluctuations
density corresponds to deviation of the potential from its initial value at the
given point by the quantityρχ � ρr (see Eq. (10.48)). It means that in a
characteristic timem�1 the field is not completely moved to its ground state,
but, instead, is stabilized near its initial value having slightly changed by the
magnitudeρϕ � ρr �� V⒧χ⒭.
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We see that the decoherence ofχ particles and the back reaction of their
decay products leads to effective freezing of the field near its initial value.
Near this value the potential becomes locally flat, and the energy density of
condensate ofχ particles starts to play a role of an effective cosmological
constant. It realizes the case of chaotic inflation for initially nonflat potential
in the casem�� H and ϕ 0 �� MP.

At the first sight, the appearance of slow evaporation regime in the approach
[302, 112] seems to lead to the same spectrum of initial density fluctuations
as in slow rolling models. However, the origin of fluctuations is different.
In the considered case fluctuations are generated by statistical distribution of
evaporated particles, while in the typical slow rolling picture they originate
from nonsimultaneous transitions to the ground state.

Formally the mechanism presented in this Section is based on rather trivial
solution (ϕ »ù const) of scalar field dynamics, which however appears to have
nontrivial consequences leading to kinetic equilibrium regime for slow evap-
oration of Bose-Einstein condensate. This kind of solution has analogies in
experimentally studied Bose-Einstein condensation in atomic physics [125].

The case of Higgs field considered here is the simple illustration of the pro-
posed mechanism ofΛ decay, which seems to be more generic and to work
also in non-Abelian gauge models without Higgs mechanism, in which sym-
metry breaking is induced by nonlinearity of gauge interactions as in tech-
nicolor models.cd

Let us summarize. The kinetics of the Bose condensate evaporation can
effectively damp the coherent field oscillations leading to slow evaporation re-
gime for wide range of possible particle interaction parameters. In the cosmo-
logical context this provides the effective mechanism forΛ decay responsible
for dynamics of symmetry breaking, which can incorporate inflation, reheat-
ing, as well as nonzero cosmological constant today.

If we take ϕ 0 » 1015GeV and λ » 10�2 the predictede-folding ranges
from 40 to 109, pending on the possible particle interaction parameters. For
the same parameter range the condition of equilibrium (10.49), being neces-
sary for the realization of the considered mechanism [302, 112], is valid, if
the χ particle width Γ exceeds the lower limit, ranging from» λm to
» λ⒧ϕ 0�MP⒭

2m, what can be naturally satisfied in realistic particle models.
The reheating temperature, ranging from» λ

3�4
⒧ϕ 0�MP⒭ϕ 0 to» λ

3�4
ϕ 0 is

determined in the considered model by the parametersϕ 0 and λ . For the val-
ues of these parameters, taken above, it is rather high (3. 109 – 3 . 1013GeV),
exceeding by few orders of magnitude the strict upper limit, following from
the analysis [277] of6Li overproduction by decaying primordial gravitino.
This problem may be resolved, taking into account the model dependence of
the above estimation as well as the dependence of the constraint [277] on the
model of gravitino.

The more general property of the considered model is that the nearly flat
spectrum of density fluctuations, generated at largee-foldings, transforms into
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ultraviolet spectrum when generated in the end of inflation [302, 112]. Such ul-
traviolet behaviour can escape the constraints of WMAP [74], being predicted
at small scales, and appeals to the sensitive probes of the small scale primor-
dial inhomogeneity such as the analysis of mini-PBH formation (see review in
[71, 3]) for its test.

5. Non-canonical kinetic term
In this section we investigate dynamics of scalar field in the framework of a

non - canonical kinetic term and the simplest form of potential. It was revealed
that behavior of the field in the vicinity of singular points of the kinetic term
possesses unusual properties. In particular, the singular points could serve as
attractor for classical solutions so that a stationary value of the field can be
placed not in a minimum of the potential. We also discuss and estimate the
probability of formation of potentials with specific forms.

As we have seen, scalar fields play essential role in the modern cosmology.
The same origin of our universe based on the inflationary paradigm and mostly
on the dynamics of scalar field(s). New observational data on the nonzero
density of dark energy could be explained by the existence of scalar field as
well. Another possible explanation, quintessence models, are based on the po-
tentials which tends to zero when the scalar field tends to infinity. The defect of
scalar fields consists of unnatural forms of their potentials. For example, they
have to be extremely flat to be applicable to standard inflationary scenario [57].
Usually, the interaction of scalar fields with other ones implies very small. The
exception is its interaction with electromagnetic field for the explanation of
possible time variation of the fine structure constant observed recently.

So, one of the main problem is to validate those form of potential which
satisfactory fits observational data. It is usually achieved by a reference to more
general theories like e.g. M-theory, supergravity, multidimensional gravity and
so on. Here we show the natural way to produce a bunch of effective potentials
of scalar field. It is achieved by an interference of the simplest form of original
potential and non-canonical kinetic terms. In this connection it is worth to
mention that a non-canonical form of the kinetic term is applied more and
more widely in theoretical researches. As the example, the small value of the
cosmological constant, consistent with recent experimental data [355] can be
explained using a non-canonical form of the kinetic term in the scalar field
Lagrangian (like in the quintessential model [356, 357]). A non-trivial kinetic
term could be responsible for a new coupling between adiabatic and entropy
perturbations [358] as well as existence of the dark matter caused by phantom
fields [359]

Here we consider the action with the non-trivial kinetic term of the follow-
ing form

S�
@

d4x
A

�g
R

16πG
�

1
2

K⒧ϕ⒭∂µϕ∂
µ

ϕ � V⒧ϕ⒭ (10.58)



Inflation: additional resources 241

and concentrate on the influence of singular points of the kinetic termK⒧ϕ⒭ in
the form

K⒧ϕ⒭ � M n
�⒧ϕ � ϕ s⒭

n. (10.59)

on the scalar field dynamics. HereM is some parameter (its value will be
discussed below). This form is correct at least in the vicinity of the singularity
if n � 0, or zero ifn � 0. The singular points are not uncommon exclusion.
The well known Brans - Dicke model [361] does contain a singularity at zero
value of theϕ . If a multiplier of the Ricci scalar equals to zero at some point
in the Jordan frame, the kinetic term will be singular in the Einstein frame (see
e.g. [347]) and vice versa. Quintessential models with negative power law
[362, 363, 364, 365, 366] are another well known example for the potential of
such a sort.

Well known hint is the transformation of functionK to becomeK⒧ϕ⒭ �
ù

�1
by a suitable change of variable. It could be done during some inflationary
period [350], when the scalar field has definite sign, but not at recent epoch
where the field fluctuates around singular point. This problem is discussed also
in Refs. [374], [375], [376]. This point will be intensively exploited below, but
important remark can be done now.

To proceed, the equation of motion for uniform field distribution has the
form

K⒧ϕ⒭ ϕ̈ � 3Hϕ̇ �

1
2

K⒧ϕ⒭′ϕ̇ 2
� V⒧ϕ⒭′ � 0 (10.60)

in the Friedmann-Robertson-Walker universe whereH denotes the Hubble
parameter.

Keeping in mind expression (10.59) we have

ϕ̈ � 3Hϕ̇ �
n

2⒧ϕ � ϕ s⒭
ϕ̇

2
� V⒧ϕ s⒭

′

⒧ϕ � ϕ s⒭
n
�M n

� 0. (10.61)

Evidently the field valueϕ s is stationary solution for any smooth potential
V andn� 0 provided ˙ϕ � o⒧ϕ�ϕ s⒭. The last condition is not very restrictive.
The cosmological energy density of the vacuum is connected usually with one
of potential minima. In the case considered here it is not like this - the vacuum
state is connected not in minima of potential but in the singular point of the
kinetic termK⒧ϕ⒭. To prove this statement, we limit ourselves by the simplest
form of potential

V⒧ϕ⒭ � V0 �m2
ϕ

2
�2. (10.62)

In the following we will consider only this class of models characterized by the
set of parametersmÿV0ÿM . The stationary stateϕ s is chosen in such a man-
ner to fit the cosmologicalΛ� term, which is important ingredient of modern
cosmology (see review [75])

V0 �m2
ϕ

2
s�2 � V⒧ϕ s⒭ � Λ (10.63)
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Figure 10.5. Disposition of the potential minima and the singular point of kinetic term for
n� 1.

Modern energy densityΛ is small comparing to any scale at the inflationary
stage, what permits us to use the connection

ϕ s
»

�

C

2 V0 �m. (10.64)

To facilitate more detailed analysis, new auxiliary variableχ is usually
turned into account. We suggest the substitution of variablesϕ } χ in the
following manner

dχ �
ù

�

C

K⒧ϕ⒭dϕ ÿ K⒧ϕ⒭ � 0. (10.65)

An action in terms of the auxiliary fieldχ has the form

S�
@

d4x
A

�g

R

16πG
� sgn⒧χ⒭

1
2

∂µ χ∂
µ

χ �U⒧χ⒭�ÿ

where the potentialU⒧χ⒭ ùùù V⒧ϕ⒧χ⒭⒭ is a ’partly smooth’ function. Its form
depends on the form of initial potentialV⒧ϕ⒭, the form of kinetic term and a
position of the singularities atϕ � ϕ s. Now let us consider some particular
cases ofK⒧ϕ⒭.

5.1 Making effective potentials

The casen� 1

The kinetic term (10.59) has the formK⒧ϕ⒭ � M�⒧ϕ�ϕ s⒭ in this case. The
initial situation is presented in Figure 10.5. It will be shown that the singular
point should be disposed closely to zero point of potential to supply small
energy densityV⒧ϕ s⒭ of vacuum state.
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Figure 10.6. The form of the potential for the casen � 1. Chosen branches are:ϕ � ϕ s }|

χ � 0;ϕ � ϕ s }| χ � 0. In the latter case the auxiliary fieldχ behaves like phantom field
moving classically to the local extremum at the pointχ � 0.

Eq.(10.65) gives the connection between the physical fieldϕ and the auxil-
iary field χ

ϕ � ϕ s� sgn⒧χ⒭χ 2
�4M.

Throughout this section we choose the one - to - one correspondence between
the physical variableϕ and auxiliary variableχ in the intervals:

ϕ � ϕ s } χ � 0; ϕ � ϕ s } χ � 0 (10.66)

using some freedom in the definition of fieldχ and place singularity in the
point χ � 0.

The potential of the fieldχ acquires the form

U⒧χ⒭ ùùù V⒧ϕ⒧χ⒭⒭ � V0 �
1
2

m2
⒧ϕ s� sgn⒧χ⒭

χ
2

4M
⒭

2 f or ϕ s � 0; χ � ±.
(10.67)

If the auxiliary fieldχ � 0, it finally approaches to the singular pointχ � 0
(see Figure 10.6). If the fieldχ � 0, than the auxiliary field behaves like
the phantom field [368, 369], which climbs to a top of a potential and hence
tends to the singular point as well. For the physical fieldϕ , the motion looks
like oscillations around the pointϕ s. Finally, it is captured in the vicinity of
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the singular pointχ � 0⒧ϕ � ϕ s⒭, One can conclude that this point is the
stationary one and the vacuum energy density equals toV⒧ϕ s⒭, see Eq.10.63
rather thanV0 as it could be expected from expression (10.62).

Value of parameters can be estimated if we interpret the auxiliary field as the
inflaton which in addition is responsible for the dark energy. To perform infla-
tion, slow roll condition [57] should take place. It takes place at the parameter
values

M » MP; V0 » M 4
P; m» 10�12MP. (10.68)

The parameter′m′ is small to fit data on the temperature fluctuations. As usual,
the smallness of temperature fluctuations leads to some small parameters in the
inflationary model.

After the end of inflation the field moves classically to zero increasing its
velocity. If the last is large enough, the field could overcome the potential
minimum and then moves infinitely to the left as any phantom field. To prevent
that, the potential minimum must be deep enough,

V0
»

� U ⒧χ end⒭ (10.69)

what gives additional limit to the parameterV0. Namely, equations (10.67),
(10.69) lead to the inequalityV0

»

�

�

m
M

�2 M 4
P at the field valuesχ �

�

χ end»

MP what is ordinary for the inflationary stage. This estimation do not contra-
dict the value (10.68) supposed above.

The problem of smallness of the vacuum energy density,Λ � 10�123M 4
P re-

mains topical though the situation is changed. As it was mentioned above, the
smallness of the vacuum energy density is usually connected with the small-
ness of a potential minima what leads to intensive searches of physical reasons
of such a smallness. In the considered case the modern energy density is de-
termined by the singular pointϕ s of non-canonical kinetic term, see Eq.10.63.
The smallness ofΛ could take place if the singular pointϕ s is placed very
close to zero of the potential. The suitable interval

0 �
�

ϕ s �
�

∆ϕ s ù
ù

ù

C

�2V0�m2
� 2Λ�m2

�

C

�2V0�m2 »
�

Λ
m
B

2 V0
(10.70)

is extremely tiny to be easily explained. It seems almost evident that such
coincidence is absolutely occasional, and its probability is very small. Next
section devoted to discussion on this subject. We will show that a probabilistic
language helps to obtain intrinsically not contradictive picture.

The casen� 2

The kinetic term has the formK⒧ϕ⒭ ùùù Ks⒧ϕ⒭ � M 2
�⒧ϕ � ϕ s⒭

2, see Fig-
ure 10.7. It was considered in [367] in connection to quintessence model. We
will show however that the latter arises naturally, withoutab initio introducing
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Figure 10.7. Disposition of kinetic term and potential for the casen � 2. Arrow indicates
the field motion during the inflation.

a potential of an exponential form. New auxiliary field is connected with the
physical one by

χ � M ln

H

H

H

H

ϕ � ϕ s

ϕ s

H

H

H

H

ÿ

so that the potential has the form

U⒧χ⒭ �
1
2

m2
ϕ

2
s 1� sgn⒧ϕ s⒭ . sgn⒧χ⒭ . eχ�M

2
� V0. (10.71)

If ϕ s � 0 andϕ � ϕ s, the potential mimics the quintessential model with
nonzero vacuum energy densityΛ �

1
2m2

ϕ
2
s � V0.

The caseϕ s � 0 andϕ � ϕ s is much more interesting. The potential
(10.71) is highly asymmetric, see Figure 10.8, so that the behavior of inflaton
is rather different atχ � 0 and atχ � 0. Let us suppose that the infla-
tion starts withχ in � 0, point 1 in the Figure 10.8. The picture is similar
to improved quintessence potential [378], without problems of the radiation-
dominated stage during Big Bang nucleosynthesis. The chosen values of para-
meters

M » MPÿm» MPÿ V0 » 10�14M 4
P (10.72)

permits the suitable inflationary stage and is in agreement with observations
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Figure 10.8. Effective potential for the casen � 2 mimics the quintessential model with
nonzero vacuum energy density.

A modern epoch is characterized by a large negative value of the fieldχ .
It slowly varies along the flat part of the potential with exponentially slow
variation of the vacuum energy density around the value (10.63). The prob-
lem emerged here is determination of the fate of our Universe. There are two
possibilities. The field could move all the time to the left slowly decreasing
its kinetic energy. The second possibility includes the field turns back at some
instant, and after a period of oscillations is rested at the bottom of the potential.

To perform calculations we write the equation of motion of auxiliary field
in the form

χ̈ � 3H χ̇ �U ′

⒧χ⒭ � 0.

Hubble parameterH depends on the energy density of matter and radiation and
varies with time, but for our estimations it will be enough to use average value
approximately equals tpH2

� 10�123M 2
P. Potential (10.71) has the form

U⒧χ⒭ »
�

1
2

m2
ϕ

2
s

.
⒧1� eχ�M

⒭

2
� 1 � Λ

HereΛ �

1
2m2

ϕ
2
s � V0 is the modern vacuum energy density.

For numerical calculations, it is suitable to change variables:

τ � tHÿ ζ � χ�M � ζ* ÿ

ζ* � χ *�M ù

ù

ù ln⒧M 2H2
�m2

ϕ
2
s⒭

Equation of motion now acquires the form

d2
ζ

dτ 2 � 3
dζ

dτ
� eζ

� 0
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Figure 10.9. Dynamics of dimensionless fieldζ in dependence of the cosmological timeτ .
Initial dataζ ⒧0⒭ � 0ÿ ζ̇ ⒧0⒭ � �0.5. The field moves away from the potential minima and after
some time turns back.

where it was supposed that the fieldχ �� M andχ � 0 today.
The initial value of kinetic term in the modern epoch can be estimated using

the equation of state parameter

w �
χ̇

2
�U⒧χ⒭

χ̇ 2
�U⒧χ⒭

and equating the energy density of scalar field to the dark energy density, ˙χ
2
�

U⒧χ⒭ � Λ. It leads to the initial data
H

Hζ̇ ⒧τ � 0⒭
H

H

»

� 1; (10.73)

In addition, it should be negative to prevent quick falling into the potential
minima. Numerical analysis of this equation revealed strong sensitivity of its
solution to the initial valueζ ⒧0⒭. The result of calculations with initial values
ζ ⒧0⒭ � 0ÿ ζ̇ ⒧0⒭ � �0.5 is shown in Fig.10.9. According to this calculation,
the Universe will get the minimum of potential in the cosmological time. If
ζ̇ ⒧0⒭ �

�

0 the universe turns back to the potential minimum during» 1.5 . 1010

years. This minimum has negative value what leads to the vacuum reconstruc-
tion and the end of the life in our universe. Ifζ ⒧0⒭ � �2 the field motion
could last exponentially long.

Recent measurements of variation of the fine structure constantα indicate
that we could check the field variation. Moreover, in the nearest future we
will be able to distinguish whether we move towards the minimum or still
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are moving away from it. Indeed, it could be consequences of dependence
of the fine structure constant on the scalar field, see e.g. [370]. This idea
was developed in the framework of quintessence [371] and we apply it to our
case. Following the cited papers, suppose coupling of the scalar field with
electromagnetic one in the form

¨Aχ � �

1
4

B⒧χ⒭Fµν Fµν

and use first-order expansion

B⒧χ⒭ »ù 1� ò ⒧χ � χ * ⒭ .

So, the effective fine structure constant depends on the value of the fieldχ such
that

∆α

α

ù

ù

ù

α � α*

α*
� ò ⒧χ � χ * ⒭

Observational value∆α

α
½ �5 . 10�7 over the redshift range 0.2 � z� 3.7

shows that the value of the fieldχ does vary provided the observations will be
confirmed. If more accurate measurements supply us by experimental value
∆α̇⒧z⒭�a we could distinguish the direction of motion of fieldχ . Indeed, the

value ∆α̇⒧z⒭�a ² χ̇ and must decrease if we move away to the minimum of
potential thus approaching to the turning pointτ »ù 0.3, and must increase at
timesτ

»

� 0.3. This remark also indicates the difference between the model in
question and quintessence models.

The casen� �1

A nontrivial situation takes place if the kinetic function has zero value at
some point, i.e.K⒧ϕ⒭ � ⒧ϕ �ϕ s⒭�M . Eq.10.65 leads to the classical equation

⒧ϕ s� ϕ⒭ .
⒧ϕ̈ � 3Hϕ̇⒭ �

1
2

ϕ̇
2
� M . V⒧ϕ⒭′ � 0 (10.74)

This equation is quite uncommon. Indeed, if zero pointϕ s of the kinetic
term does not coincides exactly with the position of the potential minimum at
ϕ � 0, the pointϕ � ϕ s is not a stationary solutions of this equation. On
the other hand, if the functionsV⒧ϕ⒭ andK⒧ϕ⒭ behave locally as is shown in
Figure 10.10, the pointϕ s is some kind of attractor. More precisely, if the field
value is larger thanϕ s, then the kinetic termK⒧ϕ⒭ � 0 and we have standard
rolling of the field down to the singular pointϕ s. If the field value is smal-
ler thanϕ s, thenK⒧ϕ⒭ � 0. The field behaves like the phantom field [377],
climbing up to the potential and thus tending toward the pointϕ s. Classic-
ally, the situation looks very strange - the singular point attracts the solution,
but forbids it to stay there forever. Evidently, the field fluctuates around the
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Figure 10.10. Disposition of kinetic term and potential in the casen � �1. At the end of
inflation the field oscillates around singular pointϕ1

singular point what reminds of stochastic behavior. Additional discussion on
the similar problem can be found in the paper [379]. Stationary state could be
realized in terms of quantum mechanics like in the case of an electron in the
Coulomb field.

Let the initial field valueϕ � ϕ in � ϕ s. An appropriate variable substitution
(10.65) looks like

ϕ � ϕ s� sgn⒧χ⒭ . γ χ
2�3
ÿ γ ù

ù

ù ⒧3
A

M�2⒭2�3 ϕ � ϕ s.

The potential of the auxiliary fieldχ becomes

U⒧χ⒭ �
1
2

m2
⒧ϕ s� sgn⒧χ⒭ . γ χ

2�3
⒭

2
� V0. (10.75)

U⒧χ⒭ is finite atχ � 0 but its derivative is singular,

U ′

χ}�0 � �
2
3

m2
ϕ

2
sγ χ

�1�3. (10.76)

The potential (10.75) behaves likeχ
4�3 at large field values. It leads to standard

inflation with moderate fine tuning of the parameters. Namely

M » MPÿ m» 10�6MPÿ V0 » 10�12M 4
p (10.77)

If ϕ s � 0, the fieldϕ will oscillate around critical point with energy density
(10.63).
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5.2 Probabilistic approach to the form of action
We have investigated several specific forms of effective potential. There are

many other potentials and kinetic terms discussed in the literature. Substantial
amount of them do not contradict observational data, but evidently only one
of them is realized in our universe. Exact form of scalar field action has not
been derived yet from a more fundamental theory. Thus a substantial number
of them remains topical. In this connection two questions can be raised and
need to be answered: (i) What shape of potential and kinetic term is realized in
our universe? Finding an answer would require that the theoretical prediction
would fit most observational data. Suppose one would find answer, then next
problem emerges: (ii) Why is this particular shape of potential and kinetic term
realized in nature? What are the underlying reasons?

Some theoretical hints on the form of the potential have been given by the
supergravity, which predicts an infinite power series expansion in the scalar
field potential [10]. Its minima, if exist, correspond to the stationary states of
the field. In the low energy regime it is reasonable to retain only a few terms
(lowest powers in the Taylor expansion) of the scalar field [344]. There is
still no physical law which limits the potential to have only a finite number of
minima. The potential caused e.g. by the supergravity could correspond to a
function with infinite set of the potential minima. The supposition that the po-
tential possesses infinite number of randomly distributed minima appears to be
self-consistent [360]. In the vicinity of each of the minima the potential has an
individual form and hence the universe associated with such a minimum may
be individually different from other universes. Our own universe is associated
with a particular potential minimum, not necessarily located atϕ � 0. Similar
behavior may hold also for the kinetic term.

Actually, any way of introducing scalar field leads to a theory with non
trivial kinetic term provided that quantum corrections are taken into account.
Indeed, such term arises necessarily in ordinary quantum field theory with a
scalar field. It is a standard result that the kinetic term of the effective action
acquires a multiplier which is a function of the field [332].

Let us discuss in this content the problem of small energy density observed
recently. The smallness of theΛ term value is explained usually on the basis
of more fundamental theory like the supergravity or the anthropic principle.
Our point of view is that we have to merge these approaches. Namely, more
fundamental theory supplies us with infinite set of minima of the potential.
These minima having an individual shape are responsible for the formation of
those universes used in the anthropic consideration.

The problem of small cosmological constant can be solved in the framework
of the random potential [360], see Chapter 9 and kinetic term of the scalar field
discussed in this Section. Such potential and kinetic term distributed in finite
region of the fieldϕ are represented in Figure 10.11. Fluctuations of the scalar
field which were burnt at high energies moves classically to stationary points,
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black points in the Figure 10.11. Those of them who reach stationary points
with appropriate energy density could form a universe similar to our Universe.
This energy density (» 10�123M 4

P) is the result of small value of a concrete
potential minimum or small value of the differenceϕ s � ϕ m, ϕ m is a zero of
the potential,V⒧ϕ m⒭ � 0. The fraction of such universes is extremely small,
but nevertheless is infinite because of infinite number of stationary states.

How could one decide which of them is most promising? To get the idea we
would like to remind that main defect of inflationary scenario is the smallness
of some intrinsic parameter comparing with unity. It is the value of selfcoup-
ling λ » 10�13 for the potentialV4 � λϕ

4 or smallness of the mass of inflaton
field in Planck units,m�MP » 10�6 for the potentialV2 � m2

ϕ
2
�2. If we have

infinite set of absolutely different potentials, we can bring in the probability to
find potential with chosen value of any parameter. To do it, let us propose that
For any chosen minima of potential the probability to find parameter value
in an interval (gÿ g � dg) equals to dP� W⒧g⒭dg, were W(g) is uniform
distribution. It is suitable but not obligatory to choose the interval (0,1).

Of course it does not relate to those parameters which values are determined
by observations.

Immediate conclusion is that the probability of potentialλϕ
4 is about 10�13

while the probability of potentialm2
ϕ

2
�2 is 10�6. It means that the latter is

realized in 106 time more frequently.
Before proceeding we have to mention that in fact the probability is much

smaller due to smallness of the cosmologicalΛ - term. In this context, the
probability to find a universe with so small vacuum energy isPΛ � 10�123.
This value is very small, but the whole set of minima is infinite. It means that
the subset of universes with appropriate vacuum energy density is very weak
but still infinite. So the probability to find appropriate potentialV4 is

P⒧V4⒭ � 10�13PΛ

while the same for the potentialV2 is

P⒧V2⒭ � 10�6PΛ .

Important thing is ratio of these values but not their absolute values. It is the
ratio that shows us relative number of suitable universes.

It is interesting now to compare these values with probabilities of those
universes which are responsible for the singular points of kinetic term, rather
than potential minima. In the framework of the previous discussion, we could
expect that singular point(s)ϕ s may be found near some minimaϕ m of the
potential. Now the problem is reformulated as follows: “what part of infinite
amount of minima contains singular points disposed closely to them? ” It
seems evident that this part is very small, but not zero, due to infinite number
of the minima. Only this part is important - it represents those vacua where
galaxies could be formed [30]
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Figure 10.11. Random potential and kinetic term. Black points mark stationary state of the
field ϕ

The problem of the cosmologicalΛ - term acquires another sense. One has
to explain the extremal proximity of singular point of kinetic term and a zero
point of the potential. Such a fitting seems absolutely accidental. Moreover, a
probability of this event is very small.

Following this way we can compare the probability of realization of poten-
tials discussed here. Their common multiplier is connected with the smallness
of interval for the singular point, Eq.(10.70)

P0 � ∆ϕ s�MP
»

�

Λ
MPm

B

2 V0
� PΛ

M3
P

m
A

2V0
. (10.78)

For the casen � 1 the only additional smallness is dictated by last expres-
sion (10.68) and a part of such universes is

P1 »
m
M

P0 � PΛ
M3

P

M
A

2V0
½ PΛ . (10.79)

Universes with the properties described in the casen � 2 are distributed
with probability

P2 »
V0

M 4
P

P0 »ù PΛ

A

2V0

mMP
» 10�7PΛ (10.80)
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if the inflation starts at the right branch of the potential. Here we accepted
m » MPÿV0 » M 4

P. The last considered case,n � �1, has the probability in
order of magnitude greater comparing with previous one

P
�1 »

m
M

V0

M 4
P

P0 »ù PΛ

A

2V0

M 2
P

» 10�6PΛ (10.81)

Important conclusion from this consideration is that the model with kinetic
term» ⒧ϕ � ϕ s⒭

�1 is much more probable (at least in 106 times) comparing
with other models discussed above, including models with standard kinetic
term and the potentials» ϕ

2 and ϕ
4. It means that our Universe is likely

governed by the model with kinetic term» ⒧ϕ � ϕ s⒭
�1, if there are no physical

reasons to exclude it.
The probabilistic approach made above is valid for those models which ex-

plain observational data equally good. For example, if the variation of fine
structure constant will be confirmed, only one of the considered models re-
mains topical.

5.3 Conclusion
It is shown that the region where kinetic term changes its sign gives new

possibilities for the scalar field dynamics. It takes place even for the simplest
form of the potential. Depending on a position of the singular point of the
kinetic term, specific forms of the potential of the auxiliary field could be ob-
tained. One of the main result is that the stationary value of scalar field could
be situated in the singular points of the kinetic term rather than in minima of
the potential. Another interesting result is that if the singular point is a zero of
the kinetic term, the final state is intrinsically quantum state. We also compare
the probabilities to find universes with specific values of parameters.

6. Scalar-tensor models
The results of the previous consideration are connected with the renormaliz-

ation of kinetic term in the expression (10.25). Meanwhile, much more general
form of Lagrangian of scalar field coupled with gravity is known. One of the
most general model is Hyperextended scalar-tensor gravity [337]. Following
[347], we write it in the form

S�
@

d4x
A

�g

"

F⒧ϕ⒭
16πG

R�
1
2

K⒧ϕ⒭ ⒧∂ϕ⒭
2
� V⒧ϕ⒭

#

. (10.82)

As we have seen above, the coupling of the inflaton to the additional massive
field χ leads to kinetic functionK of the simplest formK⒧ϕ⒭ � Constϕ 2

�

2α
2
�m2

χ
ϕ

2, provided the value ofConstcould be arbitrary large. Thus, the
model discussed in the previous two sections represents one of the realization
of Action (10.82) with the functionF⒧ϕ⒭ � 1.
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Generalized Brans-Dicke model is another particular case of the model
(10.82) with the nonminimal functionF⒧ϕ⒭ � ϕ and redefinition of kinetic
functionK⒧ϕ⒭ � ω⒧ϕ⒭�⒧8πϕ⒭.

The theory of dilaton gravity is obtained if one denotesF⒧ϕ⒭ � exp⒧�ϕ⒭

andK⒧ϕ⒭ � �exp⒧�ϕ⒭�⒧8πG⒭.
Classical equations of motion for gravitation and the scalar field are ob-

tained by variation of the action (10.82) with these dynamical variables. The
equations are simplified significantly, if we limit ourselves by FRW metric,
what is usually good approximation for cosmological problems. In this case
the equations have the form [347]
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A prime denotes the differentiation with respect to the scalar fieldϕ . As it was
discussed in the Chapter 2, there are three different FRW metric corresponding
to k � 0ÿ

ù

�1. Eq. (10.83) is written for the case of flat Universe (k � 0) which
is the simplest one. In any case, the two others tend exponentially to the chosen
case with time.

One can significantly simplify this system applying slow rolling conditions.
As the result one obtains
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with one of the slow roll condition in the form
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(see [347] for details). The slow rolling and hence inflationary stage take place
if ε �� 1.

As we consider more or less general case with unknown functionsF and
K , this condition could be fulfilled at energies, smaller, than the Planck scale.
Indeed, standard result with the functionsF � 1 andK � 1 is thatε � 1
takes place ifϕ �

�

MP for the potential of the formV � λϕ
4 - see Chapter

2. Increasing the functionK and/or decreasing functionF could make this
condition much weaker so that the inflation extends to smaller values of the
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inflatonϕ , as it is evident from Eq. (10.85). Concrete example was considered
in Section 3 of this Chapter.

Additional ’degree of freedom’ is a form of the potential. Many interest-
ing possibilities have been discussed in the literature. A bunch of variants of
the hybrid inflation is considered in [344]. Quintessence model [363] with
monotonically decreasing potential was proposed to explain nonzero value of
energy density in modern epoch. At last, the possibility of random potential is
discussed in Chapter 7, see also [317], [321].

Epilogue

As the result, we realize that there are a large number of inflationary models
elaborated up to now. Some of them are pure phenomenological, others have
some theoretical basis. The main problem now is to choose one that describes
observational data, which became much richer and refined during last decade.

The era of the precision cosmology begins. Cosmology is coming to fascin-
ating task to choose one theory among others. This task implies with necessity
close links between cosmology and particle physics and the the development of
cosmoparticle physics, studying the fundamental relationship between macro-
and micro- worlds.

This theory must explain observations and experimental data which are still
poorly connected now. Small list of those of them that we touched in the
present book is:

Dark matter.

Large scale structure and CMB fluctuations.

Nonzero vacuum energy.

Bursts.

Massive black holes in galaxy centers.

Intermediate black holes.

Baryon domination in our Universe.

High energy component in cosmic rays.

Properties of Higgs scalar(s).

4-th generation in the fermion family.

Trans-Planckian physics.

The impressive list of these problems, as well as of many others to be solved
by cosmoparticle physics, makes the development of this science the exciting
challenge for the new Millennium.
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